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Abstract: The article deals with the numerical simulations for equations of geophysical fluids. These physical phenomena are
modeled by the Navier-Stokes equations which describe the motion of the fluid, the ocean currents, the flow of water in a pipe
and many other fluid flow phenomenon.These equations are very useful because of there utility. The Navier-Stokes equations for
incompressible flow are nonlinear partial differential equations that drive the motion of fluids in the approximation of continuous
media. The existence of general solutions to the Navier Stokes equations have already proven but in this paper we have interested
to the numerical solution of the incompressible Navier-Stokes equations. We get an optimal discretization of the Navier-Stokes
equations and numerical approximations of the solution are also given. The convergence and the stabilityof the approximated
system are proven. The numerical resolution is based on Hermite finite elements. The numerical system was expressed in matrix
form for computation of velocity and the pression fieldsapproach using MATLAB software. Numerical results for velocity field
in two dimensional space of the velocity u(x, y) and pression p(x, y, ) are given. And finally we give physical interpretation of
the results obtained.

Keywords: Numerical Simulation, Geophysical Models, Navier-Stokes Equation, Stokes Equations, Hermite Finite Elements,
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1. Introduction

The solution of partial differential equations using finite
elements is an efficient approach since it is applicable to all
types of problems. This method consists in replacing the
space of infinite dimension by a space of finite dimension
where the resolution will be made. The step which allows
the implementation of this procedure is finite elements
discretization.

The Navier-Stokes equations constitute a remarkable class
of partial differential equations. These equations are very
useful because of their utility in the fields or meteorology,
transport and current modeling and on the other hand by the
complexity of their resolution. The Navier-Stokes equations
have always been the subject of several studies [16, 17, 22, 23].
Many researchers have conducted large studies on currents
going in the direction of their origin to their dynamics, we can

cite among others M. Allgeyer et al. [1] and R. Ben Hamouda
[13].

The modeling of the currents leads to the resolution of
partial differential equations (of the Navier -Stokes) supported
by the studies of M. Andrea Doglioli [7], J. L. Lions [17], T.
Kheladi [15], H. Fujita and T. Kato [14].

The finite element method [9, 10, 11, 12, 21] constitutes
a wide range for modeling and then solving Navier-Stokes
equations. This method is frequently used to solve this type
of problem. Rectangular mixed finite elements was used by F.
Brezzi et al. [5], Fortin [10] uses finite element of mixed type.
Araya et al [2, 3] used finite elements stabilized with the wall
low to solve the incompressible Navier-Stokes equations.

Despite the varied approaches that they have adopted, their
common point lies in the fact that the order of derivability
of the solution has not been specified. The Hermite finite
elements constitutes a means to get solutions of high order of
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derivability.
In this paper, we are worked on well-posed Navier-Stokes

models in the stationary case in dimension 2. They are
valid models for dynamical of oceanic surface waters. We
consider universal hypotheses in fluid mechanics to arrive at
the following equation{

(u · ∇)u+ 1
ρ0
∇p− ν4u = f in Ω

∇ · u = 0 in Ω
(1)

where u, ρ0, p and ν are respectively speed, density, pressure
and viscosity for particles of the fluid under consideration.
This system of non-linear partial differential equations is a
relevant model for dynamics of ocean currents, where Ω ⊂ R3

is a domain of class C2 with boundary Γ

In 1755, Euler, Swiss mathematician, built equations for
a perfect fluid which are used until today. These equations
are known as of Euler equations. After, D’Alembert finds a
paradoxes to these equations. Therefore, It leaves it to future
researchers to remove this paradox.

Between 1820 and 1845, Claude Louis Marie Henry (1785-
1836) and George Gabriel Stokes(1819-1903), French and
Irish mathematicians establish the Navier equations-Stokes
for a viscous fluid. These are nonlinear partial differential
equations. They add to Euler’s equations a term that dissipates
energy and eliminates Alembert paradox. In the literature,
there exists, according to the properties of the fluids studied,
various types of Navier-Stokes equations. In general, they are
written following as


ρ
(
∂
∂t + u∇

)
u− ν4u = ρg −∇p+ f, (t, x) ∈ [0, T )× Ω

u(0, x) = u0(x), x ∈ Ω,
∇ · u = 0; x ∈ Ω.

