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Abstract: The paper presented the basic treatment of the solution of heat equation in one dimension. Heat is a form of 

energy in transaction and it flows from one system to another if there is a temperature difference between the systems. Heat 

flow is the main concern of sciences which seeks to predict the energy transfer which may take place between material 

bodies as result of temperature difference. Thus, there are three modes of heat transfer, i.e., conduction, radiation and 

convection. Conduction can be steady state heat conduction, or unsteady state heat conduction. If the system is in steady 

state, temperature doesn’t vary with time, but if the system in unsteady state temperature may varies with time. However, if 

the temperature of material is changing with time or if there are heat sources or sinks within the material the situation is 

more complex. So, rather than to escape all problem, we are targeted to solve one problem of heat equation in one 

dimension. The treatment was from both the analytical and the numerical view point, so that the reader is afforded the 

insight that is gained from analytical solution as well as the numerical solution that must often be used in practice. 

Analytical we used the techniques of separation of variables. It is worthwhile to mention here that, analytical solution is not 

always possible to obtain; indeed, in many instants they are very cumber some and difficult to use. In that case a numerical 

technique is more appropriate. Among numerical techniques finite difference schema is used. In both approach we found a 

solution which agrees up to one decimal place. 
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1. Introduction 

The heat equation in one dimension 

We begin the study of partial differential equations with 

the problem of heat flow in uniform bar of length 8 units 

situated on the x – axis with one end at origin and the other at 

� � 8 units. 

 

Figure 1. A uniform bar of length 8 units. 

We assume that the bar is perfectly insulated except 

possibly at its end points and that the temperature is constant 

on each cross section and therefore depends only on x and t. 

We also assume that the thermal properties of the bar are 

independent of x and t. The temperature ���, �� at time t at 

point x units from the origin satisfies the partial differential 

equation. 

�	 
 4��� � 0; 0 � � � 8, � � 0 

Subject to 

��0, �� � 0 � ��8, ��; � � 0 ��� 

���, 0� � 4� 

��

2
; 0 � � � 8 

This is the heat equation with its boundary and initial 

condition which governs the heat distribution in the above 

uniform bar of length 8 units, see e.g. [1, 8, 3]. Having the 

governing equation to one dimensional heat equation, there is 

a need to determine its solution. 
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2. Result and Analysis 

2.1. Analytical Approach 

Heat equation in one dimension can be solved by 

analytical approach. In order to solve, one dimensional heat 

equation with this method we will apply separation of 

variables which is the solutions to homogeneous PDE [5, 1, 4, 

12]. So, consider the following heat conduction problem in a 

finite interval. 

�	 
 ���� � 0 0 ≤ � ≤ �, � > 0                (1) 

��0, �� = ���, �� = 0 � ≥  0                (2) 

���, 0� = ���� 0 ≤  � ≤ �                  (3) 

Where, �  is a given initial condition, and k is positive 

constant. We assume the compatibility condition ��0� =���� = 0. The solution has special form: 

���, �� = Χ���Τ���                               (4) 

By differentiating the separated solution (4) once with 

respect t, twice with respect to X and �  be a separation 

constant such that. 

�� � = !��! = −�                                      (5) 

Thus, equation (5) leads to the following system of DEs: 

"#�"� + � � = 0 0 ≤ x ≤ L                       (6) 

"�"	 + � � Τ = 0 � > 0                             (7) 

So, the general solution for � > 0 is 

Χ��� = ' cos+√� �- + . sin+√� �- 

Substituting this solution in to the boundary condition sin+√� �- = 0,  Therefore, √� � = �1  where n is positive 

integer. The corresponding Eigen functions are ���� =sin 23�4 , see, e.g. [5, 11, 14, 17]. It is convenient to use the 

notations. 

�2��� = sin �1� , �2 = 5�1� 6�  � = 1,2,3, … 

Let us draw a DE (7). The general solution has of the form: 

Τ��� = β;<= 5>?@ 6#	  � = 1,2,3, …     (8)   

Form physical point of view it is clear that the solution of 

(8) most decay in time. 

�2��, �� = Χ2���Τ2��� = Β2 sin �1�� <=B5234 6#	 
 

 Cℎ<E<, � = 1,2,3, … 

The generalized super position principle implies that the 

formal expression 

���, �� = ∑ .2G2HI sin 23�4 <=B5>?@ 6#	  � = 1,2,3, … (9) 

is a natural candidate of solution for generalized solution 

of problem (1) up to (3). Where ���� = ∑ .2G2HI sin 23�4  � = 1,2,3, … is Fourier sine series 

representation of ����,. 

