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Abstract: In this study, an investigation is made into the effects of thermophoresis and viscous dissipation on chemically 

steady hydromagnetic free convective boundary layer flow in a porous media. A mathematical model was designed to govern 

the flow used in the study of the effects of chemical reaction, magnetic field, viscous dissipation, and thermophoresis on free 

convective boundary layer flow of an incompressible, electrically conducting fluid past a heated vertical permeable flat plate 

embedded in a uniform porous medium. This flow is observed as it moves past the plate, which is embedded in a uniform 

porous medium. The governing equations and their related boundary conditions have been converted into dimensionless 

equations by using the similarity transformations. These dimensionless equations are a boundary valued problem of coupled 

ordinary differential equations, and they have been solved by employing the Spectral Homotopy Analysis Method, which is a 

numerical approach of the traditional Homotopy Approximate Method (HAM). The Chebyshev-Gauss-Lobatto points are used 

to discretize the spatial domains, and numerical computation is used to determine the non-dimensional properties of the 

physical parameters. The SHAM solution series converges to the numerical solution with an accuracy of up to six decimal 

places, as demonstrated by our simulations. A parametric investigation of some of the parameters that are available is carried 

out, and the results for velocity, temperature, and concentration are graphically displayed, in addition to the discussion of the 

physical components of the issue. When the computational results from SHAM and those from the literature are compared to 

one another, they show a good degree of agreement with one another. It has been determined that the flow parameters have a 

significant impact on the flow profiles, and this connection has been investigated in depth. Findings that are really significant. 

Keywords: Thermophoresis, Viscous Dissipation, Porous Medium, Magnetic Effect, Chemical Reaction,  

Spectral Homotopy Analysis Method (SHAM) 

 

1. Introduction 

The phenomenon of thermophoresis, which is often 

referred to as thermomigration, is seen in mixes of mobile 

particles and describes how they respond differentially to 

temperature gradients. Aerosol mixtures including dust, fog, 

forest exudates, and geyser steam are usually referred to by 

this word. All phases of matter frequently discuss 

thermophoresis. There are numerous real-world uses for the 

thermophoretic force. The major reason for its utilization is 

that different particles behave differently when a temperature 

gradient is present. After they have been mixed together, 

these particle kinds can be separated by that force, or if they 

have already separated, they can be kept from combining. 

Since the hotter side of a semiconductor wafer has a more 

readily available transition that is needed for an atomic leap, 

impurity ions may travel from the cold side to the hot side of 

the wafer. Commercial precipitators have utilized 

thermophoretic force for uses such as electrostatic 
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precipitators. It is used in vacuum deposition procedures for 

the production of optical fibers. Thermophoresis has also 

been demonstrated to offer the ability to speed up drug 

recovery by enabling the identification of parameter binding 

through a comparison of the target molecule's motion when 

bound and unbound. Additionally, it has been shown that 

thermophoresis provides a flexible method for controlling 

single biological macromolecules, such as genomic-length 

DNA and HIV virus, in micro and nano-channels by using 

light-induced local heating. One technique used in the field 

flow fractionation to separate various polymer particles is 

thermophoresis. The magnitude of the thermophoresic force 

and velocity exhibit proportionality to the temperature 

gradient. This significantly depends on variables like the 

carrier gas's and the aerosol particles' thermal conductivity. 

Kerosene combustion results in the glass of a lantern's glass 

globe becoming darkened. Simply put, this exemplifies 

thermophoresis. Due to the temperature differential between 

the flame and the glass globe, the carbon particles emitted 

during combustion are drawn towards the glass globe where 

they eventually rest. Although many researchers have studied 

thermophoresis, Goren [1] was one of the first to focus on 

how important it is in laminar flow over a horizontal plate. 

He took into account both hot and cold plates in this plate. 

The combined effects of chemical reaction, radiation on heat, 

and mass transport along a constantly moving surface in the 

presence of thermophoresis were examined by Chandra and 

Kumar [2]. Incompressible viscous flow based on 

magnethydrodynamics (MHD) has many applications in 

research and engineering, particularly when it comes to heat 

and mass transfer driven by chemical reaction. It is used in a 

variety of industries, including crystal growth, agricultural 

and petroleum industries, and metal extrusion. Foreign matter 

and the fluid that the plate is travelling through will always 

undergo chemical reactions in various chemical reactions, 

and this process has many industrial benefits and 

applications. Production of glass or ceramics, food 

processing, and polymer production are a few examples. In 

chemical kinetics, the index or exponent raised by the 

concentration term of a specific substance in the rate 

equation is used to describe the order of reaction with regard 

to that substance (such as reactant, catalyst, or product). In 

other words, an order n reaction is one whose reaction rate is 

n-power proportional to the concentration. A first-order 

reaction is specifically one in which the pace of the reaction 

is precisely proportional to the concentration of the reacting 

component. Any chemical reaction that takes place in a single 

phase is referred to as a homogeneous reaction (gaseous, 

liquid, or solid). Since the nature of interactions between the 

reacting substances determines the only chemical changes 

that occur, homogeneous reactions are simpler theoretically. 

Any chemical reaction in which the reactants are components 

of two or more phases (solid and gas, solid and liquid, or two 

immiscible liquids), or in which one or more reactants 

undergo chemical changes at an interface, is referred to as a 

heterogeneous reaction. 

Heterogeneous reactions include the reactions of metals 

with acids, the electrochemical alterations that take place in 

batteries and electrolytic cells, and the process of corrosion. 

According to Alam et al. [3], a reaction that persists at an 

interface is heterogeneous, but a reaction that persists in a 

solution is heterogeneous. 

A few researchers and their works will be examined, 

however many have investigated chemical reactions. The 

effects of mass transfer on the flow through an infinite, 

vertical plate that was started abruptly and had constant heat 

flux and chemical reaction were examined by Das et al. [4]. 

