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Abstract: Quantum gates are fundamental in Quantum computing for their role in manipulating elementary information 

carriers referred to as quantum bits. In this paper, a theoretical scheme for realizing a quantum Hadamard and a quantum 

controlled-NOT logic gates operations in the anti-Jaynes-Cummings interaction process is provided. Standard Hadamard 

operation for a specified initial atomic state is achieved by setting a specific sum frequency and photon number in the normalized 

anti-Jaynes-Cummings qubit state transition operation with the interaction component of the anti-Jaynes-Cummings 

Hamiltonian generating the state transitions. The quantum controlled-NOT logic gate is realized when a single atomic qubit 

defined in a two-dimensional Hilbert space is the control qubit and two non-degenerate and orthogonal polarized cavities defined 

in a two-dimensional Hilbert space make the target qubit. With precise choice of interaction time in the anti-Jaynes-Cummings 

qubit state transition operations defined in the anti-Jaynes-Cummings sub-space spanned by normalized but non-orthogonal 

basic qubit state vectors, ideal unit probabilities of success in the quantum controlled-NOT operations is determined. 

Keywords: Anti-Jaynes-Cummings, Jaynes-Cummings, Hadamard, Controlled-NOT 

 

1. Introduction 

In quantum computers, quantum bits (qubits) [1, 2] are the 

elementary information carriers. In such a computer, quantum 

gates [1-3] can manipulate arbitrary multi-partite quantum 

states [4] including arbitrary superposition of the 

computational basis states, which are frequently also 

entangled. Thus the logic gates of quantum computation are 

considerably more varied than the logic gates of classical 

computation. In addition, a quantum computer can solve 

problems exponentially faster than any classical computer [5] 

because by exploiting superposition principle and 

entanglement allows the computer to manipulate and store 

more bits of information than a classical computer. 

In this paper a theoretical approach of realizing Hadamard 

and controlled-NOT (C-NOT) quantum logic gates which 

form a universal set for quantum computation [6-8] is 

presented. The important discovery and proof of a conserved 

excitation number operator of the anti-Jaynes-Cummings 

(AJC) Hamiltonian [9] now means that dynamics generated by 

the AJC Hamiltonian is exactly solvable, as demonstrated in 

the polariton and anti-polariton qubit (photospin qubit) 

models in [10, 11]. The reformulation developed in [9-11], 

drastically simplifies exact solutions of the AJC model which 

is applied in the present work. 

The quantum C-NOT gate is defined as that which affects 

the unitary operation on two qubits which in a chosen 

orthonormal basis in 
2
ℂ gives the C-NOT operation obtained 

as 

a b a a b→ ⊕                 (1) 

where a  is the control qubit, b  is the target qubit and 

⊕  indicates addition modulo 2 [1, 2, 12]. The C-NOT gate 

transforms superposition into entanglement thus acts as a 

measurement gate [1, 2, 12] fundamental in performing 
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algorithms in quantum computers [13]. Transformation to a 

separable state (product state) is realized by applying the 

C-NOT gate again. In this case, it is used to implement Bell 

measurement on the two qubits [14]. 

The Jaynes-Cummings (JC) model has been applied 

extensively in implementing C-NOT and Hadamard gate 

operations. Domokos et al (1995) [15] showed that using 

induced transitions between dressed states, it is possible to 

implement a C-NOT gate in which a cavity containing at most 

one photon is the control qubit and the atom is the target qubit. 

Later, Vitali, D. et al (2001) [16] proposed a scheme of 

implementing a C-NOT gate between two distinct but 

identical cavities, acting as control and target qubits 

respectively. By passing an atom prepared initially in ground 

state consecutively between the two cavities a C-NOT 

( cavity atom→ ) and a C-NOT ( atom cavity→ ) is realized 

with the respective classical fields (S). Saif, F. et al (2001) [17] 

presented a study of quantum computing by engineering 

non-local quantum universal gates based on interaction of a 

two-level atom with two modes of electromagnetic field in 

high Q superconducting cavity. The two-level atom acted as 

the control qubit and the two-mode electromagnetic field 

served as the target qubit. 

