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Abstract: In this paper, we introduced the concept of pseudo-convex open covering of topological spaces and entropy for 

topological spaces with such covering. Entropy was previously defined only for open coverings of compact topological spaces. 

It is shown by examples that the classes of topological spaces for which the concept of entropy is defined is quite wide. A 

discrete random process describing the evolution of the phase space of closed dynamical systems is built. Two random 

processes are constructed, one in which the elements of the transition matrices depend on the first indices, and the second 

Markov`s process, one in which the elements of the transition matrices do not depend from the first indices. The construction 

of transition matrices is based on the fact that the probability of a change in the phase space of a system to another space is 

proportional to the entropy of this other space. Based on the concept of entropy of topological spaces and on the well-known 

construction of an infinite product of probability measures which is also probabilistic introduced the concept entropy of 

trajectory of evolution of phase space of system. Previously, the entropy of the trajectory was defined only for the motion of a 

structureless material point, in this article is defined entropy of trajectory of evolution of structured objects represented in the 

form of topological spaces. On the basis of the concept entropy of trajectory, a method is determined for finding the most 

probable trajectory of evolution of the phase space of a closed system. 

Keywords: Topological Space, Covering, Entropy, Random Process 

 

1. Introduction 

The evolution of real dynamical systems is reflected in the 

change intheir entropy. This fact must be taken into account 

in the mathematical modeling of such systems, so it is 

important to define the entropy concepts of the mathematical 

objects in which the dynamic systems are represented in the 

models. Often modeling of a dynamical systems (it`s phase 

spaces) is considered to be a continuous or discrete sequence 

of topological spaces that describe the continuous or discrete 

time variability of the system. This sequence we called 

trajectory of changes of phase space. The notion of entropy 

of topological spaces has not been defined until recently. 

Until now, has been defined the concept of the entropy of 

covering of compact topological spaces [8, 9]. In this work 

we have tried to define entropy directly for topological 

spaces and define entropy of trajectory. 

This notion of entropy of a trajectory differs from other 

similar definitions. In other definitions, the trajectory is 

considered as trace of the movement of an unstructured point 

in the phase space [8-10, 15] and here as the trajectory of the 

changes of structured object, phase space of the system.  

2. Entropy for Topological Space 

Definition1. We called a pseudo-convex open covering of 

space X the covering containing only contractible [5] 

elements, such sets whose intersections with a finite number 

are also contractible. 

Definition 2. Call the entropy of a topological space X  

number 
n

m
 where n  is minimal number of subsets of open 

pseudo- convex coverings among finite coverings of X  and 
m  is the number of orbits in every n  element-containing 

coverings at the actions bay covering preserving 

corresponding homomorphisms. Denote the entropy of 

topological space X  so: ( )H X . It is ease that the numbers 

applied in definition entropy n and m are in the relation:
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n m≥ . 

There exist topological spaces which have pseudo-convex 

covering. For example: 

1) The n  dimensional sphere. 

2) Open subset in Tikhonov`s cube, Indeed, we consider 

the Tikhonov`s cube AI [14]where A such set cardA infinite 

cardinal number. If , [0,1]x y I∈ =  and Iλ ∈  then

(1 )x y Iλ λ+ − ∈ , it follows: if { },{ } Ax y Iν ν ∈ then

{ } (1 ){ } Ax y Iα αλ λ+ − ∈ for every Iλ ∈ this means that in 

the cube we have the notion of a convex [4] set. The family 

of all open convex sets { }Oα in AI is base of Tikhonov 

topology since this family convex in AI and intersection of 

two open convex sets is convex. Let X  the subspace in AI , 

the base in this subspace is family { }O Xα ∩ . If X  is open 

set then there is base of subspace X  which contains only 

convex sets. 

3) Subsets of Tikhonov`s cube which are union of convex 

subsets. 