Anjah and Kandasamy investigated the impact of chemical 

reaction MHD flow with heat and mass transmission past a 

semi-infinite plate [5]. In the presence of a heat source and 

the thermal stratification effect, Kandasamy et al. [6] 

investigated the impact of chemical reaction on MHD flow 

with heat and mass transfer over a vertically stretched sheet. 

Odat and Al-Azab conducted a study on the impact of 

chemical reactions on transient MHD free convection over a 

moving vertical plate [7]. Ahmed [8] examined how chemical 

reactions affected transient MHD free convective flow over a 

vertical plate in the slip flow regime. A study on mass 

transfer with chemical reaction on hydromagnetic flow and 

heat transfer on a constantly moving surface was conducted 

by Jat and Chandry [9]. 

Viscous heating is the result of an irreversible process in 

which heat is produced as a result of work being done by a 

fluid on neighboring layers as a result of the action of shear 

force. The link between the energy and momentum equations 

makes viscous heating very advantageous for fluids with large 

temperature-dependent viscosities. The rate at which 

mechanical energy is transformed into thermal energy in a 

viscous fluid per unit volume is known as viscous heating, 

especially in porous media. Despite the viscous dissipation's 

critical role in the natural convective flow, few few academics 

have studied its impacts over the years. Gebhart [10] looked at 

the significance of viscous dissipative heat in free convection 

flow in the condition of isothermal and constant heat flux in 

the plate to demonstrate its significance. Takhar and Beg [11] 

provided a model of viscous dissipation in a porous medium 

past a vertical porous plate. Murthy and Sing [12] investigated 

the impact of viscous dissipation in relation to incompressible 

fluid in a saturated porous material. Rees et al [13]'s 

investigation of the influence of viscous dissipation on 

boundary layer flow formation from a cold vertical surface 

immersed in a porous Darcian medium. Nield [14] talked 

about viscous dissipation in a saturated porous media and its 

applicability to either forced convection or natural convection. 

He discussed the significance of its application in some porous 

media, such as food storage, heat removal from nuclear fuel 

debris, exothermic and/or endothermic chemical processes, 

dissociating fluid in packed-bed reactors, and underground 

disposal of radioactive wastes. According to Loganathan and 

Arasu [15], there are further benefits to utilizing desposition 

mechanisms for greater efficiency when applying pigments, 

metal coatings, or gas stream filtering. Radioactive particles 

that are deposited as a result of thermophoresic activity are 

acknowledged to occur in nuclear reactor accidents. Sulfur and 
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nitrogen oxides that are released into the atmosphere will 

combine with water molecules to generate acids, which will 

then fall as acid rain. Mahdy [16] investigated the effects of 

changing viscosity and the deposition of thermophoresic 

particles on Non-Darcy free convection in a fluid saturated 

with uniform suction on injection. 

A boundary layer flow across a porous wedge was 

examined by Felix Ilesanmi Alao et al. [17] for the effects of 

heat radiation, soret, and dufour in the presence of suction or 

injection. Muhaimin et al. [18] looked studied the combined 

effects of thermophoresis and chemical reaction on non-

Darcy MHD mixed convective heat and mass transfer across 

a porous wedge when suction or injection is present. Kishan 

and Maripala [19] thought about the impact of viscous 

dissipation and thermophoresis on Darcy-Forcheimer MHD 

mixed convection in a fluid-saturated porous medium. 

Fagbade et al. [20] demonstrated how the magnetic field, 

viscous dissipation, and thermophoresis affect Darcy-

Forcheimer mixed convection flow in a fluid-saturated 

porous material. According to all of these studies, no one has 

looked into or analyzed the impact of thermophoresis and 

viscous dissipation effects on chemically steady 

hydromagnetic free convective boundary layer flow in a 

porous media. the study will therefore be conducted utilizing 

the Spectral Homotopy Analytical Method (SHAM). 

2. Problem Formulation in Mathematics 

 
Figure 1. Physical geometry of the model. 

Take into account a fluid flowing in a steady, laminar, 

hydromagnetic free convective boundary layer on a porous 

medium while also experiencing thermophoresis and the 

viscous dissipation effect. The y-coordinate is normal to the 

leading edge of the medium, and the x-coordinate is 

measured along that edge. A first order homogeneous 

chemical reaction is presummated to occur in the flow, and 

the fluid characteristics are assumed to be constant. The 

porous medium is thought to be uniformly distributed and in 

local thermodynamic equilibrium. It should be noted that the 

porous plate's hole size is taken to be constant. 

Understanding the change in mass deposition on the surface 

requires an understanding of the chemical reaction occurring 

in the flow and the impact of thermophoresis. 

The governing boundary layer equations for this inquiry, 

which are based on the balancing laws of mass, linear 

momentum, energy, and concentration species, can be 

expressed as follows under these assumptions and the 

Boussinesq approximation: 
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And the boundary conditions are: 

 
	 → 0, �	 → �	∞, �	 → �	∞ +	.	 -	 → ∞             (6) 

The gradient of ambient temperature and concentration 

profiles stratifies at a rate of a and b, where b is a constant. 

While the components of velocity in the x and y directions, 

respectively, are u and v. 

Following Talbot et al. [21], the term in equation (4) is 

defined as: 

&� = −/	0	 12	2345 = −/	0	62	67                          (7) 

Assuming the relations that follow: 


	 = 
68	
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69 ; :	(;	) = 

2	<	2�	
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?=	<	?�	     (8) 

It is well known that boundary layer flows have a 

predominant flow direction and boundary layer thickness is 

small compared to a typical length in the main flow direction. 