In this letter, an approach similar to that in [17] is applied, 

where a quantum C-NOT gate operation between two cavities 

defined in a two-dimensional Hilbert space spanned by the 

state vectors 1 0 ,1a bµ =  and 2 1 ,0a bµ = as target 

qubits is implemented. Here 1µ  indicates that mode a  is 

in vacuum state and one photon is present in mode b  and 

2µ  expresses the presence of one photon in mode a , when 

there is no photon in mode b . The control qubit in this respect 

is a two-level atom. The important difference with the 

approach used in [17] is the model, i.e., while the initial 

absolute atom-field ground state g,0  in the AJC interaction 

is affected by atom-cavity coupling, the ground state g,0  in 

the JC model [17] is not affected by atom-cavity coupling. A 

similar result was determined independently in [11]. Further, 

with precise choice of interaction time in the AJC qubit state 

transition operations defined in the AJC qubit sub-space 

spanned by normalized but non-orthogonal basics qubit state 

vectors [10, 11], C-NOT gate operations are realized between 

the two cavities. 

The Hadamard gate also known as the Walsh-Hadamard 

gate is a single qubit gate [1, 2]. The Hadamard transformation 

is defined as 

2

x z
H

σ σ
∧ ∧

∧ +=                    (2) 

where it transforms computational basis states ( ) ( )0 , 1e g  

into diagonal basis states according to 

  ;   
2 2

0 1 0 1
0   ;   1

2 2

e g e g
H e H g

H H

∧ ∧

∧ ∧

+ −
= =

+ −
= =

         (3) 

Vitali, D. et al (2001) [16] showed that one qubit operation 

can be implemented on qubits represented by two internal 

atomic states because it amounts to applying suitable Rabi 

pulses. He demonstrated that the most practical solution on 

implementing one qubit operations on two Fock states is sending 

the atoms through the cavity. If the atom inside the cavity 

undergoes a 
2

π
pulse one realizes a Hadamard-phase gate. Saif, 

F. et al (2001) [17] also showed that it is possible to realize 

Hadamard operation by a controlled interaction between a 

two-mode high Q electromagnetic cavity field and a two-level 

atom. In his approach, the two-level atom is the control qubit, 

whereas the target qubit is made up of two modes of cavity field. 

Precision of the gate operations is realized by precise selection 

of interaction times of the two-level atom with the cavity mode. 

In this paper, Hadamard operation in the AJC interaction for a 

specified initial atomic state is determined by setting a specific 

sum frequency δ  and photon number n  in the normalized 

AJC qubit state transition operation [10, 11], noting that the 

interaction components of the AJC Hamiltonian generates state 

transitions. 

The content of this paper is therefore summarized as 

follows. Section 2 presents an overview of the theoretical 

model. In sections 3 and 4 respectively, implementation of 

quantum C-NOT and Hadamard gates in the AJC interaction 

are presented. Finally section 5 contains the conclusion. 

2. The Model 

The AJC Hamiltonian determined through symmetrization 

of the QRM in [9-11] is of the form 

†

†
0

1
2      ;     

2

           ;       
2 2

z

H N A N a a s s

A s a s a s

ω λ ω

ω ωδα α
λ λ

∧∧ ∧ ∧ ∧∧ ∧ ∧
− +

∧ ∧∧ ∧ ∧ ∧
− +

= + − = +

+
= + + = =

ℏ ℏ ℏ

     (4) 

Here, 
†

,  ,  a aω
∧∧

 are quantized field mode angular 

frequency annihilation and creation operators while 

0 ,  ,  ,  zs s sω
∧ ∧ ∧

+ −  are atomic state transition angular frequency 

and atomic transition operators. δ  is the sum frequency 

parameter and ,  N A
∧∧

 are anti-polariton qubit conserved 

excitation number and state transition operator. 

Applying the state transition operator  A
∧

 from Eq. (4) to 

the initial atom-field n -photon ground state vector gnψ  and 

initial n -photon excited state vector enψ respectively, the 

basic qubit state vectors satisfy the qubit state algebraic 

operations [10, 11] 

    ;    ;

     ;     .

gn gn gn gn gn gn

en en en en en en

A A A A

A A A A

ψ φ φ ψ

ψ φ φ ψ

∧ ∧

∧ ∧

= =

= =

      (5) 
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Here  

,   ;  ,en gne n g nψ ψ= =                (6) 

are the initial uncoupled qubit state vectors while  

, 1

, 1

 ;en en en en g n

gn gn gn gn e n

c s

c s

φ ψ ψ

φ ψ ψ

−

+

= +

= − +
              (7) 

are the coupled transition qubit state vectors. 