Therefore, the Fourier coefficient are given by 

.2 = 2� J sin 5�1�� 6 ������, � = 1,2,3, …K
L  

Now, let us solve the problem 

�	 − 4��� = 0, 0 ≤ � ≤ 8, � > 0 

��0, �� = 0 = ��8, ��, � ≥  0 

���, 0� = ���� = 4� − 12 ��, 0 ≤  � ≤ 8 

Using analytical approach. 

Solution: using equation (9) The analytical solution is 

���, �� = M .2
G

2HI
sin �1�8 <=N523O 6#	  � = 1,2,3, … 

= M .2
G

2HI
sin �1�8 <=523IP6#	  QR�S< 

� = 8 ��� � = 4, where 

.2 = 2� J ����K
L sin �18 ��� = 28 J T4� − ��

2 U sin �1�8
K

L  

= 14 V4 T−8��1 cos �1�8 W80 + 8�
��1�� sin �1�8 X80U − 12 T−8��

�1 cos �1�8 W80 + 16�1 T8��1 sin �1�8 + 8�
��1�� cos �1�8 U X80UZ 

= 14 V−32��1 cos �1�8 W80 − 12 T−8��
�1 cos �1�8 + 1024�[1[ cos �1�8 U X80Z 

= 14 \−256�1 cos �1 + −256�1 cos �1 −512��1�[ cos �1 + 512��1�[^ 
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�

128 cos �1��1�[ + 128��1�[ = 128�[1[ �1 − cos �1� = _ 0 R� � RQ <`<�256�[1[  R� � RQ a�� 

Thus, the analytical solution 

b��, �� = M �2
G

2HI
�x, t� = 256π[ M 1�2n − 1�[

G
;HI

sin �2n − 1�πx8 <=��;=I�IP e#f, n = 1,2,3, … 

Where ���� = �gPeh ∑ I��;=I�hG;HI sin ��;=I�eiO , � = 1,2,3, … 

If we obtained the solution by adding 8 terms 

i.e., for � = 1,2,3, … ,8 

���, 0� = ���� ≈ 256π[  

ksin πx8 + 124 sin 3πx8 + 1125 sin 5πx8 + 1343 sin 7πx8 + 1729 sin 9πx8 + 11331 sin 11πx8 + 11297 sin 13πx8 + 13375 sin 15πx8 n 

So, by computing for � = 0,1,2,3, … ,8 successively and correcting the result up to fourth decimal places, we get 

��0,0� = 0, ��1,0� = 3.4979, ��2,0� = 5.9987, ��3,0� = 7.4989, 
��4,0� = 7.9990, ��5,0� = 7.4989, ��6,0� = 5.9987, ��7,0� = 3.4979, 

��� ��8,0� = 0. Then 

���, �� ≈ M �2
O

2HI
�x, t� 

= 256π[ Tsin πi8 e −π�t16 + 127 sin 3πx8 e −9π�
16 t + 1125 sin 3πx8 e −25π�

16 t + 1343 sin 7πx8 e −49π�
16 t 1729 sin 9πx8 e −81π�

16 t
+ 11331 sin 11πx8 e −125π�

16 t + 12197 sin 13πx8 e −169π�
16 tU 

= 256π[  

ksin πx8 e=L.PgPOf + 127 sin 3πx8 e=g.ggIPf 1125 sin 5πx8 e=Ig.N�I�f
+ 1343 sin 7πx8 e=[L.�Ogqf + 1729 sin 9πx8 e=Nr.rPNrf + 11331 sin 11πx8 e=qN.P[Orf + 12197 sin 13πx8 e=ILN.�Nqqf + 13375 sin 15πx8 e=I[O.qrI[fn 

If � = IO = 0.125 

���, 0.125� = 2561[  

ksin nπx8 e=L.LqqI + 127 sin 3πx8 e=L.Pr[r
+ 1125 sin 5πx8 e=I.r�qP
+ 1343 sin 7πx8 e=[.qqO� + 1729 sin 9πx8 e=P.�NgP + 11331 sin 11πx8 e=r.[�rr + 12197 sin 13πx8 e=I[.L[I + 13375 sin 15πx8 e=Iq.[Nrn 

Thus, we get ��0,0.125� = 0, ��1,0.125� = 3.0754, ��2,0.125� = 5.508, 
��3,0.125� = 7.002, ��4,0.125� 