We introduce the following non-dimensional variables: 

;	 = -	@AB; C	 = (	√Bv G	(;	); 
�	 = �	∞ +�Cw	 � 	C∞�>	 (;	); �	 = �	∞ + �Tw	 � 	T∞�(;	)    (9) 

The stream function in this case is (x, y). 

The equation for continuity is satisfied by the 

mathematical relations (8) and (9) (1). 

The following nondimensional equations are produced by 

substituting the aforementioned transformations into the 
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governing equations (1) through (4): 

G	 ′′′ + G	G	 ′′ − �f	′�# + N	O	:	 + N	P	>	 − �M	 � 	λ	f	′� = 0 (10) 

:	 ′′ + S	O	G	:	 ′ + S	O	T	U	 �f	′′�# 2 − S	O	G	 ′:	 = 0       (11) 

>	 ′′ + V	U	G	>	 ′ − W	V	U	�θ	′′ϕ	 � 	θ	′ϕ	′� = 0            (12) 

where the relevant dimensionless flow parameters are specified 

as: and the prime imply differentiation with respect to 

M	 � ���

� B; 	Pr = 	 �∝ ; 	Sc = �_` ; 	Ec	 = 	 9
A
� ��b	<	�c�  

τ = 	 ef��b	<	�c�2345 ; 	λ	 = 	 	�gA ; 	Gr	 = 	 ij2��b	<	�c�9A
 ; 	Gm	 =	ij2��b	<	�c�9A
   

The modified boundary conditions are as follows: 

G(0) = −Gl; G	 ′(0) = 1; :	(0) = 1; >	(0) = 1          (13) 

Gl 	= 	@ mf� is the suction velocity without dimensions. It is 

interesting to observe that when Ec = λ = τ = 0, which 

simplifies the current issue to the models examined by 

Gangadhar and Bhaskar [29] and Ibrahim and Makinde [28], 

respectively. 

The following physical quantities are relevant to this issue: 

The definitions of skin friction coefficient, Nusselt 

number, and Sherwood number are as follows: 

G	 ′′(0) = 
n#op�q
�r; −:	 ′(0) = 

n#op�<q
s	
	;  
−>	 ′(0) = 

n#op�<q
Sℎ; op�q
 	= 	@u�	v  (o	p	-	w	x	y	z	.	 w	
	P	*	p	O	)  

3. Method of Solution: SHAM 

Because of their elegance and high accuracy in resolving 

issues with smooth functions, spectral methods are 

increasingly being used to solve ordinary and partial 

differential equations Canuto et al. [22] and Trefethen [23]. 

Motsa [27] transformed the homotopy analysis approach 

(Liao [23, 24]) into the spectral homotopy analysis method 

(SHAM). The problem of viscous dissipation and 

thermophoresis effects on chemically reacting steady 

hydromagnetic free convective boundary layer flow over a 

vertical plate in a porous medium was solved using a set of 

ordinary differential equations (ODEs) in this work. With 

applications in applied mathematics, physics, nonlinear 

mechanics, finance, and engineering, it is frequently used to 

solve many types of nonlinear ordinary and partial 

differential equations. SHAM is employed in Motsa [25, 26] 

and Fagbade et al. [19] and combines the Chebyshev spectral 

collocation approach with the traditional HAM's guiding 

principles to solve the transformed sequence of ordinary 

differential equations. The elimination of the need to adhere 

to a certain rule of solution expression is one of the SHAM's 

key advantages. Additionally, the SHAM demands that the 

complete linear component of the governing differential 

equation be chosen as the linear operator to be employed in 

the algorithm's development. The Chebyshev spectral 

collocation method is used since this frequently results in 

complex series of linear ordinary differential equations that 

can only be solved numerically. It is customary to first 

change the problem's domain from [0,∞] to [-1,1] before 

employing the spectral homotopy analysis method to make 

the governing boundary conditions homogeneous. 

{	 = 
#|}  − 1; {	~	 [−1, 1] 

G(;	) = ({	) + G�(;	); (;	) = ({	) + θ�(;	); (;	) = ({	) + ϕ�(;	)                                              (14) 

G�(;	) = 1 − Gl − p<|; θ�(;	) = p<|; ϕ�(;	) = p<|                                                     (15) 

When the governing equation and boundary conditions (10) and (13) are entered into equations (14) and (15), the results are 

as follows: 

G	′′′ + G	G	′′ +anG	 + a#G	′′ − �f′�# + N	O	:	 + N	P	>	 − �M	 + 	λ� G	′ = An(;	)                              (16) 

:	′′ + S	O	G	:	′ + bnS	O	G	 + b#S	O	:	′ + S	O	T	U	�f′′�# + b�S	O	T	U	G	′′ − PrG	′:	 − b�S	O	G	′ + 
n#S	O	a�:	 =A#(;	)       (17) 

>	 ′′ + V	U	G	>	 ′ + cnV	U	G	 + c#V	U	>	 ′ − V	U	W	:	 ′′>	 − V	U	W	c�:	 ′′ − V	U	W	b�>	 − V	U	W	:	 ′>	 ′ −V	U	W	cn:	 ′ 
− V	U	W	bn>	 ′ − V	U	G	 ′>	 − c�V	U	G	 ′ − a�V	U	>	 = A� (;	)                                           (18) 

Depending on 

(−1) = G	 ′(1) = 0; :	(−1) = :	(1) = 0; >	(−1) = >	(1) = 0                                                 (19) 

where difference with respect to the primes is indicated. 