4) For every absolute neighborhood retracts (ANR) X there 

exist space E  that X E×  has a pseudo convex base [1] 

5) Let subspace 0X I
ℵ⊂ in Hilbert cube 0I

ℵ [14] is Q - 

manifold [1]. If this manifold is open subset then it has a 

open pseudo-convex covering so above, for open set in 

Tikhonov`s cube. If the X Q - manifold is closed set in 0I
ℵ  

then set 0[0,1)X I
ℵ× ⊂ open in 0I

ℵ  [1]. This means that 

this space has open pseudo- convex covering. The space

0[0,1)X I
ℵ× ⊂ homotopy equivalent [5] to X . Every convex 

set is contractible. The space X  is deformation retract [5] in

0[0,1)X I
ℵ× ⊂ it follows that 

[0,1) ,  ,  [0,1) [0,1),  
i r r i

a XX X X r i Id X X X i r Id→ × → = × → → ×� � ≃

. 

If [0,1){ }XOα
×  is the basis consisting bay convex sets in

0[0,1)X I
ℵ× ⊂ . then 1 [0,1){ ( }Xi Oα

− × is open covering of X . 

Consider 1 [0,1)( )Xi Oα
− × , this set is contractible in 0I

ℵ . Indeed, 

let it is not so, then
2

[0,1)1 1( ( ))
X

r i Oα
×− −

 is not contractible in 

[0,1)X × , since r  deformation retraction [5]. The set 

1 1 [0,1) [0,1)( )( ( ( ))X Xi r r i O Oα α
− − × ×=� can will be contracted to 

2

[0,1)1 1( ( ( ))
X

XId r i Oα
×− −

 which is not contractible. So we got a 

contradiction non contractible set homotopy equivalent to 

contractible. It follows that our assumption is wrong. 

Because for open convex sets from [0,1){ }XOα
× , the set 

1 [0,1)( )Xi Oα
− × is contractible, the family 1 [0,1){ ( )}Xi Oα

− × will be 

pseudo-convex open covering. Because X is the closed Q - 

manifold it will be compact it fallows that { }O
α  contains 

finite pseudo- convex sub covering. 

Consider the nerve of this finite pseudo convex covering 

({ })N Oα  it is clear the geometric realization of this nerve 

homotopy equivalent to manifold X . 

6) The nM n - dimensional compact topological 

manifold [5], then 0nM I
ℵ×  is compact Q - manifold [1], 

then as above, 0 [0,1)nM I
ℵ× × will open subset in 0I

ℵ . The 

manifold 0nM I
ℵ× is deformation retract in 0 [0,1)nM I

ℵ× × , 

because the manifold 0nM I
ℵ×  has finite pseudo- convex 

covering. In its turn the manifold nM is also deformation 

retract in 0 [0,1)M I
ℵ× × It follows the manifold nM has 

finite pseudo- convex covering and nerve of this covering 

homotopy equivalent to nM . 

7) Let H  local convex vector space [4] on the field real 

numbers R . It is clear that every open subset in this space 

has a pseudo- convex covering. Consider subset intX X=  in 

this space. Let v H∈ and [0,1) R⊂ . For every [0,1)k ∈ we 

have the set kv X+ . The set 
[0,1)k

kv X

∈

+∪ will be open in 

the space H  it is clear that the set X  is deformation retract of 

[0,1)k

kv X

∈

+∪ . The set
[0,1)k

kv X

∈

+∪  has a pseudo- convex 

covering, similarly to previous cases the set X  has a pseudo- 

convex covering. 

So, we see that the above class of spaces for which entropy 

is defined is quite wide. 

It is clear that if{ }Oα is finite pseudo convex- covering of 

compact topological space X , then geometric realization of 

the nerve ({ })N Oα homotopy equivalent to X  

3. Evolution of Phase Space of Closed 

Dynamical Systems 

Let 1 2 3, , ,..., ,...iX X X X  the discrete sequence of 

topological spaces that describe the evolution of phase space 

of a some dynamical system in discrete time and let 

, 1, 2,...iX i =  compact topological spaces which admits 

pseudo-convex coverings. If a system is closed, then with 

the evolution of such a system, the entropy grows. Therefore 

1 2( ) ( ) ... ( ) ...kH X H X H X≤ ≤ ≤ ≤  

1 2

1 2

... ...n

k

nn n

m m m
≤ ≤ ≤ ≤  

Since the desire for infinity of entropy is due to the desire 

for infinity in we will admit that 1i in n +< ’. 