= 7.5004, ��5,0.125� = 7.002, 
��6,0.125� = 5.5058, ��7,0.125� = 3.0754 ��� ��8,0� = 0 

If � = 0.25 



 International Journal of Applied Mathematics and Theoretical Physics 2021; 7(2): 53-61 56 

 

���, 0.25� = 2561[  

5sin eiO e=L.IgN� + I�q sin [eiO e=I.[Oqr + II�g sin geiO e=[.Ogg[ + I[N[ sin IqeiO e=q.ggPN + Iq�r sin reiO e=I�.NrI� + II[[I sin IIeiO e=IO.Pgrq + I�Irq sin I[eiO e=�P.LPIr +
I[[qg sin IgeiO e=[N.PrqO6  

Thus, we get ��0,0.25� = 6.5100, ��1,0.25� = 2.7799, ��2,0.25� = 5.0568, 
��3,0.25� = 6.5100, ��4,0.25� = 7.0016, ��2,0.25� = 6.5100, 
��6,0.25� = 5.0568, ��7,0.25� = 2.7799 ��� ��8,0.25� = 0 

If � = 3 8s = 0.375 

���, 0.375� = 2561[  

5sin eiO e=L.�[I[ + I�q sin [eiO e=�.LOIO + II�g sin geiO e=g.qO[ + I[N[ sin qeiO e=II.[[NP + Iq�r sin reiO e=IO.q[PO + II[[I sin IIeiO e=�q.rOrP + I�Irq sin I[eiO e=[r.Lr�r +I[[qg sin IgeiO e=g�.LNPq6   

Thus, ��0,0.375� = 0. ��1,0.375� = 2.5426, ��2,0.375� = 4.6594, ��3,0.375� = 6.03808 

��4,0.375� = 6.5110, ��5,0.375� = 6.038088, ��6,0.375� = 4.6594, ��7,0.375� = 2.5426 

��� ��8,0.375� = 0 

If � = NO = 0.5 

���, 0.5� = 2561[  

5sin eiO e=L.[LON + I�q sin [eiO e=�.qqgO + II�g sin geiO e=q.qILP + I[N[ sin qeiO e=Ig.II�O + Iq�r sin reiO e=�N.rO�N + II[[I sin IIeiO e=[q.[IrN + I�Irq sin I[eiO e=g�.I�[O +
I[[qg sin IgeiO e=Pr.[rg6  

Thus, Thus, ��0,0.5� = 0. ��1,0.5� = 2.3387, ��2,0.5� = 4.3003, ��3,0.5� = 5.5963, 
��4,0.5� = 6.0788, ��5,0.5� = 5.5964, ��6,0.5� = 4.3023, ��7,0.5� = 2.3387 

��� ��8,0.5� = 0 

If � = 0.625 

���, 0.625� = 2561[  

t
uvsin eiO e=L.[Ogg + I�q sin [eiO e=[.NPrO + II�g sin geiO e=r.P[O� + I[N[ sin

qeiO e=IO.OrII + Iq�r sin reiO e=[I.��OI
+ II[[I sin IIeiO e=NP.PNr[ + I�Irq sin I[eiO e=Pg.IgNO

+ I[[qg sin IgeiO e=OP.qNNP w
xy  

Thus, ��0,0.625� = 0, ��1,0.625� = 2.1577, ��2,0.625� = 3.9773, 
��3,0.625� = 5.1842, ��4,0.625� = 5.6057, ��5,0.625� = 5.1842 

��6,0.625� = 3.9773, ��7,0.625� = 2.1577 ��� ��8,0.625� = 0 

The above solution indicates how fast heat flows in a given 

material. Though the solution has been obtained, it involves 

such an infinite series solution that analytical evaluation 

becomes exceedingly difficult, see [2, 7]. For such situations 

the most powerful approach is one based on forward time 

central space schema, see e.g., [10, 9, 13]. 

2.2. Numerical Approach 

The solution to one dimensional heat equation can also be 

solved by numerical methods which is an approximate 

solution. Of all the numerical methods available for the 

solution of the partial differential equation the method of 
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finite difference is significantly used to solve heat equation [6, 

14, 16]. In order to solve heat equation by finite difference 

schema let us employ the Schmidt method, see e.g [7, 15]. 

Schmidt method: Consider figure 2. i.e., a rectangular 

mesh in the � 
 � plane with spacing h a long � direction and 

k along time direction. 