+n = G����;	); +# = G�(;	); +� = -2G���;	); +� = G���;	); bn = θ�� �;	); b# = G�(;	); b� = 2G����;	); b� = θ��;	); b� = θ����;	); Un = ϕ�� �;	); U# = G�(;	); U� = ϕ�(;	)                                        (20) 

And 
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�n�;	) = −G�����;	) − G��η�G����;	) + �G���η��# − θ�(;	) − N	ϕ�(;	) + �� � 	��G���η�                       (21) 

�#�;	) = −θ����;	) − S	O	G��η�θ�� �η� − S	O	T	U	�G����η��# + G���η�θ�(;	)                                      (22) 

���;	) = −ϕ���(;	) − V	U	G��η�ϕ�� (;	) + V	U	W	θ����;	)ϕ�(;	) + V	U	W	θ�� �η�θ�� �;	) + V	U	G���η�	ϕ�(;	)                  (23) 

The non-homogeneous linear component of the solutions to the governing equations (16) through (18) is regarded as the 

initial approximation and is denoted as follows: 

G���� + +nG� + +nG��� + +�G�� + N	O	θ�  + N	P	ϕ� − �� � 	��G�� = �n�;	)                                      (24) 

θ��� + *nS	O	G� + *#S	O	θ��  + *�S	O	T	U	G��� − S	O	*�G�� + 
n
#S	O	+�θ� = �#�;	)                                  (25) 

ϕ��� + UnV	U	G� + U#V	U	ϕ�� − W	V	U	θ��� − W	V	U	*�ϕ� − UnV	U	W	θ��  − V	U	W	*nϕ�� − U�V	U	G��− +�V	U	ϕ� = ���;	)               (26) 

Depending on 

G���1� � G���1� � 0;	θ��−1� = θ� 	�1� = 0	ϕ��−1� = ϕ��1� = 0                                      (27) 

To resolve (24) -, we employ the Chebyshev pseudospectral technique (27) 

An approximation of the unknown function is given by a truncated series of Chebyshev polynomials of the following form: 

G��ξ� ≈ ∑ Ge��e�� Se�ξ�� �	 = 0, 1, …, �	                                                           (28) 

θ��ξ� ≈ ∑ θe��e�� Se�ξ�� �	 = 0, 1, …,                                                             (29) 

ϕ��ξ� ≈ ∑ ϕe��e�� Se�ξ�� �	 = 0, 1, …,                                                            (30) 

where Se  is the /	th Chebyshev polynomial, Ge� , θe�  and ϕe�  are coefficients and ξ�, ξn, … , ξ�  are Gauss-Lobatto collocation 

points (see [21]) defined by 

�� = cos!���"; �	 = 0, 1, …, 

Derivatives of the functions G��ξ�, θ��ξ�	+wz	ϕ��ξ� at the collocation points are represented as 

��r� � = ∑ $e�¡ G������e�� 	��¢� � = ∑ $e�¡ θ������e�� ; 
��£� � = ∑ $e�¡ ϕ������e��  

where r is the order of differentiation and D is the Chebyshev spectral differentiation matrix. Substituting the above 

expressions in (24) - (27) yields. 

¤	¥	¦	 = §	                                                                                      (31) 

Subject to 

G����� = 0; ∑ $�e¡ G���e��e�� = 0; θ����� = 0; θ����� = 0;	ϕ����� = 0; ϕ����� = 0	                            (32) 

Where ¨	 = © n̈,n n̈,# n̈,�#̈,n #̈,# #̈,��̈,n �̈,# �̈,�
ª 

And 

n̈,n = $�+ +n + +#$# +	+�$ − �� + λ�$ 

n̈,# = NO«  
n̈,� = NP«  

#̈,n = *nS	O	« + *�S	O	D − *�Pr$ 

#̈,# = $# + *#SO$ + n# +�SO« − �� + λ�$  

#̈,� = 0  
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�̈,n � UnVU« � U�VU$ 

�̈,# � �WU�VU$# � UnWVU$ 

�̈,� � $# � U#VU$ � VU*�« � WVU*n$ � +�VU« 
¬� � ­G�����, G���n�, … , G�����, θ�����, θ���n�, … , θ�����, ϕ�����, ϕ���n�, … , ϕ�����®� 

T � ­�n����, �n��n�, … , �n����, �#�η��, �#�ηn�, … , �#�η��, ���η��, ���ηn�, … , ���η��® 
+n � z¯+��­+n�η��, +n�ηn�, … , +n�η�<n�, +n�η��®� 
*n � z¯+��­*n�η��, *n�ηn�, … , *n�η�<n�, *n�η��®� 
Un � z¯+��­Un�η��, Un�ηn�, … , Un�η�<n�, Un�η��®� 

¯= 1, 2, 3, 4, 5. 

In the above definitions, the superscript T denotes 

transpose, diag is a diagonal matrix and I is an identity matrix 

of size (�	+1) × (�	+1). To implement the boundary 

conditions (32), we delete the first and the last rows and 

columns of E and delete the first and last rows of functions 

G����, θ����, ϕ���� and E. The boundary conditions (32) are 

imposed on the resulting first and last rows of the modified 

matrix E and setting the resulting first and last rows of the 

modified matrix E to be zero. 

The values of G�����, G���n�, … , G�����, θ�����, θ���n�, … , θ�����, ϕ�����, ϕ���n�, … , ϕ����� are then determined from 

¬�=¨<n§	                                                                                      (33) 

To find the SHAM solutions of (16) - (18) we begin by defining the following linear operator: 

°r­G�̅η; q�, θ³�η; q�, ϕ́�η; q�®= G	′′′ + G	G	′′ +anG	 + a#G	′′−�f′�# + N	O	:	 + N	P	>	 − �M	 � 	λ� G	′                  (34) 

°¢­G�̅η; q�, θ³�η; q�, ϕ́�η; q�®= :	′′ + S	O	G	:	′ + bnS	O	G	 + b#S	O	:	′ + S	O	T	U	�f′′�# + b�S	O	T	U	G	′′-PrG	′:	 − b�S	O	G	′ + 
n
#S	O	a�:	                                                                                       (35) 

°£­G�̅η; q�, θ³�η; q�, ϕ́�η; q�® � >	 ′′ + V	U	G	>	 ′ + cnV	U	G	 + c#V	U	>	 ′ − V	U	W	:	 ′′>	 − V	U	W	c�:	 ′′ − V	U	W	b�>	 − V	U	W	:	 ′>	 ′ 
−V	U	W	cn:	 ′ − V	U	W	bn>	 ′ − V	U	G	 ′>	 − c�V	U	G	 ′ − a�V	U	>	                                             (36) 

qϵ [0, 1] is an embedding parameter and G�̅η; q�, θ³�η; q�, ϕ́�η; q�	are the unknown functions. 