During evolution in discrete time the phase space of 

dynamical system 
i

X changing by 1iX +  We assume that 
i

X

and 1iX +  are different and topological spaces and

1| ? | |i i in n n n+ − < − , where n  number of elements in minimal 

pseudo- convex covering all other compact topological 

spaces X , which have open pseudo –convex covering. Let 

{ }JY  set of topological spaces which minimal open 
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pseudo- convex covering contains 1in + element and ( )JH Y is 

it`s entropy. 1( ) ( )i iH X H X+ ≥ , among ,  JY 1, 2,...,j k= we 

well choice such , =1,2,...,  
lj

Y l q that ( ) ( )
lj iH Y H X≥ . It is 

essential if we assume that the probability of equality 

1 li jX Y+ = is 

1

( )

( )

l

l

j

l q

j

l

H Y
p

H Y

=

=

∑
. From these reasoning follows 

that the most probable topological space in the role 1iX +  is 

the space the entropy of which is closer to the number 

( )
l

q

l j

l

p H Y∑ . 

So, as the sequence 1 2 3, , ,..., ,...nX X X X describes 

evolution of a phase space of closed dynamic system to the 

accuracy of equality of entropy. 

Let new as above   =1,2,...in i  number of elements of 

minimal pseudo convex covering of some topological space 

which has such covering. Let spaces i
iX
α  such that minimal 

pseudo-convex covering contains  in  elements accordingly,

1, 2,...i = . We denote the set of this spaces so iℑ  

Easy to guess that spaces from this set have finite number 

of spaces with different entropy. Let iℜ , the set of classes of 

the spaces in iℑ , =1,2,...i with equality value of entropy. 

We construct a random process with discrete time [2, 13] 

in this way 

Let sequence 1 2 3, , ,... ,...iℜ ℜ ℜ ℜ sets of classes of spaces 

whit equality entropy and iq umber of classes iℜ  

1, 2,..., ...i i= . 

Let 

([ ] ) ( ),   [ ] ,   1,2,...i i i i
i l i i i l iH X H X X X l q
α α α α= ∈ ∈ℜ = . 

We will consider class [ ]i
i lX
α  in, iℜ , let classes

1

11[ ] ,   1,2,...,i

k

l
j iiX k q

α +
++ = have entropy more than fixed class 

[ ]i
i lX
α  We consider number: 

1

1

1

1

1

1

([ ] )

([ ] )

i

k

lk
i

i

k

ji

j
q

ji

k

H X
p

H X

α

α

+

+
+

+

+
=

=

∑
 

1

1

1, 0

l
i

k k

q

j j

k

p p
+

=

= ≥∑ . We consider matrix 

( )
11,2,..., , 1,2,...,i i

i
i lj

l q j q
P p

+= =
= , where 

k

i
lj jp p= , when kj j=

11, 2,..., l
ik q +=  and 0i

ljp =  when 

1

1([ ] ) ([ ] ),  i i

j i liH X H X
α α+
+ ≤ le 1, 1,2,..., l

k ij j k q +≠ = . 

This matrix is the transition matrix for transition random 

objects (classes) set iℜ to random objects set 1i+ℜ . 

In this way we have built the random process [2, 13] with 

discrete time which describe evolution phase space of closed 

dynamic system. 

If we do not admit that the entropy of phase space of a 

dynamical system does not always increases, then 

1 2 3, , ,... ,...iℜ ℜ ℜ ℜ  

sequence we will consider as Markov chine [2, 13] with 

transition matrix ( )
11,2,..., , 1,2,...,i i

i
i lj

l q j q
P p

+= =
=  where 

i
ljp =

1

1

1

1

1

([ ] )

([ ] )

i

i

i

jii
lj j q

i j

j

H X
p p

H X

α

α

+

+
+

+

=

= =

∑
 

If 

1 2

1 2[ ] ,   [ ] ,...,[ ] ,...i
iX X X
αα α′ ′ ′  

most probabilistic realization of this random process, i.e. 

