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Abstract: The objective of this study is to understand and control the phenomena generated by a plume in a semi-ventilated 

enclosure using velocity fields. The enclosure has a rectangular cross-section and twenty openings located near the floor on 

two side walls. Each side wall has ten openings distributed over two horizontal rows on the axis (0y) in equal number. The 

plume is created by a linear source. The study is carried out in a steady state. To solve the mass and momentum conservation 

equations, the Direct Numerical Simulation (DNS) method and the finite volume method were used to discretize the 

differential equations. The fine non-uniform regular mesh was chosen to reduce calculation errors, to have a rapid convergence 

of the conservations equations and a stable result which approaches reality. As discretization scheme, we used the QUICK 

scheme and schema "Body Strength weighted for the resolution of the pressure. We have shown the influence of the reduced 

Grashof number on the fields of mean velocity, velocity along the (0z) w axis, velocity along the (0x) u axis and on the 

differential static pressure profiles. We compared the dimensionless differential static pressure results against the relevant 

experimental and the numerical calculations results. The results obtained showed that the velocity plume w can take the 

positions centered, tilted to the left and tilted to the right in the enclosure according to the increase in the number of reduced 

Grashof The velocity plume w reaches the ceiling where it is destroyed and go back down to the bottom of the enclosure. The 

maximum absolute values of the velocity w in the plume and u at the openings increase with the increase in the reduced 

Grashof number. The neutral height has for value z+=0.05. At the openings, cool air enters the enclosure through openings 

near the floor and below neutral height, and hot air exits through openings above neutral height. The comparison of the 

dimensionless differential static pressure results with against the relevant experimental and numerical calculations results is 

concordant. 
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1. Introduction 

A thermal or dynamic plume is a mass of air distinguished 

from the surrounding air by a temperature, a speed, a density 

and a very different composition and evolving according to 

its momentum, the diffusion of matter and buoyancy [1, 2]. 

This can apply to the phenomena of a plume of smoke 

coming out of a chimney, a fire in a room or in the open air, a 

plume of hot air in a room or in the open air, etc. Therefore a 

plume can be created both in confined [3, 4], semi-ventilated 

[5–7] and ventilated [8–13] than in the open air by a 

distributed or linear or point heat source. 

We will focus in this study on the plume created by a heat 

source in a semi-ventilated or ventilated enclosure. 

Concerning this study, several works were carried out in 

particular those of Linden, Lane-Serff and Smeed [11], who 

studied the case of a point source of buoyancy placed in an 

enclosure having two openings, height H and radius R, with 

an aspect ratio H/R < 1. They showed that there is a 

displacement regime and that stratification developed 

characterized by two layers separated by an interface. Kaye 

and Hunt [12], studied the same type of situation in the case 

of a rectangular enclosure presenting a heat source located at 

the bottom of the enclosure and two openings located at the 

base and at the top. They have shown that the steady state 

depends the filling time and the emptying time. For aspect 

ratios of 1 <H/R <5.8, Kaye and Hunt [14], have shown that 

the windings appear near the walls and induce an additional 
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training of air which has the effect of thickening the top layer 

(uniform temperature layer). In the same situation, Koueni 

Toko [6] studied experimentally, analytically and 

numerically, the temperature in an enclosure semi - 

ventilated, heated by a linear heat source (case 11). He 

showed that, when a constant temperature ∆T0 is imposed at 

the heat source and in a steady state, the thermal plume in the 

enclosure was symmetrical and that at each opening, an entry 

of fresh air is observed near the floor and a hot gas outlet at 

the top. Therefore, the neutral height is less than the height of 

the openings. According to Karl Terpager A. [15], the neutral 

plane is the plane for which the static pressure inside the 

enclosure is equal to the pressure outside. Koueni et al. [7] 

studied Numerical modeling of the temperature fields in a 

semi-confined enclosure heated by a linear heat source. The 

enclosure has an aspect ratio H/L=2.476 and twenty openings 

located near the floor on two side walls of height H and 

width l. Each side wall has ten openings distributed over two 

horizontal rows on the axis (0y) in equal number. The heat 

source is linear. They showed in steady state that the thermal 

plume was near-centered and the temperature values in the 

enclosure increased as the reduced Rayleigh number 

increased. 