The zeroth order deformation is given as: 

�1 � µ�°r­G�̅η; q� � G�́�η�, ® � µℏr·r̅�η�sℏ¸­G�̅η; q�, θ³�η; q�, ϕ́�η; q�®                                 (37) 

�1 � µ�°¢­G�̅η; q� � G�́�η�, ® � µℏ¢·¢́�η�sℏ¹­G�̅η; q�, θ³�η; q�, ϕ́�η; q�®                                 (38) 

�1 � µ�°£­G�̅η; q� � G�́�η�, ® � µℏ£·£́�η�sℏº­G�̅η; q�, θ³�η; q�, ϕ́�η; q�®                                (39) 

Where ℏr , ℏ¢	+wz	ℏ£ are the non-zero convergence controlling auxiliary parameters and sℏ¸ , sℏ¹ 	+wz	sℏº 	are non- linear 

operators given by: 

sℏ¸­G�̅η; q�, θ³�η; q�, ϕ́�η; q�®= G′̅′′ + GG̅̅′′ +anG ̅+ a#G′̅′ − �f′̅�# + N	O	:̅ + N	P	>³ −�M	 � 	λ� G′̅                         (40) 

sℏ¹­G�̅η; q�, θ³�η; q�, ϕ́�η; q�®=	:̅′′ + S	O	G̅:̅′ + bnS	O	G ̅+ b#S	O	:̅′ + S	O	T	U	�G′̅′�# + b�S	O	T	U	G′̅′ −PrG′̅:	 − b�S	O	G′̅ + 
n
#S	O	a�:̅        (41) 

sℏº­G�̅η; q�, θ³�η; q�, ϕ́�η; q�®= >³′′ + V	U	G>̅³′ + cnV	U	G ̅+ c#V	U	>	′ − V	U	W	:	′′>³ − V	U	W	c�:	 ′′ −V	U	W	b�>³ − V	U	W	:	′>³′ 
−V	U	W	cn:	′ − V	U	W	bn>³′ − V	U	G′̅>³ − c�V	U	G′̅ − a�V	U	>³                                                       (42) 

Differentiating (37) - (39) severally by m times with respect to q and then setting µ	 = 0 and finally dividing the resulting 

equations by P	! yields the P	th order deformation equations: 

°r̅­G�̅ε� � χ½G½̅<n�ε�, ® � ℏr·r̅�ε�o%r̅ �ε�                                                       (43) 

°¢́¾θ³�ε� � χ½θ³½<n�ε�, ¿ � ℏ¢́·¢́�ε�o%¢́ �ε�                                                       (44) 
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°£́¾ϕ́�ε� � χ½ϕ́½<n�ε�, ¿ � ℏ£́·£́�ε�o%£́ �ε�                                                       (45) 

Subject to 

G½̅��1� � 0; θ³½�−1� = 0; ϕ́½�−1� = 0; G½̅�−1� = 0; θ³½�−1� = 0; ϕ́½�−1� = 0                            (46) 

Where 

o%r̅ �ε�	= G%̅<n���  + anG½̅<n + a#G%̅<n��  + a�G%̅<n� + N	O	:̅½<n + N	P	>³½<n - �M + λ�G%̅<n� +∑ ­G½̅<nG%̅<n<À�� + �−1�GÀ�G%<n<À� ®%<nÀ��  −	�n�;	)�1 − χ½�                                                                                  (47) 

o%¢́ �ε�	= θ³%<n��  + bnSOG½̅<n + b#SOθ³%<n�  + b�SOTUG%̅<n	��  - b�SOG%̅<n� +
n#SOa�θ³%<n��  +∑ ­SOGÁ̅θ³%<n<À� + SOTUGÀ̅��G%̅<n<À�� −%<nÀ��SOG%̅<n� θ³%<n<À�� ® −	�#�;	)�1 − χ½�                                                                     (48) 

o%£́ �ε�=ϕ́%<n��  + cnVUG½̅<n + c#VUϕ́%<n�  + c�VUτθ³%<n	�� - b�VUτϕ½<n − cnVUτθ³%<n� − c�VUG%̅<n� −	a�VUϕ́%<n�  

+∑ ­VUGÁ̅θ³%<n<À� − τVUθ³À��ϕ́%<n<À� − VUGÁ̅ϕ́½<n®%<nÀ�� −	���;	)�1 − χ½�                                        (49) 

And 

χ½ =	 Â0	)ℎpw	P ≤ 11	)ℎpw	P > 1                                                                                  (50) 

Applying the Chebyshev pseudospectral transformation on (43) - (45) gives 

Å	G½̅ = �χ½ + ℏr� Å	G½̅<n −	ℏr�1 − χ½�T +	ℏrÆ%<nr̅
                                                       (51) 

Å	θ³½ = �χ½ + ℏ¢� Å	θ³½<n −	ℏ¢�1 − χ½�T +	ℏ¢Æ%<n¢́                                                        (52) 

Å	ϕ́½ = �χ½ + ℏ£� Å	ϕ́½<n −	ℏ£�1 − χ½�T +	ℏ£Æ%<n£́
                                                       (53) 

