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Abstract: Measures of dispersion are important statistical tool used to illustrate the distribution of datasets. These measures 

have allowed researchers to define the distribution of various datasets especially the measures of dispersion from the mean. 

Researchers and mathematicians have been able to develop measures of dispersion from the mean such as mean deviation, 

variance and standard deviation. However, these measures have been determined not to be perfect, for example, variance give 

average of squared deviation which differ in unit of measurement as the initial dataset, mean deviation gives bigger average 

deviation than the actual average deviation because it violates the algebraic laws governing absolute numbers, while standard 

deviation is affected by outliers and skewed datasets. As a result, there was a need to develop a more efficient measure of 

variation from the mean that would overcome these weaknesses. The aim of the paper was to estimate the average variation 

about the population mean using geometric measure of variation. The study was able to use the geometric measure of variation 

to estimate the average variation about the population mean for un-weighted datasets, weighted datasets, probability mass and 

probability density functions with finite intervals, however, the function faces serious integration problems when estimating 

the average deviation for probability density functions as a result of complexity in the integrations by parts involved and also 

integration on infinite intervals. Despite the challenge on probability density functions, the study was able to establish that the 

geometric measure of variation was able to overcome the challenges faced by the existing measures of variation about the 

population mean. 

Keywords: Standard Deviation, Geometric Measure of Variation, Deviation About the Mean, Average, Mean,  

Absolute Deviation, Estimation 

 

1. Introduction 

Geometric measure of variation about the mean, is a new 

measure of variation about the mean, that intends to solve the 

weaknesses of the current measures of variation about the 

mean, by using geometric averaging, to estimate the average 

deviation about the mean. Geometric averaging is a suitable 

measure of variation because based on past research it is not 

affected by outliers and skewed datasets. The technique also 

average product of numbers and not sum, a factor which 

makes it not to violate the algebraic laws [4, 19, 21]. 

Currently, there are three known measures of variation 

about the mean; Mean deviation which is the average 

absolute deviation about the mean, variance which is the 

average of squared deviations about the mean and 

standard deviation which is the square-root of average 

squared deviation about the mean [17]. Past studies have 

established that the existing measures of variation about 

the mean are not 100% efficient, this is due to various 

issue that arises during their use in estimating the average 

variation about the mean [2, 3, 11-13, 16, 18, 20]. For 

example, mean deviation has been determined by past 

studies has to violate the algebraic number theory. Based 

on the algebraic number theory, given that the mean 

deviation is an average of absolute deviations, an absolute 

number on the field P such that  must satisfy 
0: p >• → ℜ
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the following conditions [5]; 

1.  

2.  

3.  

The mean deviation about the mean is given by the 

function [17]; 

                                (1) 

where  is the absolute deviation from the mean 

This measure of deviation from the mean as an absolute 

number, violates the algebraic laws as illustrated by the third 

condition (3), hence the average deviation about the mean 

estimated by the measure are not accurate because; 
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Therefore, the measure always gives bigger estimates than 

the actual deviation about the mean. However, the measure 

argues on the basis of the theory behind measurement of 

average deviation about the mean, which assumes that for 

measuring of deviation from the mean, the metric (the 

distance from the mean) is more important than the sign of 

the deviation. Mean deviation has also been determined by 

past studies not to allow further algebraic application because 

of the absolution, as a result the measure is not considered as 

efficient [6]. 

A second measure of variation about the mean is variance 

which is given by the function [1, 17]; 

                                  (2) 

Where is the squared deviation from the mean 

This measure of variation from the mean allows for further 

algebraic manipulations which is an improvement from the 

mean deviation, it also do not violate the algebraic number 

theory, however, the average of deviation about the mean 

given by the measure are squared, hence, are not of the same 

unit as the initial datasets (squared). This makes the results 

given by the formula to be inappropriate [1, 17]. 

The last measure of variation about the mean is standard 

deviation, which is an improvement on variance by giving 

results which are of the same units as initial datasets. The 

measure is usually estimated by [1, 3, 13, 16]; 

                                (3) 

Over the years, standard deviation has been the most 

widely used measure of variation about the mean, because 

it is a capable of further algebraic manipulation and it also 

solves the problem of variance by giving estimates which 

are of the same unit as the original datasets (square-root). 

However, past studies have determined that standard 

deviation is affected by outliers and skewed datasets, 

factors which makes this measure not to be efficient 

especially when dealing with datasets which have outliers 

and those that are skewed [2-3, 11-13, 16, 18, 20]. 

Given the shortcomings of the three existing measures 

of variation about the mean. The paper aimed at a estimate 

the average variation about the population mean using the 

geometric measure of variation, which is would overcome 

the weakness of the current measures of variation about 

the mean by not violating the algebraic laws, giving 

estimates which are of the same unit as the initial datasets, 

not affected by outliers and skewed datasets, and allows 

further algebraic manipulations to be carried on it. This is 

because, geometric measure of variation would use 

geometric averaging, an averaging technique that average 

products hence not violating the algebraic laws behind 

absolute number. And also, an averaging technique that 

has been determined not to be affected by outliers and 

skewed datasets. 