(2)

The presence of the coefficient viscous ν shows that the
fluid’s model is not perfect. Unfortunately, we have the
difficulty of obtaining exact analytical solutions. Given the
complexity of Navier Stokes equations, several approaches are
made in order to model the flow to study.

In the following and according to the hydrostatic
hypotheses, we will study our model (1) in two dimensions.
Thus, the velocity vector u is written as follows uT =(
u1, u2

)
. With homogeneous boundary conditions, the

problem (1) becomes
(u · ∇)u+ 1

ρ0
∇p− ν4u = f in Ω

∇ · u = 0 in Ω
u = 0 on Γ

∇u · n = 0 on Γ,

(3)

where Γ is the boundary of the domain Ω. The first equation
of the system (3) is a vector equation. We get the following
system of differential equations for direction j :

(uj · ∇)uj + 1
ρ0
∇p− ν4uj = fj in Ω

∇ · uj = 0 in Ω
uj = 0 on Γ

∇uj · n = 0 on Γ, j = 1, 2,

(4)

where u1 and u2 are solutions (4).
In the following we will be interested in the resolution by

the Hermite finite elements study of the model illustrated by
the system(3).

The aim of this article is to:
1. Study the model, i.e. justify the origin and existence of

solutions.
2. Proceed to the discretisation of the problem by the finite

element of Hermite in dimension 2 (3) and evaluate its
convergence.

3. Proceed to the digital implementation of the model. This
approach allows to give the approximate solutions of

problem (3).
The application of these different approaches allowed to

have the following results.
1. Design a model whose existence and uniqueness is

proven in a very particular space. Indeed this space
is such that the conditions of Dirichlet and Neuman
are implemented there. The model thus discretized by
Hermit finite lements is convergent.

2. The digital implementation of the model by Matlab
software allowed to have the following results:

A mesh with the finite elements of Hermite with a rather
particular number of degrees of freedom. Whith each
geometrical element one associated 10 degrees of freedom due
to the shape functions and their derivates on each node.

One also has to proceed to the numerical resolution of the
model, this is achieved through various tests carried out. Thus
the velocity and the pressure are determined then represented
in 3D.

2. Models and Existence Results

Let us choose a metric system which allows to write
the Navier-Stokes equations according to a single parameter
taking into account all the characteristics of the flow (the speed
of entry, the size of the domain, the density and the viscosity).
A characteristic speed U and a characteristic size L of the
domain are chosen for this. It is preferable to choose these
two values in the same place of the domain. By dividing the
speed by U and the sizes by L we have:

u∗ =
u

U
, x∗ =

x

L
, y∗ =

y

L
, p∗ =

p

ρU2
,

We have after calculations and considering that the operators
gradient, divergence and Laplacian are now defined with
respect to the dimensionless coordinates:
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
(u∗ · ∇)u∗ − 1

Re4u
∗ = −∇p∗ + f∗, Ω

∇ · u∗ = 0, Ω
u∗ = 0, Γ
∇u∗ · n = 0

(5)

where Re = UL
ν is Reynolds number.

This number measures the ratio of inertia forces to viscosity
forces. We note that our system only depends on the Reynolds
number. By ordering the dimensioning calculations differently
and we can arrive at the following system


(u∗ · ∇)u∗ − 1

Re4u
∗ = −∇p∗∗ + f∗∗, Ω

∇ · u∗ = 0, Ω
u∗ = 0, Γ
∇u∗ · n = 0

(6)

where

p∗∗ = LUρp∗ = νRep∗ , f∗∗ = νRef∗.

or, 
(u∗ · ∇)u∗ − 1

Re4u
∗ = 1

νRe (−∇p∗ + f∗), Ω
∇ · u∗ = 0, Ω
u∗ = 0, Γ

∇u∗ · n = 0, Γ

(7)

Then the writing becomes simpler
νRe(u · ∇)u− ν4u = −∇p+ f, Ω

∇ · u = 0, Ω
u = 0, Γ

∇u · n = 0, Γ

(8)

In the following we will set co = νRe, which will simplify
the calculations.

Further in this section, we will give the main theorem for
existence and uniqueness solution in (8). Let :

L2
0(Ω) =

{
v ∈ L2(Ω);

∫
Ω

v = 0
}

(9)

and
V = (H1

0 (Ω))2 ∩ (H2
0 (Ω))2 (10)

It should be noted that the spaces H1
0 (Ω) and H2

0 (Ω) are
defined as follows.