We will study in this paper a numerical simulation of the 

velocity fields generated by a plume in enclosure with 

several openings. The enclosure configuration is identical to 

those of Koueni et al. [7]. 

The objective of this study is to understand and control the 

phenomena generated by a plume in a semi-ventilated 

enclosure using velocity fields. We will show in this study the 

influence of the reduced Grashof number on the fields of 

average velocity, of velocity along the (0z) w axis, of velocity 

along the (0x) u axis and on the differential static pressure 

profiles. Then we compared the dimensionless differential 

static pressure results with the experimental results and 

numerical calculations of case 11 of Koueni Toko [6]. 

2. Numerical Device 

This device is of a rectangular enclosure, with a square 

base of side l=L=210 mm and height H=520 mm. Its side 

walls of identical sections (210×520 mm
2
) are of Plexiglas 

8mm thick. The floor and ceiling of the enclosure also are 

identical sections (210×210 mm
2
) made of Plexiglas 14mm 

thick. These walls are connected together by fitting 

connections and assembled with glue. 

 

Figure 1. Numerical device, front view [7]. 
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As shown in Figure 1, this enclosure communication with 

the outside through various openings. These openings have 

same sections: height h=4 mm, width l=4 mm and are located 

on the two opposite side walls of weaker sections relative to 

the linear heat source. The number of openings on each of the 

walls is twenty. 

The geometrical characteristics, as well as the material of 

the numerical device are same to numerical device of Koueni 

et al. [7]. These characteristics are shown in Table 2. 

On Figure 1, appears a coordinate system. Point O is the 

center of the axis system. The Ox axis is the x-axis, the Oy 

axis is the y-axis and the Oz axis is anz-axis perpendicular to 

the plane formed by Ox and Oy. The coordinates of the 

points are (x, y and z). 

The enclosure is heated by a linear and cylindrical 

source of diameter D0=20 mm and length l0=200 

mmlocated near the floor atx=0 and parallel to the axis Oy. 

Before switching on the heating system, the enclosure is 

in equilibrium with the external environment. The outer 

surfaces of walls of the enclosure, except the floor, are in 

contact with the outside air. The outer surface of the floor 

is at the temperature of the metal table on which rests the 

enclosure. As the boundary conditions to the walls of the 

enclosure, we have the convective condition on all the 

walls of the enclosure except the floor where we imposed 

a Dirichlet condition. 

The temperature of the heating source is fixed in value 

∆T0=T0 - Text. T0 is the temperature of the thermocouple 

placed in the heat source and Text is the temperature outside 

the enclosure. Three values of ∆T0 as 40, 60, and 75 K were 

used for this study. 

To model our device, we opted for a cylindrical heat 

source with a square base section. The sections of the 

openings have square shapes. 

 

Figure 2. Numerical device, a) left wall b) right wall [7]. 

Table 1. Values of theGrashof numbers reduced depending ∆T0. 

∆T0 (K) 40 60 75 

Gr* 2.10×109 3.47×109 4.42×109 

Table 2. Characteristics of Numerical devise meshes. 

Meshes Mesh 1 Mesh 2 Mesh 3 

Cells 89001 366654 1122786 

Nodes 95812 384048 1230921 

3. Mathematical and Numerical 

Formulation Procedure 

3.1. Mathematical Formulation 

To establish the mathematical and representative model of 

the physical problem of our study, we started from the mass 

and momentum conservation equations for a viscous 

compressible fluid. We considered that the velocity plume is 
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turbulent and that the local derivatives of the density (
��
��) and 

velocity (
��
�� , 

��
��, 

��
�� ) are zero. And that convection is natural. 