In the AJC subspace spanned by normalized but 

non-orthogonal basic qubit state vectors ,  en enψ φ  and 

,  gn gnψ φ respectively, the basic qubit normalized state 

transition operators ,  g eε ε
∧ ∧

and identity operators ,  e gI I
∧ ∧

 

are introduced according to the definitions [11] 

2
2

2

2
2

2

,     ;

,     ,

gg g g
gn gn

ee e e
en en

A A
I I

A A

A A
I I

A A

ε ε

ε ε

∧ ∧
∧ ∧∧ ∧

∧ ∧
∧ ∧∧ ∧

= = ⇒ =

= = ⇒ =

        (8) 

with respective general algebraic properties 

( ) ( )

( ) ( )

cos sin ;

cos sin ,

e

g

i
e e

i
g g

e I i

e I i

ϕε

θ ε

ϕ ϕ ε

θ θ ε

∧

∧

∧ ∧

∧ ∧−

= +

= −
          (9) 

which are useful in evaluating time-evolution operators. 

The AJC qubit Hamiltonian defined within the qubit 

subspace spanned by the respective basic qubit state vectors

,  en enψ φ and ,  gn gnψ φ  specified for initial atomic 

basis states ,  e g in a n -photon field mode respectively 

are then expressed in terms of the normalized qubit state 

transition operators ,  geε ε
∧ ∧

 and identity operators ,  e gI I
∧ ∧

in 

the forms 

( )

2

2

2

2

1
  ;   2   ;  

2

  ,
16

3
  ;   2   ;  

2

 1 .
16

e e en e en en

en

g g gn g gn gn

gn

H n I R R A

A n

H n I R R A

A n

ω ε λ

δ
λ

ω ε λ

δ
λ

∧ ∧ ∧

∧ ∧ ∧

 = + + = 
 

= +

 = + + = 
 

= + +

ℏ ℏ

ℏ ℏ

   (10) 

3. Quantum C-NOT Gate Operations 

In order to realize a C-NOT quantum gate operation in this 

context, the control qubit is a two-level atom which constitutes 

a two dimensional Hilbert space spanned by atomic excited 

e  and ground g states as basis vectors. Two 

non-degenerate and orthogonal polarized cavity modes aC

and bC  make the target qubit. The target qubit is defined in 

two-dimensional Hilbert space spanned by the state vector 

1 0 ,1a bµ =  which indicates that mode a  is in the vacuum 

state and one photon is present in mode b , and the state vector

2 1 ,0a bµ = , which expresses the presence of one photon in 

mode a , when there is no photon in mode b . This means that 

the cavity modes should have a maximum of one photon. 

It is important to note that in the AJC interaction [11], for a 

process starting from the state ,e n  where an atom in excited 

state e enters a n -photon field mode, the excited atom 

emits a positive energy photon, triggering the anti-rotating 

(counter rotating) negative frequency field mode to absorb a 

negative energy photon causing a transition , , 1e n g n→ − . 

On the other hand, a process starting from the state ,g n

where an atom in ground state g is in a n -photon field 

mode, the anti-rotating negative frequency field mode emits a 

negative energy photon, triggering the atom to absorb a 

positive energy photon, causing the transition

, , 1g n e n→ + . 

Now, with reference to the AJC qubit state transition 

operators in Eq. (9), let us first consider when an atom initially 

in ground state g  enters an electromagnetic cavity with 

mode a  in vacuum state and a single-photon in mode b . As 

stated, the atom couples to the anti-rotating negative 

frequency component of the field mode undergoing an AJC 

qubit state transition. This is because an atom in an initial 

ground state g  couples to the anti-rotating negative 

frequency field mode in an initial vacuum state 0 , 

spontaneously emitting a negative energy photon, thereby 

triggering Rabi oscillations at frequency 0gR  between the 

atom (control qubit) and the field mode (target qubit). 

After the atom interacts with mode a  for a time
0

 
g

t
R

π= , 

equal to half Rabi oscillation time, the driving field is 

modulated such that 

0 0 2 .g gR t A tθ λ π= = =            (11) 

During the AJC interaction, where the counter-rotating 

terms 
†

a σ
∧ ∧

+ and aσ
∧ ∧

−  are the off-resonance driving field, we 

consider a case in which the atom-field coupling constant is 

far much greater than the sum frequency ( )λ δ≫ so that the 

perturbative parameter 
λη
δ

=  defined within the perturbative 

region [18] of the ultrastrong coupling regime (USC) becomes 
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very large. With this, from Eq. (10), for a field mode in an 

initial vacuum state 0n =  the Rabi frequency parameter

0 1gA ≅ . The qubit state transitions will now be driven by 

positive and negative energy photon absorption-emission 

process. It should be noted that if this condition was not met, 

in a completely off-resonant interaction the field mode 

frequency ω  and the atomic transition frequency 0ω  would 

have been sufficiently detuned and so there would have been 

no transition between atomic basis states e  and g  

during the interaction. 

