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Abstract: In this letter some experimental and theoretical results from the flow in open cylindrical channel under precession 

conditions are reported. This includes the linear solutions of velocity field based on real experimental observations, and the 

nonlinear solution where a new weakly nonlinear KdV model equation is derived and solved numerically, this was compared 

with the real single Kelvin mode of the problem that appears in a symmetrical form with constant speed. The paper also shades 

the light on the instability features, mainly the wave breaking of single Kelvin mode, that is considered the resonance case of 

the problem, a new instability diagram in terms of Strouhal and Reynolds numbers is presented for the different cases reported 

from the experiment. The measurements of the mean azimuthal flow have been carried out using particle tracking procedure 

that enabled us finally to extract equation fit connects between the control parameters of the problem (which are the water 

volume, the angle of tilt and rotation rate) and the drift velocity the results pours in favor of the ADV measurements extracted 

in the previous work, and show that the mean flow increases by increasing both the tilt and the rotation rate where the 

instability features in the system appear at earlier levels, while increasing the water volume needs more energy to get the flow 

instability. 
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1. Introduction 

When precession effect exists in the background of the 

flow, inertial oscillations are excited and appeared as natural 

results in such systems, the detuning Coriolis force effect 

adds additional momentum into the water body that causes 

those inertial oscillations as long as the forcing frequency 

smaller than twice the base rotation rate [1]. This will lead to 

ill-posed hyperbolic boundary value problem that gives a 

dense set of eigenmodes that were first introduced in the 

previous study [3], each mode accords with eigenfrequency. 

When the forcing frequency matches the natural one 

predicted by the modes, we call it resonance situation, for the 

open channel case [3], the forced mode is the single Kelvin 

one and, in this case, the wavelength matches the outer 

periphery of the cylinder. In case of closed cylinders, many 

studies [4, 5] showed that resonance depends on the aspect 

ratio between the cylinder height and its radius. Precession 

applications are varied, in planetary cores and stars [6, 7], 

aeronautics [8, 9], also in spin-stabilized artillery projectiles 

[10]. A common interesting idea that accompanies such 

waves is the instability phenomenon; it was revealed that 

those inertial waves are generically unstable and, in many 

cases, catastrophically, so quickly causing the whole flow to 

collapse to small-scale disorder [11]. Similar to the waves 

studied in closed containers (spheres, boxes, cylinders), the 

investigation of open flows focused on a cylinder that is filled 

partially under precession conditions [12, 13], or lately a new 

case study in open channel by the present author [3], where the 

cavity is replaced with two concentric cylinders with radii ���� , ���� respectively for the outer and inner cylinders, form 

an annulus that tilts and rotates with width difference � � ���� 	 ����. The instability features in such case noticed 

in the form of degeneration of single Kelvin mode into 

dispersive form or wave breaking and turbulent motion was 

observed. Full details of the experimental apparatus and 

procedure are in the previous work [3]. The cylinders are 

mounted on the lab floor (the inertial frame of reference) using 

metal support. The cylinders rotate about their common 

axis ��, 
�� with precession rate �� � ��, where � the slope 

of the upper table which is the measure of tilt angle � �tan���. The lower table is able to rotate about an axis ��, �� 

with rotation rate �. The angle between the local axis 
�  and 

the inertial one � is the angle of tilt �. The cylinders are filled 

with water of different volumes, the inner cylinder has higher 
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height than the outer one.  

2. Governing Equations 

The flow conditions are assumed irrotational inviscid ones, 

the velocity potential leads to Laplace equation for the field 

equation and Bernoulli equation for energy: 

ɸ���� � ɸ�� � ɸ�� � ɸ�� �  0,             (1) 

ɸ! � ɸ����� � ɸ��� � ɸ"�� � #$ � #τcos��) 	 *�� � �����. (2) 

Where the velocity potential function is ɸ�); �, *, ��, the 

spatial coordinates are ��, *, �� in the radial, azimuthal and 

axial direction, respectively, $�); �, *� the surface function, 

the free surface under the atmospheric conditions thus, the 

pressure is assumed zero 
,- � 0. The homogeneous boundary 

problem solution is: 

ɸ�), *, �, �� � .�/ * � ∑ ∑ ɸ12�ɸ2���, ���3456�45 �∑ ∑ ∑ ɸ17��3ɸ7��3�), *, �, ���3456�426�45 �∑ ∑ ∑ ɸ18��3ɸ8��3�), *, �, ���3456�426�45 .      (3) 

Where the first term corresponds to the primary flow 9 � 2;���, the second term corresponds to the secondary 

flow (purely standing waves) and the third and fourth terms 

respectively are the sum of Kelvin modes counterclockwise or 

clockwise. Where the velocity potential is: 

ɸ��3�), *, �, �� � <�3�*, )�=�����>�����.     (4) 