We put ourselves in the same conditions as Kouéni Toko [6] 

for the measurements of static pressure differentials which 

are carried out in calm weather (calm air). The temperature 

of the heat source is constant over time. Heat transfer by 

radiation is negligible. The physical properties of the fluid 

are constant except for the density obeying the Boussinesq’s 

approximation in terms of the buoyancy, and the dissipated 

power density is negligible. The density of the air in the 

enclosure is a function of the temperature according to 

equation (1). 

� = �	
�                                      (1) 

The mass equationis given by equation (2): 

� ����
 + ��
�� + ��

��� = 0                              (2) 

u, v et w are the components of the velocity in the x, y and 

z respectively. 

According to Morton et al. [1], the Buoyancyis given by 

equation (3). 

������ = �	
 − 
��                                  (3) 

With ��: Reference density; ��: Outside density of enclosure; 
�: Outside temperature of enclosure. 

For a gas, β is given by the expression (4) 

�~ �
��                                                (4) 


�: Reference temperature. 

According to Kouéni Toko [6], the Buoyancy force 

generated by the heat is given by: 

��	
 − 
�
��. 
With 
: The inside local temperature of enclosure. 

The heat source is a heating cylinder which is a solid. This 

heating cylinder at a time constant. When the heating 

cylinder is energized in the semi - ventilated enclosure, its 

temperature gradually increases until it reaches the value ∆T� 

then a thermal regulation system maintains ∆T� at a constant 

value. From switching on the heating system to the regulation 

temperature, the temperature∆T�varies over time from the 

value 0 to the value 40 or 60 or 75 K [6]. According to 

Koueni Toko [6], as soon as the heating system is started in 

the semi - ventilated enclosure of aspect ratio 2.476, for 

∆T� < 5!, air movement is observed in the enclosure and at 

the openings. Following this situation, we considered 

Boussinesq's approximation for the mathematical formulation 

of our problem. Which implies|#�| ≪ �� (
��� ≈ 1). 

The momentum conservation equations along the axes x, y 

and z, using the Boussinesq’s approximation and assuming 

that: 

��� ≈ 1 

is represented as the equation 6. 

Where '�: Pressure outside of the enclosure; �� = 1,2	+�.-�.: Density of air outside the enclosure; It 

has been determined for a reference temperature of 300K; '′: Pressure at the interior in the enclosure; �: Density of the air inside the enclosure. 

To restrict the flow settings to make the general solution, 

we will use the dimensionless conservation equations set out 

above. The fields and profiles of pressure static differential 

will be presentedin dimensionless form taking into account 

the grandeurs without dimension [4] following: 

/0 = 

1, 20 = �

1, 30 = �
4, 50 = �

6�, 70 = �
6�, 80 = �

6� et '0 = 9|9:;<| 
With 

=� = >|9:;<|�∞
                                       (5) 

The maximum velocity air inlet cool into the enclosure 

when the heat source is at a temperature ∆T0. 

δ = @
A = �

B,CDE: The inverse of aspect ratio; 

FG = HI4J	����K<L�MN : The Grashof number; FG∗ = #BFG: The Grashof number reduced; 'G = M
P: The Prandtl number. 

QR
S
RT 5 ��

�
 + 7 ��
�� +8 ��

�� = − �
�
�9
�
 + U ��N��
N + �N�

��N + �N�
��N�

5 ��
�
 + 7 ��

�� + 8 ��
�� = − �

�
�9
�� + U ��N��
N + �N�

��N + �N�
��N�

5 ��
�
 + 7 ��

�� + 8 ��
�� = − �

�
�9
�� + U ��N��
N + �N�

��N + �N�
��N� − ��	
 − 
�
��

                                         (6) 

With 

�9
�� = �V9W�9�X�� , '� = '�Y − ���3, 'Z = 'YZ − ��3, 

�9��� = −���3, 
�9W
�� = −��3, 

�V9W�9�X�� = 	�� − ��            (7) 

The momentum conservation equations of dimensionless [6] along the axes x+, y+ and z+ are represented by a system 8: 
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The conservation equation of dimensionless mass [6] is: 

� ��\ ��[
�
[ + �

\
��[
��[ + ��[

��[� = 0                     (9) 

3.2. Numerical Procedure 

Solving the equations of a physical phenomenon was made 

by the use of the direct numerical simulation (DNS) as a 

simulation technique. It is based on the finite volume 

method. We used the DNS because the thermal plume 

created by the heat source at temperature ∆T0 is assumed to 

be turbulent. The discretization of these equations gives a 

system of algebraic equations whose solution allows us to 

determine the fields of all the variables of the problem 

considered. This method was developed by Patankar [16]. 