H1
0 (Ω) =

{
u ∈ H1(Ω), u = 0 on Γ

}
H2

0 (Ω) =
{
v ∈ L2(Ω); γ0v = 0 and

∂v

∂n
= 0
}

We define on R the scalar product denoted (,) and defined
by:

∀u, v ∈ V, (u, v) = (u, v) + (∇u,∇v)

where

(u, v) =
2∑
i=1

∫
Ω

ui, vi

The corresponding norm is

‖u‖V = ‖u‖L2 + ‖∇u‖L2 (11)

In the following, for simplicity this norm will be noted ‖ · ‖.
Then the variational formula of problem (8) is given by: find

(u, p) ∈ V × L2
0(Ω) such that ∀ v ∈ V , ∀q ∈ L2

0(Ω)

a(u, v) + b(u, u, v) + c(v, p) = (f, v) (12)

c(u, q) = 0 (13)

where a, b and c are defined by:

b(u, u, v) = c0

n∑
i=1

n∑
j=1

∫
Ω

uj
∂ui
∂xj

vi (14)

a(u, v) = ν
n∑
i=1

n∑
j=1

∫
Ω

∂ui
∂xj

∂vi
∂xj

(15)

c(p, v) = − 1

ρ0
〈p, div v〉. (16)

Before giving existence and uniqueness of solutions to
problems (12)-(13), we determine the associated problem.
Then, let’s pose

V = {v ∈ V |∇v = 0}

and taking v ∈ V then c(v, p) = 0. Therefore, we get the
following problem:

Find u ∈ V such that ∀ ∀ v ∈ V ,

a(u, v) + b(u, u, v) = (f, v). (17)

We note that any solution to (12)-(13) is solution to (17)
We have also, the following lemma.
Lemma 2.1. The space V defined by (10) is separable.
Proof The space H1(Ω) is separable and as H1

0 (Ω) is
a subset of H1(Ω) therefore it’s separable. Consequently
H1

0 (Ω)2 is separable then is separable.
The following theorem is very useful for studying the

existence of solution to the problem (17).
Theorem 2.1. Let E be a Euclidean space and let P : E −→

E be a continuous function, such that there exists ρ > 0 :
∀x ∈ E, ‖x‖ = ρ, and P (x) · x ≥ 0. Then, there exists
x0 ∈ E such that ‖x0‖ ≤ ρ and P (x0) = 0.

For more details on the proof, we refer to [8].
Theorem 2.2. Let V be a separable space, then the problem

(17) admits at least one solution.
Before establishing the proof of this theorem, we will

introduce the trilinear form a1 defined by:

a1(u, v) = a(u, v) + b(u, u, v) (18)

Proof The espace Vh is separable, then there exists a subspaces
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{Vm}m dense in Vh. This allows as to define the problem (Pm)

(Pm)

 a(um, v) + b(um, um, v) + c(v, q) = (f, v),
∀um ∈ Vm, p ∈ L2

0§Ω)
d(um, q) = 0 ∀q ∈ L2

0(Ω).
(19)

First, let us show the existence of a solution to problem
(Pm) :
find um ∈ Vm such that ∀ v ∈ D(Ω)2

(P ′m)

{
a(um, v) + b(um, um, v) = (f, v)
d(um, q) = 0

Let Pm : Vm −→ Vm such that ∀v ∈ Vm, 〈Pm(v), wi〉 =
a1(v, wi)− 〈f, wi〉 for i=1, . . . , m.

Taking wi = v, we get:

〈Pm(v), v〉 = a1(v, v)− 〈f, v〉.

The space V is separable therefore, a1(v, v) ≥ α‖v‖2V , and
we get

〈Pm(v), v〉 ≥ α‖v‖2V − 〈f, v〉 ≥ α‖v‖2V − sup | < f, v > |.

Now, we suppose 〈l, v〉 = 〈f, v〉 with f = l. We set the
norm of l by :

‖l‖ = sup
|(f, v)|
‖v‖V

.