[ ]i

i jX
α

 is the class the entropy of which is closer to the 

number 

1

1

1

([ ] )
i

i

q

j ji

j

p H X
α

+

+
=
∑ , 

then 

1 2

1 2([ ] )  ([ ] ) ... ([ ] ...i
iH X H X H X
αα α′ ′ ′≤ ≤ ≤ ≤  

Because in the set iℜ  there exist the class of 2in −  

dimensional sphere 2in
S

−  which is most symmetric than 

other spaces in this set, 12 2
( ) ( )i in n

H S H S −− −>  and classes of 

spaces which minimal pseudo convex covering contains, in  

element, which, as we known, has homotopy type of 

geometric realization of nerve of this covering. The lasses of 

every geometric simplicial complex [5] with in  vertex also is 

included in set iℜ . 

If we choose element from each class we will get sequence 

1 2

1 2,  ,..., ,...i
iX X X
αα α ′′ ′

 

1 2

1 2( )  ( ) ... ( ) ...i
iH X H X H X
αα α≤ ≤ ≤ ≤  

So as the sequence 1 2

1 2,  ,..., ,...i
iX X X
αα α ′′ ′

 most probabilistic 

realization of the evolution of a phase space of closed 

dynamic system to the accuracy of equality of entropy. 

Consider the iℜ  set on this set we have defined 

probability measure ip  on this set with way: assign to each 

class [ ]i

i jX
α

 the frequency: 

1

([ ] )
([ ] )

([ ] )

i

i

i

i

i ji
i i j j q

i j

j

H X
p X p

H X

α
α

α

=

= =

∑
. (1) 
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We can consider the random variable 

: { [ ] }, ([ ] ) [ ]i i i

i i i j i i j i jh H X h X H X
α α αℜ → =  

with distribution 

[ ] ______i j
i j iH X p
α

 

The mathematical expectation of this random quantity will 

be 

2

1 1 1

([ ] ) ([ ] )
( ) ([ ] ) ([ ] )

([ ] ) ([ ] )

i ii i i

i i

i i

i i

q q q
i j i j

i i j i jq q
j j j

i l i l

l l

H X H X
M h p X H X

H X H X

α α
α α

α α= = =

= = =∑ ∑ ∑
∑ ∑

. 

4. The Infinity Product of Probability 

Measures and Most Probabilistic 

Trajectories 

In this section we consider the question in another aspect. 

Consider the direct product of sets i
i N∈
⊗ ℜ , on this set we have 

the measure i
i N

p
∈

⊗ . This measure is constructed so [3, 6, 7]: on 

each set we iℜ  have measure defined by frequency, this 

measure is defined on algebra ( )iΑ ℜ  of subsets of iℜ . 

Consider the family of probability measures 

{( , ( ), )}i i i i Np ∈ℜ Α ℜ , 

In the product set i

i N∈

ℜ = ℜ∏ sets i

i

A A

∈

= ∏ , where for 

finite number of i  

i iA ≠ ℜ , these sets are called cylindrical sets, they make 

up a semi algebra of sets [11, 12], we denote this semi 

algebra by ( )Β ℜ and smallest σ -algebra generated by ( )Β ℜ
so ( ( ))σ Β ℜ . 

Let : ( ) [0,1]p Β ℜ →  defined so [3]: 

( ) ( ),  ( )i i i i

i N

p A p A A

∈

= ∈ Α ℜ∏ . 

Is proved the lemmas [3]: Lemma 1. If i N∈  and 

{ }j j NA ∈ is such countable subset of ( )Β ℜ that j
j N

A
∈

= ℜ∪  

and j jA ′∩ = ∅  then 
( ) 1j

j N

p A

∈

=∑ . 