The DNS is a computational fluid dynamics simulation in 

which the Navier - Stokes equations are solved numerically 

without any turbulence model. This means that the full range 

of spatial and temporal scales of turbulence must be resolved. 

All the spatial scales of the turbulence must be solved in the 

computational mesh. I used DNS against other simulation 

techniques to have a representative solution to the problem. 

The SIMPLE algorithm developed by Spalding and Patankar 

was used for correction of pressure on a non–uniform mesh. 

As discretization scheme, we used the QUICK scheme given 

by Leonard [17] for solving the equations of momentum 

conservations. And schema “Body Strength weighted for the 

resolution of the pressure. Calculations were performed using 

FLUENT commercial calculation code. In this code, the 

iterative calculation is performed by the linear system 

resolution algorithm Gauss Seidel in conjunction with 

algebraic multigrid method AMD to solve the resulting 

system. 

The final solution of the problem is obtained by doing a 

test on the convergence by comparing the value obtained at 

the current iteration to the value of the previous iteration of 

the kind: 

�`��`a��`a� ≤ c                              (10) 

With 

i: Number of iterations. 

A convergence test was applied to the variables u, v and w. 

ε is the relative error, it characterizes the degree of precision 

of the final solution. 

If the test is negative, we do a second update wi-1 takes 

wi and the calculation operations start again in the initial 

state. If the test is positive, the results are saved and the 

calculation stops. For our calculations, we have given ε 

the value 10
-5

. 

To carry out our numerical calculations we used a 

laptop with maximum operating speed of CPU - 2 GHz, an 

Intel® Core ™ i3-5005U Processor, Ram - 4GB, x64 

processor, Graphics card - Intel HD Graphics 5500 (300 - 

850MHz), Number of transistors - 1300 million. The CPU 

time is 60 s. 

In this study, we will consider the conduction in the walls, 

consequently, the walls are not adiabatic. 

To solve the equations of conservation of mass, 

momentum, we have meshed the numerical device. The fine 

non-uniformregular mesh was chosen to reduce calculation 

errors, to have a rapid convergence of the conservation 

equations and a stable result which approaches reality. 

Three meshes with different number of meshes (89001 

meshes, 366654 meshes and 1122786 meshes) were used 

(Table 2) in order to determine for the resolution of the 

problem, the mesh which gives the optimal solution which 

must be independent of the density of the mesh for be sure 

of the realism of the solution given by the solver after 

convergence. This is to maintain a good Quality of the 

elements, to ensure a good Resolution in the regions with a 

strong gradient, to ensure a good Smoothing in the 

transition zones between the parts with fine mesh, the parts 

with less coarse mesh and the parts with coarse mesh; 

minimize the Total number of elements (reasonable 

computation time). From Table 4, it appears that mesh 2 of 

366654 meshes is the optimal mesh which gives the optimal 

solution. Mesh 2 is shown in Figure 3. 

The cylindrical shape with a square base section of the 

heat source as well as the square shape of the openings allow 

good smoothing, minimize distortions, have good 

convergence, reduce calculation time and ensure good 

resolution in regions with strong velocity gradients. 

'�d�ef = 'g�e� + � hN
BH + ��3                    (11) 

∆' = '�d�ef,YjgYk� − '�d�ef,d��gYk�                  (12) 

l� = m × o                                   (13) 

lB = 	p − ℎ� × o                           (14) 

Table 3. Maximum static pressure differential values |'re
| depending on 

the temperature of the heat source ∆T0. 