Further, we have

〈Pm(v), v〉 ≥ (α‖v‖V − ‖l‖)‖v‖V (20)

Let us choose the real ρ so that ρ > ‖l‖
α and assuming

‖v‖ = ρ, we have ‖v‖ − ‖l‖α > 0 or (‖v‖ − ‖l‖α )‖v‖ > 0.
Further, we get 〈Pm(v), v〉 > 0.

Because of Theorem 2.1, there exists um ∈ Vm such that
Pm(um) = 0.

Let’s verify the weak limit um of (Pm) is solution to the
problem (12) - (13).

As Pm(um) = 0, we get from (20) that

α‖um‖V − ‖l‖ < 0

giving directly

‖um‖V <
‖l‖
α
.

The sequence (um)m∈N is then bounded, then there exists
a subsequence of (um)m denoted by (um) which converges
weakly to u in V . The bilinear form a1 is weakly continuous
then we have,

lim
p−→+∞

a1(ump , wi) = a1(u,wi),∀wi ∈ Vm,

Then, we have a1(u,wi) = (f, wi), ∀v ∈ V , v = ∪+∞
i=1wi.

By density of wi, we get: a1(u, v) = (f, v). Therefore u is
solution to (17) or solution of problem (12)-(13).

The uniqueness of pressure p associated to u solution to (17)
is giving by condition inf-sup and coercivity of a1(u, v).

Theorem 2.3. Let a1 defined by (18) where a(u, v) and
b(u, u, v) are given in (15)-(14). Let us suppose that the
bilinear form b is continuous. Then, the following conditions
are satisfied:

a1(u, u) ≥ α‖u‖2 (21)

and

infq∈Y supv∈X
b(v, q)

‖v‖
≥ β,∀q ∈ Y. (22)

Proof Using Holder’s inequality see [], we get from (15) the
following inequality

a(u, v) ≤ ν(
n∑
i=1

n∑
j=1

∫
Ω

| ∂ui
∂xj
|2)

1
2 .(

n∑
i=1

n∑
j=1

∫
Ω

| ∂vi
∂xj
|2)

1
2

giving
a(u, v) ≤ ν‖u‖H1(Ω)‖v‖H1(Ω)

or
a(u, v) ≤ ν‖u‖V ‖v‖V

meaning that the form a1 is continuous.

In an other hand, we have

a(v, v) = ν(

n∑
i=1

n∑
j=1

∫
Ω

| ∂vi
∂xj
|2) = a(v, v) = ν

n∑
i=1

‖∇vi‖2L2(Ω)

According to the Poincarre’s inequality, we can write:

‖∇vi‖2L2(Ω) ≥
1

C2
i

‖vi‖2H1(Ω)

We thus obtain:

a(v, v) ≥ ν
n∑
i=1

1

C2
i

‖vi‖H1(Ω)

which proves the coercivity of a. .
By the relation b(v, v, v) = 0, we can write

a1(v, v) = a(v, v) ≥ a1(v, v) ≥ ν
n∑
i=1

1

C2
i

‖vi‖H1(Ω)

Introducing the real constant C such that C =
min1≤i≤n Ci, we have:

a1(v, v) ≥ ν

C2
‖v‖H1(Ω),

so the form a1 is coercive.
To prove (22), we use Lemma 2.1([18]). With c(v, p) =
− 1
ρ0

∫
Ω
div v·, we deduce that there exists v ∈ [H1(Ω)]2 such

that div v = −p. From this last equality, we get

c(v, q) =
1

ρ0

∫
Ω

|p|2dxdy =
1

ρ0
‖p‖2.
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From this relation, we have

c(v, q)

‖v‖
≤ 1

ρ0

‖p‖2

C‖p‖
=
c(v, q)

‖v‖
≤ 1

Cρ0
‖p‖.

Then,

supv∈V
c(v, q)

‖v‖
≤ 1

Cρ0
‖p‖,

giving (22).
The existence and uniqueness of pressure is illustrated by

the following theorem.
Theorem 2.4. There exists a unique p ∈ L2

0(Ω) such that
(u, p) is solution to problem (12)-(13).

For more information for the proof of this theorem, we refer
to Theorem 2.1 in [18].

The uniqueness of u is giving by following theorem:
Theorem 2.5. Let n ≤ 4 and ν large enough and satisfying

ν2 > C(n)‖f‖V ′ .
Then problem (17) admits a unique solution u.
Proof From problem (17), we get : a(u, v) + b(u, u, v) =

(f, v). Taking u = v and the fact that b(u, u, u) = 0, we
have a(u, u) = (f, u). From this equality we get ν‖u‖2V ≤
‖f‖V ′ .‖u‖V ′ .