Now, since 0 1gA ≅  Eq. (11) reduces to 

2
t

πθ λ= =                  (12) 

where 
2

t
πλ =  is the atomic velocity. 

The evolution of this interaction determined by applying the 

AJC qubit state transition operation in Eq. (9) for an atom 

initially in ground state g noting the definitions of the 

normalized state transition operator gε
∧

 and the identity 

operator gI
∧

 in Eq. (8) is of the form 

( ) ( ), 0 cos , 0 sin ,1gi

a a ae g g i e
θ ε θ θ

∧
− = −    (13) 

which reduces to 

,0 ,1a ag i e= −               (14) 

We observe that the atom interacted with mode a  and 

completed half of the Rabi oscillation, as a result it contributed 

a photon to mode a  and evolved to excited state e . 

At this point it is important to note that there is a clear 

simultaneous excitation of both atom and field states, as 

expected in an AJC interaction. After the interaction time, it 

enters mode b  containing a single photon, interacting with 

the cavity mode as follows 

( ) ( ),1 cos ,1 sin ,0ei
b b bie e i e g

α ε α α
∧

− = − +    (15) 

where here, the qubit state transitions are driven by positive 

and negative photon emission-absorption process different 

from that observed in Eq. (13). 

After an interaction with mode b  for a time 1 2t t=  such 

that 
0 1

1

0 1

( )g e

g e

R R
t

R R

π +
=  the driving field modulation is of the 

form 

0 1

0 1 2

g e

g e

R R
t

R R

πα
 

= = 
 + 

             (16) 

Considering once more the set condition ( )λ δ≫ , the 

Rabi frequency parameters in Eq. (10), first for an atom in an 

initial ground state g interacting with a field mode in an 

initial vacuum state 0  will assume a value 0 1gA ≅  and the 

Rabi frequency parameter for an atom in an initial excited e

state interacting with an initial single-photon field mode 1

will have a value 1 1eA ≅ , and so the Rabi frequencies will 

have the respective values 0 1
2

g e
R R λ= = . 

The driving field modulation determined from Eq. (16) 

takes the form  

2
t

πα λ= =                    (17) 

and the form of Eq. (15) results into an evolution 

,1 ,0b bi e g− →                (18) 

The result in Eq. (18) shows that the atom evolves to ground 

state and absorbs a photon initially in mode b , a simultaneous 

de-excitation of atom and field states, as expected in an AJC 

process. The atom clearly performs a swapping of the 

electromagnetic field between the two field modes by 

controlled interaction. 

When the atom in ground state g , enters the 

electromagnetic cavity with mode b  in vacuum state and a 

single photon in mode a  in that order, qubit state transitions 

take the same form as in Eqs. (14) and (18). That is, there will 

be simultaneous excitation of atom and field states during the 

qubit state transition ,0 ,1b bg i e→ −  followed by a qubit 

state transition that results into simultaneous de-excitation of 

the qubit states ,1 ,0a ai e g− → . This shows a clear 

swapping of the electromagnetic field between the two field 

modes ,   a b by controlled interaction when the atom is 

initially in ground state g . 

When the atom in excited state e enters mode a  in 

vacuum state, that is, the target qubit 1µ , the atom propagates 

as a free wave without coupling to the field mode in vacuum 

state 0 [11], leaving the cavity without altering the state of the 

cavity-field mode. This is because an atom in an initial excited 

state e  does not couple ( )0λ =  to a free anti-rotating 

negative frequency field mode in an initial vacuum state 0 . 

The atom in excited state e  then interacts with mode b  

containing a single photon-field mode as follows 

( ) ( ),1 cos ,1 sin ,0ei
b b be e e i gβ ε β β

∧

= +     (19) 

After completing one Rabi oscillation in a time 
1

2

e

t
R

π=  at 
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a Rabi frequency 1 12 2e eR Aλ λ= =  since the Rabi frequency 

parameter 1 1eA ≅  as determined from the initial 

approximation condition. This gives 

tβ λ π= =                 (20) 

with tλ π=  the atomic velocity. The form of Eq. (19) results 

into an evolution 

,1 ,1b be e→ −             (21) 

We see in Eq. (21) that the atom in excited state e  again 

leaves the cavity mode containing one photon without altering 

the state of the single-photon field mode. 