∆T0 (K) 40 60 75 |'re
|(Pa) numerical device of this study 0.323 0.428 0.512 |'re
|(Pa) numerical device Cas 11 [6] 0.227 0.317 0.323 |'re
|(Pa)Experimental device Cas 11 [6] 0.16 0.24 0.3 

Table 4. Maximum static pressure differential values |'re
| depending to the 

number of mesh of geometry studied for ∆T0=40 and 75 K. 

Meshes Mesh 1 Mesh 2 Mesh 3 |'re
|(Pa) ∆T0=40 K 0.234 0.323 0.3224 |'re
|(Pa) ∆T0=75 K 0.3397 0.512 0.52944 
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Figure 3. Numerical mesh device a) view 3D [7], b) view 2D (z; x), c) view 2D (y; x), d) view 2D (z; y) [7]. 
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Figure 4. Boundary condition. 

3.3. Boundary Conditions 

The enclosure is placed in a large closed room with very 

low flux air renewal. The room is not ventilated. We put 

ourselves in the same experimental conditions as those of 

Koueni Toko [6]. Before heating begins, the enclosure is 

balanced with the interior of the room. Therefore, we assume 

that the total pressure difference (∆P) between the inside and 

the outside of the enclosure is zero. There is no air entering 

the enclosure. The resolution of conservations equations of 

mass and of momentum requires the use of boundary 

conditions for each dependent variable. The boundary 

conditions of temperature, velocity and pressure to the 

enclosure are shown in Figure 4. 

Figure 4 show that at the side walls and the ceiling we 

have a convective condition. That is, φp=cte the heat flow 

which passes through each side wall and the ceiling. The 

expression of φp given by theequation (8). 

st = −ul ��
�
 = vwx = ℎYlV
t − 
yX = ℎdlV
t − 
yX                                              (15) 

The velocity values are zero at the walls. 

4. Results and Discussion 

The resultsvelocity fields and profiles and the differential 

static pressure profiles in function of Gr* in the enclosure 

instationary state are presented in this part and discussed. The 

values of Gr* in function of ∆T0 are shown in Table 1. The 

values of Gr* is greater than to 10
9
. Consequently, we can 

consider that the thermal plume created by the heat source at 
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temperature ∆T0 is turbulent. 

The differential static pressure profiles obtained by 

numerical computations in stationary regime will be 

compared with Experimental measurements and numerical 

computations of the differential static pressure profiles have 

been effected by Koueni Toko [6] in stationary regime. 

4.1. Influence of Grashof Reduced Number on the Velocity 

Magnitude Fields 

Figure 5 represents the average velocity fields obtained at 

the position y+=0 and for three (03) values of the reduced 

Grashof number Gr*=2.1×10
9
, Gr*=3.47×10

9
 and 

Gr*=4.42×10
9
. It can be seen in Figure 6a that the average 

velocityplume is almost centered. From the position z+=0.6 to 

1, the average velocity values are almost constant in the 

enclosure and greater than 0 m/s. In Figure 6b, we notice that 

from position z+=0 to 0.3 the average velocity plume is almost 

centered and from position z +=0.3 to 0.6, it is tilted to the left 

of the enclosure. From z+=0.6 to 1, the average velocity 

values are almost constant in the enclosure. The medium 

velocity plume slopes to the right and reaches the ceiling of the 

enclosure and sprawls over the ceiling in Figure 6c. 

 

Figure 5. Velocity magnitude fields obtained by numerical computation at y+=0, a) Gr*=2.1×109, b) Gr*=3.47×109, c) Gr*=4.42×109. 
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Figure 6. z-velocity fields obtained by numerical computation at y+=0, a) Gr*=2.1×109, b) Gr*=3.47×109, c) Gr*=4.42×109. 