Donating a mesh point ��, �� � �RD, z�� as simply R, z. 
Note: the points of intersection of dividing line are called 

mesh points, nodal points or grid points. 

 

Figure 2. Schematic representation. 

Recall that the heat equation in one dimension, i.e., 

�	 
 {�b�� � 0 CD<E< {� is diffusibility of substance we 

have approximation for the derivative. 

|�
|�

�
�}

~�I 
 �}
~

�
 ��� 

|��
|�� �

�}=I
~ 
 2�}

~ $ �}�I
~

D�  

By substituting these, we obtain 

�}
~�I 
 �}

~ �
�S�

D� ��}=I
~ 
 2�}

~ $ �}�I
~ � 

If ' � �S�

D�s  is mesh ratio parameter 

�}
~�I � ' �}=I

~ $ �1 
 2'��}
~ $ '�}�I

~
                (10) 

which is two level explict formula. 

Note: The above formula enables us to determine the value 

of u at �R, z $ 1�	� mesh point in terms of the known function 

values at the point �}=I, �}  ��� �}�I at the instant  �}. 

In particular, when ' � I

�
 the above formula becomes 

�}
~�I � I

�
+�}=I

~ $ �}�I
~ -. 

Which shows that values of � �� �}  �� �R�< �}�I  is the 

mean of the u values at �}=I ��� �}�I �� time �~. 

As you can observe from (10) Schmidt method is valid 

only for 0 � ' � I

�
, see, e.g [] 

Now, Let us solve 

|�
|�


 4
|��
|�� � 0 

��0, �� � 0 � ��8, �� ��� ���, 0� � 4� 

��

2
 

At the points �} � R: R � 0,1,2, … ,8 ��� �~ � I

O
z: z �

0,1,2, … ,5 

Solution: 

Given that {� � 4, D � 1 ��� � � I

O
 

Then ' � {��
D�s � 1

2s  

Thus we have 

�}
~�I �

1
2

+�}=I
~ $ �}�I

~ - 

Because ��0, �� � 0 � ��8, ��, bL
~ � 0 ��� bO

~ � 0 �z, i.e. 

the entries in the first and last column of table 1 are zero. 

Since 

���, 0� � 4� 

��

2
 

�I
L � 4R 


1
2

R� � 0,3,5,6,7,5,8,7,5,6,3,5 �aE R

� 0,1,2, … 7 �� � � 0 

respectively. These are the entries in the first row of table 1 

putting z � 0, in the above formula, we have 

�I
I � I

�
��}=I

L $ �}�I
L � and taking R � 1,2, … 7 successively 

We get �I
I � 3, ��

I � 5.5, �[
I � 7, �N

I � 7.5, �g
I � 7, � �

5.5 ��� �q
I � 3 

Putting z � 1 in above formula, the entries of the third row 

are given by: 

�I
� � I

�
��}=I

I $ �}�I
I � and taking R � 1,2, … 7 successively 

We get �I
� � 2.75, ��

� � 5, �[
� � 6.5, �N

� � 7, �g
� �

6.5, �P
� � 5 ��� �q

� � 2.75 

Similarly putting z � 2,3,4 successively in above formula 

we have the entries of the fourth and sixth rows of table. 

Hence the value of �}
~
 are given as follow: 

Table 1. The value of u at �}  ��� �~  �aE R � 0,1,2, … ,8 ��� z � 0,1,2, … ,5. 

�  
� 

0 1 2 3 4 5 6 7 8 

0 0 3.5 6 7.5 8 7.5 6 3.5 0 

1 0 3 5.5 7 7.5 7 5.5 3 0 

2 0 2.75 5 6.5 7 6.5 5 2.75 0 

3 0 2.5 4.625 6 6.5 6 4.625 2.5 0 

4 0 2.3125 4.25 5.5625 6 5.5625 4.25 2.3125 0 

5 0 2.125 3.9375 5.125 5.5625 5.125 3.9375 2.125 0 
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Hence, the computed solutions for few time steps are 

shown above. The solution at any point �R, z + 1�  is the 

average of the two adjacent mesh points �R − 1, z� ��� �R +1, z� of the previous time step. As we observed from the table 

we note that as t increases down the column, the solution 

decreases. This is accordance known exact solutions of heat 

conduction problem which we observe practically in life. 

Further the computed solution lies between 0 and 8. 