When the atom in excited state e enters mode b  in 

vacuum state followed by mode a containing a single-photon 

field mode, i.e., in the target qubit 2µ , we observe a similar 

qubit state transition where in mode b the atom propagates as 

a free wave without coupling to the field mode followed by the 

transition ,1 ,1a ae e→ − in mode a  after one complete 

Rabi oscillation time. 

These results, show that the target qubit made up of the 

electromagnetic field remains unchanged if the control qubit, 

that is, the two-level atom, is initially in excited state e , 

while when the atom is in ground state g , the cavity states 

0  and 1  flip. We shall refer to this gate as the AJC 

C-NOT ( )atom cavity→ . 

Success probability for the C-NOT gate is given by 

( ) ( ) ( )( )2 2 2
1 sin cos sins a a bP φ φ φ= − +        (22) 

In terms of Rabi frequency we write Eq. (22) as 

( ) ( ) ( )( )2 2 21 sin cos sins a a a a b bP R t R t R t= − ∆ + ∆ ∆    (23) 

Now, for the atom in ground state g entering the 

electromagnetic cavity with modes ,  a b  in vacuum state and 

single-photon field modes ,  b a , the former has interaction 

parameters 

( )
0

0

0 1

1
0 1

2  ;    ;
2

2  ;   
2 2

a g a
g

g e

b e b
g e

R R t
R

R R
R R t

R R

π πλ
λ

π πλ
λ

= = ∆ = =

+
= = ∆ = =

       (24) 

and the latter 

( )1 0

1
1 0

0
0

2  ;    ;
2 2

2  ;   ,
2

e g

a e a
e g

b g b
g

R R
R R t

R R

R R t
R

π πλ
λ

π πλ
λ

+
= = ∆ = =

= = ∆ = =
     (25) 

which results in a unit probability of success 1sP =  for the 

respective transitions.  

Finally when the atom initially in excited state e enters 

modes ,   a b  in vacuum state and a single photon in modes 

,   ab  for target qubits 1 2,   µ µ respectively, the former 

has interaction parameters 

0 0 0

1 1 1

1

2 0    ;     0    ;     0 ;  

t  ;  

2 2     ;     1 ;  

2

a e e e

a

b e e e

b
e

R R A A

R R A A

t
R

λ λ

λ λ
π π

λ

= = = = =
∆ = ∞

= = = ≅

∆ = =

 (26) 

and the latter 

1 1 1

1

0 0 0

2 2     ;     1;  

2

 2 0    ;     0 ;  =0 ;

,

a e e e

a
e

b e e e

b

R R A A

t
R

R R A A

t

λ λ
π π

λ
λ λ

= = = ≅

∆ = =

= = = =
∆ = ∞

    (27) 

which in both transitions respectively a unit probability of 

success is determined. 

It is clear that success probabilities depend mainly upon the 

precise selection of interaction times of the control qubit 

(two-level atom) with the target qubit (successive cavity 

modes). 

4. Hadamard Logic Gate Operation in 

the AJC Interaction Process 

The normalized qubit state transition operators in Eq. (8) 

are the Hadamard gate operators for an atom in an initial 

excited e and ground g states respectively which takes the 

explicit forms 

†

†

 ;  

 .

z
g

gn

z
e

en

s a s a s

A

s a s a s

A

αε

αε

∧∧ ∧ ∧ ∧
∧ − +

∧∧ ∧ ∧ ∧
∧ − +

+ +=

+ +=

              (28) 

Defining an initial state vector ,e n  in which an atom in 

an initial excited state e  enters a field mode in a number 

state n , by applying Eq. (8) (or Eq. (28)) a qubit state 

transition in the AJC interaction is determined in the form 

, , , 1   ;   ,e een en en ene n a e n b g n e nε φ ε φ
∧ ∧

= + − = =  (29) 

Similarly, defining an initial state vector ,g n in which an 

atom in an initial ground state g is in a field mode in a 
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number state n , by applying Eq. (8) (or Eq. (28) results into a 

qubit state transition in the AJC process of the form 

, , , 1   ;   ,g ggn gn gn gng n p g n q e n g nε φ ε φ
∧ ∧

= − + + = =  (30) 

In Eqs. (29) and (30) , ,   ,e n g n  and ,   en gnφ φ  are 

the AJC initial and transition qubit state vectors while 

,   ,   ,   en en gn gna b p q  are the normalization parameters. In this 

respect, let us now consider two examples specifying 

Hadamard rotations for initial atomic basis states ,   g e  

entering field modes in an initial vacuum and single-photon 

field mode states 0 ,   1 respectively.  