Then, we get :

‖u‖V ≤
1

ν
‖f‖V ′

Let u? and u?? be two solutions of problem (P ′).
Then, we have

a(u?, v) + b(u?, u?, v) = (f, v),

a(u??, v) + b(u??, u??, v) = (f, v).

Then u = u? − u?? satisfy a(u, v) = −b(u, u, v) from which
we get

−ν‖u‖V ‖v‖ ≤ C‖u‖V ‖u‖V ‖v‖.

Therefore, we have

(−ν − 1

ν
C‖f‖V ′)‖u‖V ≤ 0; ∀v ∈ V.

Then we have ‖u‖V = 0 and u? = u??.
Then, because of theorem 2.1 and 2.2, problem (12)-13)

admits a unique solution (u, p).

3. Numerical Simulation and Main
Results

We use the Hermite finite elements because these types
of finite elements have their own characteristics. Most
finite elements provide continuous and no-derivable solutions,
hermite finite elements have the particularity of providing
solutions of class C1 or more. The Hermite finite elements
make it possible to solve the partial differential equations
by using a coarse mesh since each node correspond to three
degrees of freedom.

In this section, a large part will be devoted to discretization

of (12)-(13) by using Hermite finite elements. This
discretization will make it possible to transform the problem
(12)-(13) into a matrix system. We will use the discrete
weak formulation (12)-(13) in finite dimensional spaces Vh
and Ph.. The numerical simulation of the results resulting
from discretization will end this part.

At first we will proceed a brieve study of Hermite finites
elements in dimension 2. A Hermite finite element is the triplet
(K,ΦK ,Σk) such as:

1. K is a triangle.
2. Σ = {δAi}
3. Φ = P3(K)

We denote by ψi the functions that form the basis of Φ and
by φi the restriction of ψi on some element K wich is denoted
reference element (see figure below).

For more information on the expression of functions φi, we
refer to [15].

Figure 1. Reference element.

3.1. Discretization with Hermite Finite Elements

Our goal is to propose an optimal discretization of system
(12)-(13). We are therefore interested to the discretization
of the equation presented in the following paragraph. Let
Ω ⊂ R2, we start be writing the discrete problem and we
prove that it admits a unique solution. We prove stability
and convergence. We finally present the necessary tools for
the implementation of the discretization method and some
numerical results.

3.1.1. Discrete Formulation of the Problem (12)-(13)
We replace the functional spaces respectively V and L2

0(Ω)
of infinite dimension by finite dimensional spaces Vh and Ph
such as:

Vh = {vh ∈ V such as vh/K ∈ P3(K)2,K ∈ Th}

Ph = {qh ∈ L2
0(Ω) such that qh/K ∈ P3(K),K ∈ Th}

The discrete formulation becomes:
Find (uh, ph) ∈ Vh × Ph / ∀v ∈ Vh; ∀qh ∈ Ph

(Ph)

{
ah(uh, vh) + bh(uh, uh, vh) + ch(vh, ph) = (f, vh)
ch(uh, qh) = 0

(23)
Let ψi, i = 1, . . . Nh the basis functions of Vh, then ∀uh ∈
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Vh we have

uh(x) =
N∑
i=1

uiψi(x), ∀x ∈ Ω, (24)

where ui, i = 1, . . . , Nh are the components of uh in the basis
(ψi), , i = 1, . . . , N. Taking, vh = ψj , j = 1, . . . , N, the
bilinear forms ah, the trilinear form bh and ch are defined as
follows:

ah(uh, vh) = ν

Nh∑
i=1

(∇ψi,∇ψj)ui (25)

bh(uh, uh, vh) = c0

Nh∑
i,j=1

∫
Ωh

(ψi, ψj)∇ψiψk.ui.uj (26)

ch(v, ph) =
1

ρ0

Nh∑
i=1

(ψipi, divv) (27)

The functions ψi constitute the basic functions of the
Hermite element in local coordinates.