From fore going discussion, Let us see what happen to the 

solution if we reduce t level from IO  �a 1 64s  ��� � �<`<� �Ea� 1 �a 1 2s  

Let us find the solution at the point �} = }� : R = 0,1,2, … 16 ��� �~ = IPN z: z = 0,1,2,3,4, of above problem. 

Solution: Given {� = 4, ℎ = I�  ��� � = IPN 

Then ' = �# �# = IN 

Because ��0, �� = 0 = ��8, ��, bIPI = 0 for all values of j, 

i.e., the entries in the first and last column of table 2 are zero. 

Since ���, 0� = 4� − �#
�  

�IL = 4R2 − 12 kR2n�  �aE R = 0,1,2, … ,16 ��� � = 0 

= 2R − 0.125 R�, R: R = 0,1,2, … ,16 ��� z = 0 

These are the entries of the first row in the table 2. 

Now, from forward time central space formula, i.e. The 

Schmidt method; we have 

�I~�I = 14 ��}=I~ + 2�}~ + �}�II �, R: R = 1,2,3, … ,15 ��� z: z= 1,2,3, … 

Putting R = 0, we have 

�}I = 14 ��}=IL + 2�IL + �}�IL � 
Thus, by taking R = 1,2,3, … ,15 successively, we get those 

entries of the third row in the table 2. 

Putting z = 2, we have 

�}[ = 14 ��}=I� + 2�I� + �}�II � 
Thus, by taking R = 1,2,3, … ,15 succesively, we get those 

entries of the fourth row in the table 2. 

Putting z = 3, we have 

�}N = 14 ��}=I[ + 2�I[ + �}�I[ � 
Thus, by taking R = 1,2,3, … ,15 successively, we get those 

entries of the last row in the table 2. Therefore, let us see the 

solution in the table 2. 

Table 2. The value of � �� �}  ��� �~  �aE R = 0,1,2, … 16 ��� z = 0,1,2,3,4. 
� � 0 1 2 3 4 5 6 7 8 

0 0 1.875 3.5 4.875 6 6.875 7.5 7.875 8 

1 0 1.8125 3.4375 3.4375 4.8125 5.9375 6.8125 7.4375 7.8125 
2 0 1.7656 3.375 4.75 5.875 6.75 7.375 7.75 7.875 

3 0 1.7266 3.3164 4.6875 5.8125 6.6875 7.3125 7.6875 7.8125 

4 0 1.3174 3.2617 4.626 5.75 6.625 7.25 7.625 7.75 

Table 2. Continued. 

� � 9 10 11 12 13 14 15 16 

0 7.875 7.5 6.875 6 4.875 3.5 1.875 0 

1 7.9375 7.8125 7.4375 6.8125 5.9375 4.8125 1.8125 0 
2 7.75 7.375 6.75 5.875 4.75 3.375 1.7656 0 

3 7.6875 7.3125 6.6875 5.8125 4.6875 3.3164 1.7266 0 

4 7.625 7.25 6.625 5.75 4.626 3.2617 1.3174 0 

 

2.3. Comparison Between Analytical and Numerical 

Methods for One Dimension Heat Equation 

In the previous section, we obtained the analytical and 

numerical solution of the given problem of heat flow in one 

dimension. 

Recall that the analytical solution which we obtained by 

adding 8 terms of the infinite series is given in the table 3 

whereas, the numerical solution which we obtained at the same 

value of � ��� � of analytical solution is given in the table 4. 

So, Let us see the solution in the table 3 and table 4 as the 

following. 

Table 3. The analytical solution. 

 �� �� 
0 1 2 3 4 5 6 7 8 

0 0 3.4979 5.9987 7.4989 7.9990 7.4989 5.9987 3.4979 0 

0.125 0 3.0754 5.508 7.002 7.5000 7.002 5.5058 3.0754 0 
0.25 0 2.7799 5.0568 6.5100 7.0016 6.5100 5.0568 2.7799 0 

0.375 0 2.5426 4.6594 6.03808 6.5110 6.03808 4.6594 2.5426 0 

0.5 0 2.3387 4.3003 5.5963 6.0788 5.5963 4.3023 2.3387 0 
0.625 0 2.1577 3.9773 5.1842 5.6057 5.1842 3.9773 2.1577 0 
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Table 4. The numerical solution obtained at �} � R: R � 0,1,2, … ,8 ��� �~ � z
8s : z � 0,1,2,3,4,5. 