<�*, )� the azimuthal base function, =��� the radial base 

function, and finally >���  the axial base function, ?  the 

integer axial wavenumber in the direction of the flow, @ the 

radial wavenumber, and A the azimuthal base mode which is 1 for the homogeneous case and 2 for the forced one. The 

amplitude of each mode is computed separately, and the 

resultant is given by: 

ɸ1C��3 � D��. F��. G��                (5) 

Where D�� , F�� , G��  are the normalized amplitudes 

for each base functions for the radial, vertical and azimuthal 

directions respectively [3]. The final velocity vector for the 

problem can be taken from the derivatives of the total 

velocity vector H, I, J  in each direction (azimuthally, 

radially, and vertically) as follows: 

K � LHIJM �
NOP
OQ5� RɸRSRɸR�RɸR�

� TUV�3W �X�. ∑ =�����>�����6�42UV�3�X�. ∑ =��W ���>�����6�42UV�3�X�. ∑ >��W ���=�����6�42
Y.   (6) 

The simulation of the flow in the channel was carried out 

using Python programming language where new program is 

written to compute the velocity field in three dimensions and 

the energy for each mode separately, where the extracted 

solutions of the velocity field are tracked based on 

experimental data, the computations of the azimuthal and 

radial velocities are clear in Figure 1. [14] 

 

Figure 1. (a). Radial velocity field ? � 4 , @ � 0 , [ � 8000 ml, � �0.0333, � � 4.22 rad/s, (b). Azimuthal velocity field. 

When taking the forcing term of Bernoulli Eq. (2), 

precession forces an azimuthal base mode A � 2, and axial 

wavenumber in the direction of the flow ? � 1, for any set 

of radial modes, this is the simple linear resonance case when 

the forcing frequency equals the natural one. The wave 

amplitude of this case can be given solely in terms of the 

radial part of velocity potential as: 

$�*, ), �� ^ � cos�* 	 �)� _∑ àbc� dcebc���àbc� 8`�6�42 f.     (7) 

Where �15�  the eigenfrequency of the resonant mode, g� results of orthogonality between potential function and 

the radial direction. This amplitude in Eq. (7) becomes 

singularly great when the driving frequency �  exactly 

equals the natural one �15�, which is the resonance case of 

the problem, then including the nonlinear and viscous effects 

is needed. This matching experimentally did not occur 

exactly rather close to zero cases were reported, and this 

discrepancy was suggested by Eloy et al. [14] due to the 

nonlinear effect which tends to detune the frequency when 

the amplitude grows.  

3. Instability Observations 

Greenspan (1968) defined the instability in the fluids as 

follows: a given motion is unstable if the effect of any small 

disturbance leads to the development of either another 

laminar flow or a state of turbulence”. The instability 

features in this channel are varied for instance the 

investigation of resonance mode showed catastrophic 

results as breaking occurs to the mode in different aspects, 

this mode accords with single azimuthal wave, sometimes 

the wave is flattened with high turbulence appears under the 

crest, or breaking into smaller waves, sometimes the crest 

precedes the whole body of the wave, other times disperses 

as it is clear in Figures 2, 3, and 4. 
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Figure 2. The mode breakes into two interlaced waves, with small scale 

disorder under the crest. Volume 8000ml, � � 6.81rad/s, � � 0.03333. 

  

Figure 3. The wave crest proceeds the whole body. Volume 10000ml, � � 6.38rad/s, � � 0.02333. 

  

Figure 4. Flattened single Kelvin mode with turbulent agitated area after 

many rounds. Volume 10000ml, � � 6.84rad/s, � � 0.01667. 

The treatment of instability depended on the real 

observations using CCD camera that records the motion 

continuously, as mentioned that there are three control 

parameters, one of them is the average water depth, the 

channel is being filled from 2000ml to 14000ml, under 

different powers provided to the system and different angles 

of tilt. After recording the figures, we followed the definition 

of Greenspan, by distinguishing between each mode of the 

motion, for instance at the lower power provided to the 

channel the motion appears as closed circles which is 

considered as laminar flow phase, increasing the power will 

lead to other phase that may include waves (the flow can be 

laminar or turbulent) or shock, at this stage in changing the 

phase Reynolds and Strouhal numbers were computed 

accordingly, and this point of changing the flow phase is 

assumed the critical point or the threshold, and then a linear 

fit regression is proposed. According to this each tilt and each 

volume will have different critical threshold for the 

instability observations. The critical Reynolds and Strouhal 

numbers are computed as: 

jk � lmn�o , p! � lmnqrst.               (8) 

Where u the frequency of oscillation, js the hydraulic 

radius js � v, , where w  the cross-section area which is 

rectangular one w � �. xy, z � � � 2xy the wetted perimeter, 

I the kinematic viscosity. A simple linear fit is done between 

the critical thresholds for both Reynolds and Strouhal 

numbers based on the experimental data is plotted in Figure 

5. 