The single qubit Hadamard operation at sum frequency 

4δ λ=  and 0n =  specified for an atom in an initial ground 

state g is defined as 

†

0 0

1
2     g z

g g

A
s a s a s

A A
ε

∧
∧∧ ∧ ∧ ∧ ∧

− +
 

= = + + 
 

     (31) 

where from Eq. (10) 

0 2gA =                   (32) 

The qubit state transition takes the explicit form 

1 1
, 0 , 0 ,1

2 2
g g g eε

∧
= − +           (33) 

As expected, the initial atomic state g  is rotated to 

( )1

2
g e g→ −              (34) 

Similarly, by applying Eq. (8) or (Eq. (28)), the Hadamard 

operation at sum frequency 4δ λ=  and 1n =  specified for 

an atom in an initial excited state e  is defined as 

 
†

1 1

1
2     e z

e e

A
s a s a s

A A
ε

∧
∧∧ ∧ ∧ ∧ ∧

− +
 

= = + + 
 

   (35) 

where from Eq.(10) 

2enA =                  (36) 

The final form of the qubit state transition is 

1 1
,1 ,1 , 0

2 2
e e e gε

∧
= +         (37) 

From Eq. (37), the initial atomic state e  is rotated to 

( )1

2
e e g→ +             (38) 

The Hadamard rotations in Eqs. (34) and (38) determined in 

the AJC process in Eqs. (31) and (35), agree precisely with the 

standard definition in Eq. (3) for initial atomic basis states

,  e g . 

5. Conclusion 

In this paper we have shown how to implement quantum 

C-NOT and quantum Hadamard logic gates in the AJC 

interaction mechanism where we observed that it is possible to 

achieve qubit state transitions starting with both the atom and 

the field mode in an absolute ground state which is not 

possible in the JC interaction mechanism. In the C-NOT gate 

operations we obtained ideal unit probabilities of success 

during the gate operation with a standard result of only 

flipping the target qubit when the control qubit is in an atomic 

ground state g . The impressive unit success probabilities 

were achieved through accurate selection of interaction times 

during the C-NOT operations. In the Hadamard operations, 

standard Hadamard rotations of initial atomic basis states e  

and g  into diagonal basis states respectively, were 

determined in the AJC interaction process. 

These results will provide a good foundation in Quantum 

Optics where now the AJC interaction process can solely be 

implemented in QIP as opposed to the extensively applied 

numerical methods in the full QRM to probe its features 

characterized by blue-side band transitions. We note here that 

the advanced approaches do not give clearly the dynamical 

features generated solely by the AJC interaction. In the present 

work, we have demonstrated the dynamical effects of AJC 

model through qubit state transitions, determined from the 

reformulation of the QRM [9-11]. As part of the findings, it is 

clear that despite the coupling terms simultaneously exciting 

or de-exciting the atom and field states, C-NOT and 

Hadamard gate operations produce exactly the same results as 

those of the extensively applied JC model cited herein. 

We propose practical implementation of these gates where 

the state of the cavity field can be described in terms of basis 

states 0  and 1  corresponding to the vacuum and 

one-photon states respectively but strictly in the AJC model. 

This means that for it to work, there should never be more than 

one photon in a cavity. The experimental implementation 

process should also comprise of a set of two-level atoms 

described by basis states e  and g . In addition, with 

reference to the C-NOT and Hadamard processes in Sec. 3 and 

4 there should be two types of interaction; an almost resonant 

case in the C-NOT gate process when the perturbative 

parameter η  is too large (i.e atom-field coupling strength λ  

far much greater than the sum frequency 0δ ω ω= + ) and an 

off-resonant interaction in the Hadamard gate operation with 

the advantage of also starting off with the field mode in the 

vacuum state and atom in the ground state. The experimental 

processes and challenges can then be addressed based on the 

scheme chosen. 
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