 

Figure 7. z-velocity fields obtained by numerical computation at Gr*=2.1×109 a) x+=- 0.5, b) x+=0.5, c) z+=0.86, d) z+=1. 
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Figure 8. z-velocity fields obtained by numerical computation at Gr*=3.47×109, a) x+=- 0.5, b) x+=0.5, c) z+=0.86, d) z+=1. 

 

Figure 9. z-velocity fields obtained by numerical computation at Gr*=4.42×109, a) x+=- 0.5, b) x+=0.5, c) z+=0.86, d) z+=1. 
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4.2. Influence of Grashof Reduced Number on the  

z-Velocity Fields 

Figure 6 represents the velocity fields obtained along the 

axis (0z+) at position x+=0 for three reduced Grashof 

number Gr*=2.1×10
9
, Gr*=3.47×10

9
 and Gr*=4.42×10

9
. In 

Figure 6a, we observe that from the position z+=0 to 0.6 the 

velocity plume is almost centered and between the vertical 

walls and the velocity plume we observe two negative value 

vortices. From the position z +=0.6 to 1, the velocity values 

are greater than 0 m/s and almost homogeneous. In Figure 

6b, we see from the position z+=0 to 0.3 the velocity plume 

is almost centered. From the position z+=0.3 to 1, it slopes to 

the left and reaches the ceiling of the enclosure where it 

sprawls out. The velocity plume is tilted to the right of the 

enclosure hits the ceiling and spreads out in Figure 6c. 

Between the vertical walls of the enclosure and the velocity 

plume, there are negative velocity zones (Figures 6b and 6c). 

The negative velocity recirculation zones (Figures 6a, 6b, 6c) 

have the effect of lowering the flow to the bottom of the 

enclosure. 

Figures 7c, 7d, 8c, 8d, 9c and 9d show that the velocity 

plume reaches the ceiling of the enclosure, is destroyed and 

the fluid flow descends to the bottom of the enclosure. At the 

side walls at positions x+=-0.5 and 0.5 (Figures 7a, 7b, 8a, 

8b, 9a and 9b) we see that the values of the velocityw are 

negative from the ceiling of the enclosure near the openings, 

therefore, the hot air flow descends from the ceiling 

downward near the openings of the enclosure. Close to the 

floor, the values of the velocity w are positive. So airflow 

rises to the top of the enclosure. 

 

Figure 10. x-velocity fields obtained by numerical computation a) x+=0.5; Gr*=2.1×109, b) x+=- 0.5; Gr*=2.1×109, c) x+=0.5; Gr*=3.47×109, d) x+=- 
0.5; Gr*=3.47×109, e) x+=0.5; Gr*=4.42×109, f) x+=- 0.5; Gr*=4.42×109. 
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4.3. Influence of Grashof Reduced Number on the  

x-Velocity Fields 

Figure 10 represents the velocity fields obtained along the 

axis (0x) and at positions x+=0.5 (right wall) and x+=-0.5 

(left wall) for three values of the reduced Grashof number 

Gr*=2.1×10
9
, Gr*=3.47×10

9
 and Gr*=4.42×10

9
. It can be 

seen that outside the openings the velocity values are zero. 

The air enters the enclosure through the openings located 

near the floor and leaves through the openings located near 

the plane z+=0.07. 

 

Figure 11. Dimensionless differential pressure static vertical numerical profiles at y+=0, a) Gr*=2.1×109, b) Gr*=3.47×109, c) Gr*=4.42×109. 

4.4. Influence of Grashof Reduced Number on the 

Differential Static Pressure Profiles in Enclosure and 

Near the Openings 

Figure 11 represents the vertical profiles of differential 

static pressure obtained at positions x+=- 0.5, - 0.25, 0: 0.25, 

0.5 and y+=0 and for three values of the reduced Grashof 

number Gr*=2.1×10
9
, Gr*=3.47×10

9
 and Gr*=4.42×10

9
. It 

can be seen that the static pressure differential profiles are 

almost homogeneous in the enclosure. Static pressure 

differential (∆Pstat) values increase as the reduced Grashof 

number increases. For z+ < 0.55, ∆Pstat < 0 Pa. Therefore air 

enters the enclosure through the openings located near the 

floor. From the position z+=0.55 to 1, ∆Pstat ≥ 0 Pa. This 

implies that hot air leaves the chamber through the openings 

located near the plane z+=0.07. 