� 

� 
0 1 2 3 4 5 6 7 8 

0 0 3.5 6 7.5 8 7.5 6 3.5 0 

1 0 3 5.5 7 7.5 7 5.5 3 0 

2 0 2.75 5 6.5 7 6.5 5 2.75 0 
3 0 2.5 4.625 6 6.5 6 4.625 2.5 0 

4 0 2.3125 4.25 5.5625 6 5.5626 4.25 2.3125 0 

5 0 2.125 3.9375 5.125 5.5625 5.125 3.9375 2.125 0 

 

As you can observe from both above table, if the time is 

large and large, the magnitude of heat distributed in the 

material is tends to generate equal heat distribution. 

Now, let us take any row from both tables. For instance, 

���I, 0.125� �
�03.0754 5.508 7.002 7.500 7.002 5.5058 3.0754 0� ���  

��� �}
I � �0 3 5.5 7 7.5 7 5.5 3 0� ���  

�aE R: R � 0,1,2, … ,8 

Note that b}
I are the values of � �� �I � I

O
� 0.125 

From row (a): the total magnitude of heat at �I �
0.125 RQ 38.6686 and from row (b): the total magnitude of 

heat at �I � 0.125 RQ 38.5 . This indicate that the total 

magnitude of heat which approximated by analytical and 

numerical approach is nearly the same. 

Furthermore, from above two rows (fixing time value) as 

you see, each respective value is the same up to first decimal 

places. In both row as we see from center to the boundary 

point the solution decreases. At boundary point both numerical 

and analytical solution is zero which satisfies the boundary 

condition we set previously. Furthermore, fixing the value of x 

at 1 (varying the time value), we produce the following graphs 

which compares the analytical and Numerical solution. 

Comparison between Analytical and Numerical solution at 

� � 1. 

 

Figure 3. Comparison between analytical and Numerical Solution. 

 

Figure 4. Comparison between Analytical and Numerical solution at 

� � 0.125. 

 

Figure 5. Comparison of surface between Analytical and Numerical solution 

of heat equation. 
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3. Discussion 

We understand from above solution that heat will flow from higher potential to lower potential until equilibrium is generated. 

At � � 0 ��� � = 8 the above solution is zero. i.e., the solution satisfies the given boundary condition. 

Now, let us recall, from analytical solution 

�2��, �� = 2561[ 1�2� − 1�[ sin �2� − 1�1�8 <=��2=I�#IP 3#	
 

This implies 

| �2��, ��| = W 2561[�2� − 1�[ sin �2� − 1�1�8 <=��2=I�#IP 2#	  W ≤ 2561[�2� − 1�[ 

Thus, for any n terms could be taken to get the analytical 

solutions of the above problem, 

���, �� ≤ �gP3h  0 ≤ � ≤ 8 ��� � ≥ 0. 

Also, the analytical solution we obtained satisfies this 

criteria. Even so, if you add any n terms which is greater than 

six and if you correct the solutions up to fourth decimal 

places, The result is the same as above solution in table 3 for 

the same values of � ��� �. 

As we observed from the numerical solution, if ∆� ��� ∆� 

is reduced, the numerical method is best approximates the 

solution. That is the more nodes taken, the closer 

approximate the solution. Thus, the finite difference solution 

is sensitive to the value of ' which involves the mesh lengths. 

In addition, we understand that as the time step increases the 

distribution of heat decreases within the material. 

We obtained the analytical solution which involves such 

infinite series solution that its evaluation becomes exceedingly 

difficult. It is worthwhile to mention here that analytical 

solutions are not always possible to obtain; indeed, in many 

instances they are very cumbersome and difficult to use. In this 

case numerical methods are used more advantageous than 

analytical methods. However, the analytical approach has its 

own advantage. If you add a lot of terms of the series the 

analytical approach is better approximate the solution. 

4. Conclusion 

This paper tries to set the procedure on how to solve heat 

equation in one dimension using Analytical and Numerical 

methods and the solution found to be in a good agreement. 

That is, the solution agrees up to one decimal place. Note that 

by describing the domain (dividing into increments in the both � ��� �  direction where R  location indicate the �  increment 

and z  location indicate the time increment) we get the 

temperature value at any nodal points. Furthermore, though the 

analytical approach is good in finding the exact solution to the 

problem, it is difficult to manipulate as it involves an infinite 

series. The Numerical approach we used though simple it is an 

approximation and we need to go more iteration to be in 

agreement with reality. Furthermore, advantage of an explicit 

forward finite difference we used is the direct calculation of 

future nodal temperature. However, stability of this solution 

governed by selection values of ∆� ��� ∆�. 
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