Lemma 2. Suppose that if : ( ) [0,1]p Β ℜ →  such map that 

for each { }j j NA ∈ which is such countable subset of ( )Β ℜ  

with pairwise disjoint elements, j
j N

A
∈

= ℜ∪  and 

( ) 1j

j N

p A

∈

=∑ , then there is unique probability measure on 

σ - algebra ( ( )σ Β ℜ  which restriction to ( )Β ℜ  is equal to

p . 

From this lemmas follows, that on σ -algebra ( ( ))σ Β ℜ
there is unique probability measure µ  which restriction to 

( )Β ℜ  is equal to : ( ) [0,1]p Β ℜ → , ( ) ( )i i

i N

p A p A

∈

= ∏ . 

Consider such family{ }
k

k
sA of elements  in ( )Β ℜ  which have a structure: 

1 2

1 2

1 2

2 1 1 2 21 21,   [ ] , [ ] ,..., [ ] , , ,... 

  , ( , ,..., ),  1,2,..., .

 ik

k l l k l k k k kk k

k k k

k
s i j j i j i i i ii

i N

l l l l i

A A X A X A X AA A

k N s j j j j q

αα α
+ + + +

∈

= = = = ℜ = ℜ

∈ = =

=∏
 

Where sets 1 2

1 2
21 1 2[ ] , [ ] ,..., [ ]ik

l l k lk k
j j i ji

X A X A XA
αα α= ==  

consist of one element. 

If k  is fixed then the family { }
k

k
sA  contains pairwise 

disjoint elements, is finite and generates probability space

1 2

1 2({ }, ({ )), ),  ( )= ...  k

k k k l l lk

ik k k
s s s j j j

A A p p A p p pΑ ⋅ ⋅  

1 2 1 2

1 2

1 2 1 2... ... ... 1
l l l l l lk k

k l l lk

k k
j j j j j j

s j j j

p p p p p p⋅ ⋅ = ⋅ ⋅ =∑ ∑∑ ∑  

The discrete trajectory 1 2

1 2[ ],[ ],...,[ ]ik

ki
X X X

αα α
 of the 

changes of the phase spaces of the system until discrete time 

moment ki  we can will represent by elements of set { }k
sA . 

Consider the random vaeiable 

1 2 1 2

1 2 1 2
1 2 1 2:{ } { [ ] [ ] ... [ ] }, ( ) [ ] [ ] ... [ ]i ik k

k l l l k l l lk kk k

k k k k
s j j j s s j j ji i

h A H X H X H X h A H X H X H X
α αα α α α→ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅  

With distribution 

1 2

1 2 1 2

1 2
1 2[ ] [ ] ... [ ] _________ ...ik k

l l l l lk lk k

i
j j j j ji j

H X H X H X p p p
αα α⋅ ⋅ ⋅ ⋅ ⋅ . 

The mathematical expectation of this random quantity will be  
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1 2

1 2 1 2

1 2
1 21 2( ) ... [ ] [ ] ... [ ] ( ) ( ) .... ( )ik

l l l l l l kkk k

k k
j j j j j j ii

s

M h p p p H X H X H X M h M h M h
αα α= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅∑  

If we take the trajectory 1 2

1 2[ ],[ ],...,[ ]ik

ki
X X X

αα α
with members which entropy are closest to the corresponding mathematical 

expectation in the product, then this trajectory will be more probable. 

Consider now such family{ }
k

k
s k NA ∈  of elements  in ( )Β ℜ  which have a structure: 

1 2 2

1 11 2 1

1 2

1 2 1 1 2 21 2,   [ ] , [ ] ,..., [ ] , \ [ ] , , ,... ,

  , ( , ,..., ),  1,2,...,

 

.

ik

k l l k l k k l k k k kk kl kk

k k k

k
s i j j i j i i j i i i ii i

i N

l l l l i

A A X A X A X A X A A

k N j q

A

s j j j

αα α α
− − −

+ + + +
∈

= = = = ℜ = ℜ = ℜ

∈ = =

=∏
 

k  is not fixed. The subfamily { } { }
k k

k k
s k N s k NA A∈ ∈⊂ where

1 2
, ,...,

kk l l ls j j j= fixed and for all k  
1 2 11 , ,..., ,

k kk l l l ls j j j j
++ = . 