4.5. Comparison of Differential Static Pressure Profiles en 

Fonction du Nombre de Raleigh Réduit Gr* 

Figure 12 represents the comparison of the vertical profiles 

of differential static pressure obtained at positions x+=0 and 

y+=0 and as a function of three reduced Grashof number 

values Gr*=2.1×10
9
, Gr*=3.47×10

9
, Gr*=4.42×10

9
. One 

notes from the position z+=0 to 0.058 (Figure 12) the 

absolute values of differential static pressure profile are low 

and almost identical. From the position z+=0.058 to 1, the 

differential static pressure values increase as the reduced 

Grashof number (Gr*) increases (Figure 12a). The neutral 

height is almost identical with the increase in Gr* and at the 

value z+=0.05 (Figure 12b). 
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Figure 12. Comparison of dimensionless differential pressure static vertical numerical profiles at x+=0 and y+=0 as a function of the reduced Raleigh 

number Gr* a) z+=0 à 1, b) z+=0 à 0.1. 

4.6. Comparison of Static Pressure Profiles Obtained by 

Numerical Computations with Experimental  

Measu-rements and Numerical Computations of Case 11 

Figure 13 represents the comparison of the vertical profiles 

of differential static pressure obtained by numerical 

computation with the experimental results and numerical 

computations of case 11 of Koueni Toko [6] at positions x 

+=0 and y +=0. In case 11 of the work of Kouéni Toko [6], 

the height of the openings located at the bottom of the 

enclosure is 34 mm. In this study, the height of the openings 

is 4 mm. Table 3 shows that the values of the maximum 

differential static pressure of our study are higher than that of 

Kouéni Toko [6]. In addition from Figure 13, we observe that 

the results of our study agree with the results of case 11 of 

Koueni Toko [6]. 

This difference in values of maximum differential static 

pressure between our study and that of KouéniToko [6] is 

perhaps due to the values of the temperature in the 

enclosure which are higher in our field of study [7] than 

that of Kouéni Toko [6]. And the flow of fresh air entering 

the enclosure, which is high (neutral height close to 0.76 h) 

compared to the work of Kouéni Toko [6] (neutral height 

close to 0.5 h). 

 
Figure 13. Comparison of dimensionless differential pressure static vertical numerical profiles with the case 11 of experimental and numerical results Koueni 

Toko [6] at x+=0 and y+=0, a) Gr*=2.1×109, b) Gr*=3.47×109, c) Gr*=4.42×109. 
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5. Conclusion 

At the end of our study, it was a question of numerically 

studying the speed fields generated by a plume in a semi-

ventilated enclosure. The enclosure under study has 20 

openings located near the floor on two opposite side walls, 

parallel to the side section of the heat source and 

symmetrical with respect to the (0z) axis. Each side wall 

has ten openings placed in two horizontal rows in the 

direction (0y). The enclosure aspect ratio is 2.476. The 

plume is created by a linear heat source. The study is 

carried out in a steady state. To solve the mass and 

momentum conservation equations, the Direct Numerical 

Simulation (DNS) method and the finite volume method 

were used to discretize the differential equations. The fine 

non-uniformregular mesh was chosen to reduce calculation 

errors, to have a rapid convergence of the conservation 

equations and a stable result which approaches reality. The 

results obtained show that the velocity plume can have 

three positions in the enclosure depending on the increase 

in the number of reduced grashof. It can be either quasi-

centered (Figures 5a and 6a) or either strongly tilted to the 

left of the enclosure (Figures 5c and 6c) or slightly tilted to 

the right (Figures 5b and 6b). The velocity plume reaches 

the ceiling of the enclosure where it is destroyed (Figures 

7c, 7d, 8c, 8d, 9c and 9d). Near the ceiling, the velocity 

values w are almost zero. In the plume, the values of the 

velocity w are positive and there are strong velocity 

gradients. Between the w velocity plume and the side walls 

there are negative velocity recirculation zones (Figure 6) 

with strong velocity gradient and negative velocity values w 

which have the effect of lowering the air flow towards the 

bottom of the enclosure (Figures 7a, 7b, 8a, 8b, 9a and 9b). 