Subject to 

G½̅�ε�� = 0; ∑ $�gG½̅�εe� = 0%<nÀ�� ; θ³½�ε�� = 0; θ³½�ε�� = 0; ϕ́½�ε�� = 0;	ϕ́½�ε�� = 0                          (54) 

Where Å	 and Ç	 are as defined above and 

¬½ = ­G½̅�ε��, G½̅�εn�, … , G½̅�ε��, θ³½�ε��, θ³½�εn�, … , θ³½�ε��, ϕ́½�ε��, ϕ́½�εn�, … , ϕ́½�ε��®� 

Æ%<nr̅ = ∑ ­�GÁ̅��D#�G½̅<n<Á + �−1��$GÁ̅��$G½̅<n<Á�®%<nÀ��                                                    (55) 

Æ%<n¢́ = ∑ ­SO�GÁ̅��Dθ³½<n<Á� + SOTU�D#GÁ̅��D#G½̅<n<Á� − SO�$GÁ̅��θ³½<n<ÁÁ�®%<nÀ��                             (56) 

Æ%<n£́ = ∑ ­VU�GÁ̅��Dϕ́½<n<Á� − τVU�D#θ³Á��Dϕ́½<n<Á� − τVU�Dθ³Á��Dϕ́½<n<Á� − VU�$GÁ̅��ϕ́½<n<Á�®%<nÀ��           (57) 

To implement the boundary conditions above we delete the 

first and last rows of Æ%<nr̅ , Æ%<n¢́ , Æ%<n£́ 	and E and delete the 

first and last rows and first and last columns of H in (51 − 53). 

The boundary conditions (54) are imposed on the first and last 

row of the modified H matrix on the left side of the equal sign 

in (51 − 53). The first and last rows of the modified H matrix 

on the right of the equal sign in (51 − 53) are the set to be zero. 

This results in the following recursive formulas: 

G½̅ = �χ½ + ℏr�H<n HG½̅<n +	ℏrH<n ÊℏrÆ%<nr̅ − �1 − χ½�TË                                               (58) 

θ³½ = �χ½ + ℏ¢�H<nHθ³½<n +	ℏ¢H<n­ℏ¢Æ%<n¢́ − �1 − χ½�T®                                               (59) 

ϕ́½ = �χ½ + ℏ£�H<nHϕ́½<n +	ℏ£H<n Êℏ£Æ%<n£́ − �1 − χ½�TË                                             (60) 

Thus, starting from the initial approximation, obtain from (33), higher-order approximations G½̅�ε�, θ³½�ε�, ϕ́½�ε� for m ≥ 1 

can be obtained through the recursive formula (58) - (60). 
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Figure 2. Velocity, Temperature and Concentration profiles for different values of thermal grashof number (Gr). 

 

Figure 3. Velocity, Temperature and Concentration profiles for different values of concentration grashof number (Gm). 

 

Figure 4. Velocity, Temperature and Concentration profiles for different values of Eckert number (Ec). 

 

Figure 5. Velocity, Temperature and Concentration profiles for different values of porosity parameter (�	). 

 

Figure 6. Velocity, Temperature and Concentration profiles for different values of suction/injection parameter (fw). 
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Figure 7. Velocity, Temperature and Concentration profiles for different values of Magnetic parameter (M). 

 

Figure 8. Velocity, Temperature and Concentration profiles for different values of thermophoretic parameter (W	). 

 

Figure 9. Velocity, Temperature and Concentration profiles for different values of Prandtl number (Pr). 

 

Figure 10. Velocity, Temperature and Concentration profiles for different values of Schmidt number (Sc). 

Table 1. Comaprison results for G	′(0), :	′(0), >	′(0) at various values of suction parameter Gl +wz	NO+.txG	w
P*pO (Buoyancy force) when P r =0.72, Gc = 

M = 0.1, Sc = 0.62, W	 = Ec = �	 = 0. 

ÌÍ Gr 
Ibrahim and Makinde [28] Gangadhar and Bhaskar [29] Present Results (SHAM) 

Ì''(0) θ′(0) ϕ′(0) Ì''(0) θ′(0) ϕ′(0) Ì''(0) θ′(0) ϕ′(0) 

0 0.1 0.888971 0.7965511 0.7253292 0.897945 0.805082 0.740192 0.89766087 0.8052544 0.73938283 

 0.5 0.695974 0.8379008 0.7658018 0.70684 0.841012 0.773803 0.7065596 0.841176 0.79254957 

 1.0 0.475058 0.8752835 0.8020042 0.485886 0.876165 0.806773 0.48560737 0.87630582 0.80506679 

1 0.1 0.570663 0.601256 0.5271504 0.575823 0.566525 0.537923 0.57573573 0.56656241 0.53139812 

 0.5       0.40975174 0.59744769 0.56027165 

 1.0       0.21449625 0.62828717 0.58916319 

3 0.1 0.275153 0.2955702 0.2902427 0.0030192 0.143197 0.143829 0.27532986 0.29636384 0.29000008 

 0.5       0.16674285 0.30784998 0.30142208 

 1.0       0.03336961 0.32101847 .031455527 
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Table 2. Comaprison of computational results for local skin friction G	′(0), local nusselt number -:	′(0), and the local sherwood number ->	′(0) at various 

values of Parameter parameter �	 at Pr = 0.72, Gr = Gm = M =	Gl �	0.1, Sc = 0.62, W	 = Ec = 0. 