Elements of this subfamily are pairwise disjoint.  

1 2 1 2

1 2

1 2

1 2 1 2

1 2

,  ( )= ... ,  ( ) ...

... ... 1

k

k k l l k l l ll kk

k k

l l lk

l l lk

ik k k k
s i s j j s j j jj

k
k N s k N si N

k
j j j

k N j j j

A p A p p p p A p p p

p p p

∈ ∈∈

∈

= ℜ ⋅ ⋅ = ⋅ ⋅ =

= ⋅ ⋅ =

∑ ∑ ∑ ∑∏
∑ ∑∑ ∑

∪

 

We have ({ } , ({ }), )
k k

k k
s k N sA A p∈ Α  probability space

1 2

1 2( )= ... k

k l l lk

ik
s j j j

p A p p p⋅ ⋅ . Consider random quantity on this space: 

1 2

1 2

1 2

1 2

1 2

1 2

:{ } { [ ] [ ] ... [ ] } , ( )

[ ] [ ] ... [ ] ,  if 1 and ( ) 1,  if 1

ik

k l l l k kk k

ik

l l l k kk k

k k
s s j j j k N s si

k
j j j s si

h A H X H X H X h A

H X H X H X k h A k

αα α

αα α

∈→ ⋅ ⋅ ⋅ =

= ⋅ ⋅ ⋅ ≠ = =
 

With distribution 

1 2

1 2 1 2

1 2
1 2[ ] [ ] ... [ ] _________ ...ik k

l l l l lk lk k

i
j j j j ji j

H X H X H X p p p
αα α⋅ ⋅ ⋅ ⋅ ⋅ . 

The mathematical expectation of this random variable will be 

1 2

1 2 1 2

1 2
1 2( ) ... [ ] [ ] ... [ ]ik

l l l l l lkk k

k
s j j j j j ji

k N

M h p p p H X H X H X
αα α

∈

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅∑  

The product 1 2

1 2
1 2[ ] [ ] ... [ ]ik

l l lk k
j j ji

H X H X H X
αα α⋅ ⋅ ⋅  

increases when increases entropy wit increasing k  and The 

product
1 2

1 2 ... k

l l lk

i
j j j

p p p⋅ ⋅  decreases when increase k , therefore, 

the sum will converge in many cases to a finite non-zero 

value. 

We call this number ( )sM h the entropy of trajectory 

1 2

1 2
1 2[ ] ,[ ] ,...,[ ] ,...ik

l l lk k
j j ji

X X X
αα α

 

The family of {{ } }
k

k
k Ns

A β β ∈  contains only pairwais disjoint 

elements {{ } }
k

k
k Ns

A β β
β

∈ = ℜ∪ , where β  varies in a countable set. 

In the probability space ({{ } } , ({{ } }), )
kk

k k
k Ns s

A A pβ ββ β∈ Α

we consider random variable on this space: 

:{{ } } { ( )}
k

k

s s
h A M hβ ββ β→ with distribution: 

( )
s

M h β ______ ({ })
k

k

s
p A β . 

Among all possible trajectories, the most probable will be 

a trajectory whose entropy is closer to than all the others. 

5. Results 

1. The concept of entropy for topological spaces is 

defined, which admits a pseudo-convex open covering. 

2. The examples of topological spaces admitting a pseudo-

convex covering are built. 

3. The random process is built that describes the evolution 

of the phase space of a closed dynamical system up to 

an accuracy of equality of entropy. 

4. Introduced the concept of entropy of the trajectory 

changes of the phase space of the system. 

5. Based on the concept of entropy of trajectory the most 

probable trajectory of the changes phase space of a 

closed system is found. 
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