The problem (23) is equivalent to the following matrix
system. {

νAU +B(U)U + CP = F
CTU = 0

(28)

Where U is the velocity and P the pressure.
Matrix A, B, C and F are defined by:

A(i, j) =

∫
Ωh

∇ψTi ∇ψj

B(i, j) =

∫
Ωh

[φi, ψj ]∇φiψj

C(i, j) =
1

ρ0

∫
Ωh

divψjψi

F (i) =

∫
Ωh

[f1, f2][ψi, ψi]
T

3.1.2. Stability of the Problem
The study of the stability of the diagram is done by

analyzing the stability of the space Vh.
We introduce the operators gh and θh,called respectively

prolongation and restriction operators, by

gh : Vh −→ V

uh 7−→ ghuh

and
θh : V −→ Vh

u 7−→ θhu

These operators can be materialized by the following shema
(figure 2).

Figure 2. Operator diagram of gh and θh.

This following definition gives a necessary and sufficient
conditions for an operator to be stable.

Definition 3.1. [22]
The prolongation operators ph are said to be stable if their

norms
‖ph‖ = supuh∈Wh

‖phuh‖F
can be majored independently of h, which implies that the
approximation space Vh is stable.

Theorem 3.1. We assume that the following condition is
true:

∀ v ∈ V, there exists α0 such that ‖v‖V ≤ α0.

Then the approximation space Vh is stable.
Proof Let w be an element of V such that ghuh = w.
Thus ‖gh‖ = supuh∈Wh

‖phuh‖V is equivalent to ‖gh‖ =
‖w‖. So ‖gh‖ ≤ α0.

The operator gh is stable and therefore the approximation
space Vh is stable.

3.1.3. Convergence
The approximate solutions obtained by solving the

approached problem must have the same forms and same
graphics representations as the solution of the model problem.
To meet these conditions, we will evaluate the behavior of the
terms ‖u− uh‖ et ‖p− ph‖ when h tends to 0.

The following theorem is designed based on the proposition
2.6 [5] et 2.8 [5] gives the markup of the errors.

Theorem 3.2. The solution (uh, ph) of the (Ph) satisfies the following inequalities:

‖u− uh‖ ≤ α1infvh∈Vh‖u− vh‖Vh + α2infqh∈Ph‖p− qh‖Ph (29)

‖p− ph‖ ≤ β1infvh∈Vh‖u− vh‖Vh + β2infqh∈Ph‖p− qh‖Ph (30)

∀uh ∈ Vh , ∀ph, qh ∈ Ph, (u, p) satisfies the problem (12)-(13)
Proof We keep the standards defined V and L2

0(Ω).
We recall the following relation: a(u, v) + b(u, u, v) + c(v, q) = f(v).
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As the approximation is conformal and consistent, we can write: ∀u ∈ V , uh ∈ Vh

a(u− uh, u− uh) + b(u− uh, u− uh, u− uh) + c(u− uh, p) = f(u− uh)

a(u− uh, u− uh) + c(u− uh, p) = f(u− uh)

This relation becomes:

a(u− uh, vh − uh) + a(u− uh, u− vh) + c(u− uh, p) = f(u− uh)

a(u− uh, vh − uh) + a(u− uh, u− vh) + c(u− uh, qh) + c(u− uh, p− qh) = f(u− uh)

By combining these two relations we obtain:

a(u− uh, u− uh) + c(u− uh, p) = a(u− uh, vh − uh) + a(u− uh, u− vh) + c(u− uh, p− qh)

The continuity and coercivity of a and c allow to write the following inequalities.

a(u− uh, u− uh) + c(u− uh, p) ≥ α‖u− uh‖2 +
1

C
‖u− uh‖2

a(u− uh, vh − uh) + a(u− uh, u− vh) + c(u− uh, p− qh) ≤M‖u− uh‖.‖u− vh‖+m‖u− uh‖.‖p− qh‖

By combining the two inequalities above, we obtain:

(α+
1

Ch
)‖u− uh‖2 ≤M‖u− uh‖.‖u− vh‖+m‖u− uh‖.‖p− qh‖

(α+
1

Ch
)‖u− uh‖ ≤M‖u− vh‖+m‖p− qh‖

‖u− uh‖ ≤ α1‖u− vh‖+ α2‖p− qh‖

By taking the inf of the terms on the right, we obtain (2.18).
As to the relation (2.19) we adopt the same approach.