 
Gangadhar and Bhaskar [29] Present Results (SHAM) 

Ì''(0) -θ′(0) -ϕ′(0) Ì''(0) -θ′(0) -ϕ′(0) 

0.1 0.94458 0.795952 0.531689 0.94433684 0.79611208 0.73096907 

0.5 1.11654 0.762949 0.701131 1.11634577 0.76306844 0.70069542 

1.0 1.30551 0.728382 0.669421 1.30541709 0.72846466 0.66922502 

1.5 1.47358 0.699551 0.643201 1.47352151 0.69961016 0.64315628 

2.0 1.62614 0.675081 0.621099 1.62606555 0.67512251 0.62115071 

3.0 1.89742 0.635561 0.585681 1.89741014 0.63558577 0.58583287 

Table 3. SHAM computational results for local skin friction G	′(0), local nusselt number -:	′(0), and the local sherwood number ->	′(0) at various values of 

viscous dissipation parameter Ec at Pr = 0.72, Gr = Gm = M =	Gl �	0.5, �	 = 1.0, Sc = 0.62, W	 = 0.05. 

Ec Ì' -θ′ -ϕ′ 

0 0.96530733 0.61596720 0.57744647 

0.5 0.96523728 0.61364809 0.57741284 

1 0.97425255 0.60877466 0.82904155 

Table 4. SHAM computational results for local skin friction G	′(0), local nusselt number -:	′(0), and the local sherwood number ->	′(0) at various values of 

thermophoretic force W	 at Pr = 0.72, Gr = Gm = M =	Gl �	0.5, �	 = 1.0, Sc = 0.62, Ec = 0.01. 

Î  Ì' -θ′ -ϕ′ 

0 0.96472892 0.61394434 0.56472546 

0.5 0.96965777 0.61116921 0.69417842 

1 0.97425255 0.60877466 0.82904155 

 

4. The Findings and Discussion 

Numerical calculation using the spectral homotopy 

analysis approach has been done in order to examine the 

model to better understand the impact of viscous dissipation 

and thermophoresis, and the findings have been provided in 

the form of graphs and tables. 

Different flow parameters, including the Eckert number 

(Ec), magnetic parameter (M), Prandtl number (Pr), 

thermophoretic parameter (W	), porosity parameter (�	), 
thermal Grashof number (Gr), concentration Grashof number 

(Gm), and suction/injection parameter, have all been 

computed numerically using SHAM. 

The following default parametric parameters are used for 

the sham computations in order to discuss our results: 

Ec = 0.01, Gr = Gm = M = = 0.5, Pr = 0.72, Sc = 0.62, �	 = 

1.0, W	=0.05 to gain a thorough understanding of the issue's 

mechanics. Therefore, unless otherwise noted, all graphs 

correspond to these values. Additionally, the boundary 

condition (η%Ï�= 12) is close enough to the actual stream 

velocity to allow the flow profiles to approach it. The prandtl 

number (Pr = 0.72) was chosen to represent air, and the 

values of the Schmidt numbers (Sc = 0.62, 0.78, and 2.62) 

were selected to represent the dispersing chemical species of 

most common interest in air, such as O and Propyl Benzene. 

The results of this work are a more extended version of those 

found in Ibrahim and Makinde [28] and Gangadhar and 

Bhaskar [29] in the absence of the viscosity parameter (Ec), 

thermophoresis force (W	), and permeability parameter (�	). 
The SHAM results as presented in Tables 1 and 2 are in 

great agreement with the results reported in the literature, for 

example, when (Ec = 0). The values of skin-friction 

coefficient, local heat transfer rate, and sherwood number 

have been determined for various values of the permeability 

parameter (�	), viscous dissipation Ec, and thermophoretic 

parameter (W	) in order to assess the correctness of the current 

solution technique (SHAM) (see Tables 2-4). The impact of 

the permeability parameter (�	) on the flow profiles is seen in 

Table 2. The generation of the skin friction coefficient and 

sherwood number are both enhanced by an increase in the 

permeability parameter on the flow regime, whilst the rate of 

local heat transfer is decreased. Surprisingly, the results of 

the model analysis by Gangadhar and Bhaskar [29] and those 

obtained using the spectral homotopy analysis method 

agreed. Table 3 shows that flow physical quantities like skin 

friction coefficient, nusselt number, and sherwood number 

significantly decrease as viscous dissipation parameter (Ec) 

varies from 0 to 1.0. This further supported the idea that, due 

to the link between the energy and momentum equations, 

viscous heating plays a significant role in the dynamics of 

fluids with significantly temperature-dependent viscosities. 

Table 4 shows that while the rate of local heat transfer is 

noticeably reduced, an increase in thermophoretic force 

facilitates the formation of momentum and concentration 

boundary layers due to an increase in skin-friction coefficient 

and sherwood number. 

The graphic effects of the thermal grashof number Gr and 

the concentration grashof number Gm on the dimensionless 

velocity, temperature, and concentration profiles are shown 

in Figures 2 and 3, respectively. In our calculations, we took 

into account a scenario in which the buoyancy forces are 

assisting the flow, i.e., when the local temperature Grashof 

number (Gr > 0) and local concentration Grashof number 

(Gm > 0) are greater than zero (which indicates that the 

chemical species concentration in the free stream region is 

less than the concentration at the boundary surface). The 

flow's velocity profile rises with an increase in bouyancy 
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force Gr, Gm, but the temperature and concentration profiles 

fall. Figure 4 shows how the viscous dissipation term Eckert 

number Ec affects the dimensionless velocity, temperature, 

and concentration profiles of the flow. The flow's 

temperature and velocity profiles increase with an increase in 

Eckert number, but the fluid's concentration profile 

decreases. These figures show that Ec have very different 

effects on velocity and the thickness of the associated thermal 

boundary layer. This means that as the viscous dissipation 

term increases, so do the flow's velocity and temperature 

profile. This confirms that the Eckert number (Ec), when 

present, improves temperature distribution in a free 

convective flow. Figure 5 illustrates the effects of the 

permeability parameter on the flow profiles. It has been 

found that an increase in flow permeability causes the flow 

profile's temperature and concentration to rise while the 

velocity of the profile decreases. 