 

Figure 5. (-) Linear fit for the critical Reynolds number from experimental 

data, (∆) stable experiments, (×) unstable experiments. 

4. Weakly Nonlinear Solution 

As stated that those instability features are signs of 

resonance which is now cannot be predicted theoretically 

using the linear Eq. (7), and the nonlinear effect should be 

included in addition to the viscous effects if possible, 

however here we focus on the nonlinear effect only, precisely 

the weakly nonlinear case where the scaling of potential 

Bernoulli Eq. (2) and Laplace Eq. (1) in terms of the 

shallowness and the amplitude parameters will give finally a 

new version of KdV equation that includes the effect of 

rotation in its coefficients, and it has forcing term that 

includes the tilt, the full explanation on the mathematical 

derivation can be found in the previous work [16]. 

5{| } ~�`���� 	 �~�
�`��� $SSS � ��~`�{|��� $$S � �~{��| $! ��`�{�� sin�* 	 �)� � 0.           (9) 

Where � � v|, the amplitude parameter, w the amplitude, � � xy  the average depth of water, �  the wavelength, � � ���� , � � q#�  the long wave speed, � � |~  the 

shallowness parameter. The solution is compared with the 

single Kelvin mode that is extracted experimentally in Figure 

5 with pretty good match.  

5. Mean Flow 

Many theories on instability features observed in the 

previous section argued that the instability is related to the 

azimuthal flow, that is why Lagrangian velocity (drift velocity) 

measurements using small floating particles to quantify the 

primary flow were carried out under bore conditions, these 

non-invasive measurements provide an estimate for the classical 

mean velocity in the channel. A bilinear regression on the 

preliminary bore propagation data is depicted in Figure 7, based 

on  Eq. (10). 
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� 	 �����! � 0.577 	 12.34� � 33.52�.       (10) 

 

Figure 6. Single Kelvin mode, the analytical solution extracted from Eq. 9. 

Volume 10000ml, � � 6.84rad/s, � � 0.01667. 

 

Figure 7. �◇�, Linear Regression between the actual and the predicted 

values using Eq. 10, � 	 �����!, ��� small ripples. 

 

Figure 8. Azimuthal circulation �����!  the solid line is square of mean 

velocity K � �����. 

Equation (10) states that directly proportional relationship 

exists between the mean flow and the angle of tilt and 

rotation rate, and inversely relationship between the mean 

flow and the average depth of water, this means that the tilt 

and rotation rate play important role in increasing the 

instability in the system at early stage of motion, conversely 

the water volume reduces reaching such level. This result 

pours in favor of the extracted results in the previous work 

[3], where the measurements using Acoustic Doppler 

Velocimeter were carried out directly. The measurement of 

the azimuthal flow is essential to figure out its effect on wave 

breaking especially in resonance cases when higher 

amplitudes appear, as Gunn & Aldridge [16] for instance 

stated where they investigated the effect of the mean flow on 

the resonant collapse problem, they showed that the change 

in the eigenfrequencies due to nonuniform flow are sufficient 

to account for the resonant collapse phenomenon. The feature 

of the azimuthal flow is kind of circulations, the observer of 

the floated particles sees that their paths of motion are 

diverted radially. This is another indicator to the secondary 

motion which is measured previously by McEwan [4], who 

suggested that these circulations are kind of secondary motion, 

that is initially created at the expense of the primary rotational 

energy. A comparison between the drift velocity and the solid 

body one is plotted against Reynolds number in Figure 8, the 

solid line is the square of solid body rotational speed. 

6. Conclusion 

In this letter we presented part of the theory that is 

proposed for studying inertial waves in open cylindrical 

channel under precession conditions, it mainly depends on 

the irrotational inviscid assumptions, the work can be found 

in precise discussion and details of computation in [3, 15] 

here we continued presenting the rest of the results, that 

accord with real experimental observations and data for the 

velocity field and wave modes. The instability of the single 

kelvin mode is discussed, and new instability diagram in 

terms of Strouhal and Reynolds numbers is presented. The 

nonlinear part of the problem led to new version of KdV 

equation that has forcing term includes the tilt effect, and 

coefficients that include the rotation effect, it was solved 

numerically and compared with the experiment with good 

match. The measurements of the drift velocity reflect the 

nonuniformity of the base flow, which is suggested to be the 

mechanism of resonance collapse problem, that is why the 

measurements studied its effect in terms of the three control 

parameters of the problem, which are the tilt angle, the 

rotation rate and the average depth of water, the results 

showed that the tilt and rotation play drastic role in 

increasing the instability features in the channel, while 

increasing the depth reduces reaching such cases, where 

more energy is needed to trigger the flow. 
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