a(u− uh, u− uh) + c(u− uh, p) = c(uh − h, p− ph)

a(u− uh, u− uh) + c(u− uh, qh) + c(u− uh, p− qh) = c(uh − u, p− ph)

The use of continuity properties and the lemma 2.3.1 gives the following inequalities:

a(u− uh, u− uh) + c(u− uh, p− qh) ≤M1‖u− uh‖2 + ‖u− uh‖.‖p− qh‖

c(uh − u, p− ph) ≥ 1

Ch
‖u− uh‖.‖p− ph‖

These two relations allow to have this inequality

1

Ch
‖u− uh‖.‖p− ph‖ ≤M1‖u− uh‖2 + ‖u− uh‖.‖p− qh‖

‖p− ph‖ ≤ β1‖u− uh‖+ β2‖p− qh‖

As a result we get (2.19).
The convergence of the solution (uh, ph) to (u,p) is illustrated by the following theorem.
Theorem 3.3. [6]
We assume the following hypotheses:

‖u− uh‖V ≤ C1h
k+1−m|u|k+1 + C2h

k+1−m|p|k+1 (31)

‖p− ph‖L2 ≤ K1h
k+1−m|u|k+1 +K2h

k+1−m|p|k+1 (32)

Then the discrete solution (uh, ph) of (23)converges to (u, p) when h tends to 0.
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Table 1. Constant number.

Parameters mesh size Vertices of the triangle Viscosity latitude

Notations h Ai(xi, yi) ν φ

Some values 0 < h < 1 A1(0, 0),A2(0, 1),A3(1, 0) ν = k.10n 0 < φ < π
2

3.1.4. The Mesh

Figure 3. Conformal mesh with 4 nodes et 14 degrees of freedom.

The mesh by Hermite finite elements has a big particularity. Firstly with each node, we associate 3 degrees of freedom and on
the other hand one degree of freedom on the center of gravity of each element of the mesh.

This particularity is explained by the fact that each node Ak are defined three basic functions
ψk, ∂ψk∂x and ∂ψk

∂y .

3.1.5. Matrix Structure of System 28
The following figure represents the matrices structure of system (28) resulting from the discretization by the finite elements of

Hermite.

Figure 4. Structire2 1:Structure of the matrix.

3.2. Simulation Results

In this part the software used to carry out the simulation is matlab.
To make a good simulation which will allow to obtain a result, it is necessary to vary the values taken by the variables. The

following tabular provides some values taken by these variables.

3.2.1. Test 1
The objectif of the test is to see if there is a relation between the solution and the parameter h.
For that we will give some values of h and find the solutions corresponding to each of its values.
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Table 2. Variation of the velocity and the pression depending on the mesh .

h ‖uh‖
L2 pressure (Pa)

0, 05 294.9927 3.2829.1014

0, 06 225.1051 29.1767

0, 07 199.4725 922.8613

0, 08 71.7917 225.5666

0, 09 87.0559 36.3983

0, 1 626.7938 1.8442.1014

The figure 5 give the representation of the solutions uh and ph according to the different values taken by h.

Figure 5. Structure of solutions for h = 0, 05, h = 0, 06, h = 0, 07 and h = 0, 08.

3.2.2. Test 2
The objectif of the section is to find if there is, a relation between the evolution of viscosity and the solutions. To achieve this,

we will simulate the main.m program for different values of the viscosity coefficient.
The following table summaries the different result obtained after the simulation.
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Table 3. Variation of the velocity and the pression as function of Viscosity.

viscosity (ν) ‖uh‖
L2 pressure (Pa)

107 3, 2653.10−5 39, 2935

106 3, 2643.10−4 36, 0500

105 0, 0033 37, 3095

104 0, 0327 37, 3412

0.1 32, 6446 34, 6249

0.01 326, 3978 40, 1343

0.001 3, 2534.103 42, 6934

Figure 6. Structure of solutions for ν = 106, ν = 105, ν = 0.1 and ν = 0.01.