The potential impact of the suction/injection parameter on 

the flow regime is shown in Figure 6. All of the profiles are 

seen to increase as the suction parameter increases. However, 

the impacts on velocity are minimal compared to those on 

temperature and concentration profiles. The impact of 

magnetic parameters on the flow profiles is depicted in 

Figure 7. The temperature and concentration flow profiles 

also increase in response to an increase in the magnetic 

parameter, whereas the velocity flow profile decreases. This 

is because a change in (M) causes a change in the magnetic 

field's Lorentz force, and the Lorentz force increases the 

resistance of the transport phenomenon. As a result, the 

boundary layer separates early and the momentum boundary 

layer thickness increases. Figure 7 shows that as the magnetic 

field strength increases, the fluid temperature rises. In other 

words, increasing (M) indicates that the magnetic field had 

an impact on the flow system by raising the temperature 

values in the flow field, lowering the gradient at the wall, and 

raising the thickness of the thermal boundary layer. While the 

magnetic parameter (M) increases along with the flow's 

concentration profile. 

In the presence of the viscous dissipation term, Figure 8 

illustrates the effect of the thermophoresis parameter (W	) on 

the dimensionless velocity, dimensionless temperature, and 

concentration. The velocity and concentration profiles in 

Figure 8 drop as the thermophoresis parameter increases due 

to viscous dissipation, which functions as a source of internal 

heat to the flow system. Along with it, fluid temperature 

profiles noticeably rise (see Figure 8). The impact of the 

thermophoretic parameter on the concentration profile is seen 

in Figure 8(c). As the thermophoretic parameter (W	) 
increases, it can be seen that the fluid concentration drops. 

Therefore, thermophoretic factors considerably change the 

concentration boundary layer. 

The effect of the Prandtl number Pr on the flow system is 

depicted in Figure 9. Temperature and velocity profiles 

drastically drop as (Pr) grows in magnitude. An increase in 

the Prandtl number (Pr) at a certain value of specific heat 

capacity �UÐ�, and thermal conductivity (∝) only denotes an 

increase in the degree of fluid viscosity. A low velocity 

profile is consistent with a high fluid viscosity value. It has 

been found that an increase in the Prandtl number causes 

temperature and the thickness of the thermal boundary layer 

to decrease, as well as the average temperature within the 

boundary layer to generally decrease. The reason is that heat 

can dissipate from the heated plate more quickly for lower 

values of (Pr) than at higher values, which is analogous to 

rising thermal conductivities. While Prandtl grows, the 

concentration profile does not. Schmidt number has a 

significant impact on the flow system's velocity, temperature, 

and concentration profiles, as shown in Figure 10. The flow 

velocity and concentration profiles both significantly drop 

when the Schmidt number rises from 0.62 to 2.62. While 

Schmidt number has the opposite impact on the flow's 

temperature. 

5. Conclusion 

The effect of thermophoresis and viscous dissipation on 

free convection boundary layer flow over a porous medium 

has been examined in this paper. The similarity 

transformations have been used to convert the governing 

equations and their related boundary conditions into 

dimensionless equations, and the resulting equations are then 

solved using the Spectral Homotopy Analysis Method 

(SHAM). When the computational results from SHAM are 

compared to those from the literature, they show a good 

degree of agreement. Our simulations demonstrate that the 

SHAM solution series converges to the numerical solution 

with an accuracy of up to six decimal places. In comparison 

to the traditional HAM and other numerical approaches 

mentioned in the reviewed literature, the SHAM appears to 

be more efficient because it provides greater freedom in 

selecting linear operators. The considerable impact of the 

flow parameters on the flow profiles has been expressively 

examined. Important findings include: 

With an increase in the Magnetic field parameter and 

Permeability parameter, the Skin friction coefficient, Nusselt 

number, and Sherwood number decrease. The fluid's motion 

is slowed down by the magnetic field, which has a substantial 

impact on the velocity field. 

With an increase in Grashof number or modified Grashof 

number, the velocity profiles rise. 

The concentration profiles are significantly influenced by 

thermophoretic number. When compared to the sherwood 

number, the influence of the thermophoresis parameter on the 

local heat transfer rate is relatively considerable. 

With an increase in Eckert number Ec, a term that 

describes viscous dissipation, the fluid velocity and 

temperature rise, while the concentration profile decreases. 

Science and technology applications heavily rely on the 

analysis of the current investigation. The solutions to the 

current issue are particularly interesting for the production of 

polymers, glass or ceramics manufacturing, food processing, 

particle deposition onto wafers in the microelectronics 

industry, magnetically controlled metal welding or coating, 

polymer engineering, metallurgy, etc. 
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Nomenclature 

U(x) - velocity of the flow 

T∞ - free stream temperature of the surrounding fluid 

u, v - velocity components in x- and y- respectively 

g - gravitational force due to acceleration 

Dm - coefficient of mass diffusivity 

Cp - the specific heat at constant pressure 

M - Magnetic parameter 

Pr - Prandtl number 

Gr - Thermal Grashof number 

Gm - Concentration Grashof number 

Sc - Schmidt number 

K - real constant 

B - real constant 

a - real constant 

b - real constant 

Cf - Skin-friction coefficient 

f - Dimensionless stream function 

Nu - Nusselt number 

Sh - Sherwood number 

fw -suction/injection parameter 

C∞ - free stream concentration 

T - fluid temperature 

Tw - wall temperature 

C - fluid concentration 

Cw - wall concentration 

C - fluid concentration 

Tref - reference temperature 

Greek Symbols 

µ - dynamic viscosity 

λ - permeability parameter 

ρ - density 

βT - volumetric coefficient of thermal expansion 

βc - volumetric coefficient of expansion 

ν - kinematic viscosity 

ϕ - dimensionless concentration 

η - similarity variable 

ψ - stream function 

θ - dimensionless temperature 

τ - Thermophoretic parameter 
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