The air flow on the left and right side walls is at a negative 

velocity value w. The maximum absolute values of the 

velocity w in the plume and u at the openings increase with 

the increase in the reduced Grashof number. The neutral 

height is z+=0.05and is almost constant with increasing 

number of reduced Grashof. The maximum value of the 

static pressure differential increases as the number of 

reduced Grashof increases. Below the neutral height the 

values of the static pressure differential are negative and 

positive above. 

In the case of Koueni Toko [6], cool air enters and hot 

gases exit the enclosure at each of the openings. The 

determinations of the neutral height and the mass flow rates 

entering and leaving the enclosure are complex. With the 

help of our study this problem is solved through the 

multiple openings located at the bottom of the enclosure. 

The neutral height is 0.76 of the height h=34 mm (Figure 

12b) therefore, the cool air enters the enclosure through the 

openings located near the floor and the hot gases exit the 

enclosure through the localized openings. In the 

neighborhood of h (Figure 10). 

The comparison of the dimensionless static pressure 

differential profiles obtained with the experimental results 

and numerical calculations of case 11 of Koueni Toko [6] is 

consistent. 

In perspective, numerical calculations of the velocity fields 

can be performed in unsteady state to better understand the 

phenomenon of hot air filling in the enclosure. 

Nomenclature 

Lowercase 

l Width Enclosure, m 

x Longitudinal coordinate, m 

y Vertical coordinate, m 

z Transverse coordinate, m 

u Horizontal component of the velocity, m.s
-1

 

v Vertical component of the velocity, m.s
-1

 

w Transverse velocity component, m.s
-1

 

cte Constant 

hi 
Heat exchange coefficient inside the enclosure, 

W.m
-1

.K
-1

 

ho 
Heat exchange coefficient outside the enclosure, 

W.m
-1

.K
-1

 

Capital Letters 

L Enclosure length, m 

H Enclosure height, m 

∆T0 
Temperature difference between the heat 

source and the outside, K 

T Temperature inside the enclosure, K 

T0 Temperature of the heat source, K 

U0 Maximum inlet gas velocity in the enclosure, K 

P Static pressure inside enclosure, Pa 

Pmax Maximum static pressure inside enclosure, Pa 

Ptotal Total pressure, Pa 

Ptotal, inside Total pressure inside the enclosure, Pa 

Ptotal,outside Total pressure outside the enclosure, Pa 

Toutside Temperature outside the enclosure, K 

Tp Side wall or ceiling temperature, K 


y 
Temperature away from side wall or ceiling 

inside or outside the enclosure, K 

S1 Section of the enclosure ceiling, m
2
 

S2 Section of the side walls of the enclosure, m
2
 

Greek Symbols 

ν Kinematic viscosity of air, m
2
.s

-1
 

ρ Density, kg.m
-3 

β Coefficient of thermal expansion, K
-1

 

ρext Density of gases outside of the enclosure, kg.m
-3

 

φp 
Heat flux to the side walls and ceiling of the 

enclosure, W.m
-1

 

λ Thermal conductivity of the walls in Plexiglas, W.m
-1
.K

-1
 

Dimensionless Numbers 

Pr Prandtl number 

Gr Grashof number 
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Special Characters 

Gr* Reduced Grashof number 

x+ Dimensionless longitudinal coordinate 

y+ Dimensionless vertical coordinate 

z+ Coordinated transverse to size 

u+ Horizontal component of the dimensionless speed 

v+ Vertical component of the dimensionless speed 

w+ Transverse component of the dimensionless speed 

P+ Static pressure to size 

T+ Temperature to size 

δ Aspect Ratio 
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