3.2.3. Test 3: Stokes Problem
In this section, we characterize the influence due to the

Reynolds number Re. The Reynolds number represents the
ratio between the forces of inertia and the viscous forces. This
dimensionless number appears in the dimensionless Navier-
Stokes equations. It is defined as follows:

Re =
ULc
ν

with U is the characteristic velocity, Lc the characteristic
dimension, ν = µ

ρ the kinematic viscosity of the fluid, µ

the dynamic viscosity of the fluid and ρ, the density of the
fluid. We will consider several case for Re < 1 corresponding
to the Stokes flow. In this case the inertia forces related to
the velocity of the fluid being negligible, the viscous forces
and the pressure forces are balanced. The objective of this
section is to repeat the previous simulations by considering the
Reynolds number as variable. The following table provides
the different value of the solutions according to the Reynolds
number.Two problems will be studied: the Stokes problem and
the advection problem.The Reynolds number is the parameter
that will be considered as a control variable.
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Figure 7. Structure of solutions forRe = 0.001, Re = 0.0015, Re = 0.0028 andRe = 0.005.

Figure 8. Structure of solutions forRe = 90 andRe = 150.
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Figure 9. Structure of solutions forRe = 0.0067, Re = 0.007, Re = 0.0085 andRe = 0.009.

Figure 10. Structure of solutions forRe = 850, Re = 1000, Re = 5000 andRe = 7000.
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Table 4. Variation of the velocity and the pression as function of Reynolds number.

Reynolds number (Re) ‖uh‖
L2 pressure (Pa)

0.001 0.0653 36.2635

0.0015 0.0979 38.6310

0.0028 0.1828 40.2984

0.005 0.3265 38.4739

0.0067 0.4373 36.3011

0.007 0.4571 35.8914

0.0085 0.5552 37.3622

0.009 0.5877 42.5808

0.0095 0.6203 35.3834

0.01 0.6527 37.1383

0.018 1.1758 40.2984

0.02 1.3057 35.0083

3.2.4. Physical Interpretation of Rsults
The objective of these two tests was to known on which

parameters the approximate solutions depend the most.
The results of test 1 do not reveal the evolution of the

solutions when the parameters h increases because its direction
of evolution varies alternately. Although the intensity of the
velocity changes, we can’t conclude that the parameter h
influences the direction of evolution of the intensity velocity.
This fact can be explained by the fact that h is not a physical
parameter which characterizes the flow.

With the test 2, when the viscosity takes respectively
107, 106, 105 and 104 the velocity takes respectively the
following values 3.2643.10−5, 3.2645.10−4, 0.0033 and
0.0327. Conversely by making the viscosity small, we observe
an increase in velocity. We can say that the viscosity and the
velocity vary in the opposite direction, in order worlds if the
viscosity increases then the velocity of the fluid decreases.
Viscosity is the main factor influencing the velocity,which
is logical since the Stokes problem is characterized by a
viscosity, which makes the convection term negligible.

In the last test, we consider the variation of the velocity and
the pressure of the fluid when the Reynolds number is very
low, considering the Stokes problem. We first notice that the
velocity of the fluid is very low when the Reynolds number is
small. Which corresponds to the Stokes flow: Laminar. When
also the Reynolds number is very low, the speed of the fluid
and the pressure vary slowly.

4. Conclusion

This document was devoted to the discretization and the
numerical simulation of the Navier-Stokes equations in the
case of a stationary flow which results in a sationary Stokes
problem.

Discretization is fundamental since it made it possible to
find a finite dimensional space which contains the solutions,
this one allowed to transform relation (3) into a matrix system.

The simulation of the matrix assembly algorithm made it
possible to visualize the structure of the matrix system.

The results obtained are very satisfactory because they are

in perfect agreement with the theoretical study.
The study of Euler problem and of the unsteady Navier-

Stokes equations by Hermite finite elements constitute the
chalenges to be met.
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non linéaires, Université Pierre et Marie Curie, Paris,
Springer, 2013.



125 Ibrahima Thiam et al.: Numerical Simulation of Ocean Currents with Hermite Finite Elements
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Master, Université Abderrahmane Mira-Béjaia, juin
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numériques, Algorithmes, analyse et applications,
Springer-Verlag, 2006.

[22] R. Temam, Navier-Stokes Equation, North-Holland
Publishing Compagny, New York-Oxford, 1979.

[23] R. Temam, Navier-Stokes equations, Editors: J. L. Lions,
Paris; G. Papanicolaou, New York; T. T. Rockafeller,
Seattle, North-Holland Publishing Company, first edition
1977, revised edition 1949.