2. Method 

2.1. Un-Weighted Dataset Geometric Measure of Dispersion 

Consider a vectors V of data points vi such that all the 

points are not weighted or coefficient by any weights. A 

geometric measure of deviation from the mean  for un-

weighted datasets will be given by the function; 

                          (4) 

where n is the total number of data points in the dataset V, 

 is the mean for the dataset 

P is the total number of data points which are not equal to 

the mean 

 is the absolute deviation from the mean. 

If all the data points  then the deviation from the 

mean will be zero, hence the mean deviation from the mean 

for such data points is hence zero, therefore, for data set with 

all points similar to each other the geometric deviation from 

the mean will be zero. For data set with at least p points not 

equal to the mean ( ), the geometric mean deviation 

from the mean will be given by the formula; 

                              (5) 

To make the formula applicable for large data sets, a 

simplification of the formula can be carried out using the 

using the logarithmic transformation as below; 
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Now let 

                                   (6) 

Then the function (5) can be written as; 

                              (7) 

Now introducing natural logarithm on both sides we obtain 

the following function 

                          (8) 

Equation (8) can be simplified as follows based on the 

logarithm rules; 

 

Transforming back to get the original function by 

introducing exponential on both sides we obtain the 

following equation 

                  (9) 

The function (9) will assist in reducing the problem that 

result from geometric rooting. The absolute value in the 

formula based on the algebraic theory helps in preventing us 

from having complex results when finding roots for negative 

numbers. The geometric mean is appropriate because it 

satisfies the algebraic formula [2]; 

                           (10) 

Which is an improvement based on accuracy from the 

arithmetic averaging of absolute values [2]; 

 

Hence the geometric averaging gives more accurate results 

than arithmetic averaging. As a simplification and 

improvement, equation (9) can be simplified further by 

replacing the product with sum because of the logarithmic 

law which states that log of product is same as sum of 

individual logs hence; 

                        (11) 

Based on the transformation in (11) we can now rewrite (9) 

as follows; 

              (12) 

2.2. Weighted Dataset Geometric Measure of Dispersion 

Consider a data vector such that  and 

a weighted vector  of the same dimension as V, such that 

. The joint distribution of the two vectors 

results into a weighted vector of datasets 

. A geometric measure of 

deviation from the mean  for weighted datasets will be 

given by the function; 

                  (13) 

where are the weights for every data point . 

 is the mean for the dataset 

P is the total number of data points which are not equal to 

the mean 

 is the absolute deviation from the mean. 

If all the data points then the deviation from the 

mean will be zero, hence the mean deviation from the 

mean for such data points is hence zero, therefore, for data 

set with all points similar to each other the geometric 

deviation from the mean will be zero. For data set with at 

least p points not equal to the mean ( ), the 

geometric mean deviation from the mean will be given by 

the formula; 

                           (14) 

To make the formula applicable for large data sets, a 

simplification of the formula can be carried out using the 

using the logarithmic transformation as below; 

 

Using (6) the function (14) can be written as; 
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                          (15) 

Now introducing natural logarithm on both sides we obtain 

the following function 

                   (16) 

Equation (16) can be simplified as follows based on the 

logarithm rules; 

 

Transforming back to get the original function by 

introducing exponential on both sides we obtain the 

following equation 

                  (17) 

The function (17) will assist in reducing the problem that 

result from geometric rooting. As a simplification and 

improvement, equation (17) can also be simplified further by 

replacing the product with sum based on logarithmic laws; 

                      (18) 

Based on the transformation in 18 we can now rewrite 17 

as follows; 

                     (19) 

2.3. Application on Probability Mass Functions 

Based on equation (18) it can be determined that 

 and that  is distributed with the 

same weights as . Therefore, extending this relationship on 

probability mass functions. Assume that the variable  is 

discrete with probability mass function  for all 

 and 0 otherwise. Assume that  which is 

equal to  where  is the mean of the random 

variable , is distributed in the same way as  with a 

probability mass function . The geometric deviation for 

probability mass functions can be given as; 

                    (20) 

2.4. Application on Probability Density Functions 

Extending the relationship in equation (18) on continuous 

random variables. Assume that the variable  is continuous 

on the interval  with probability density function 

. Assume that  which is equal to  where 

 is the mean of the random variable , is distributed in the 

same way as  with a probability density function . 

The geometric deviation for probability density functions can 

be given as; 

                (21) 

3. Results 

3.1. Application on Un-weighted Datasets 

Several simulations were conducted on both discrete and 

continuous data distributions of small populations of size 10 

from Bernoulli, Binomial, Geometric, Normal, chi-square 

and F-distributed were. The results were as shown below; 

3.1.1. Bernoulli Population 

Consider a population of size 10 which is Bernoulli 

distributed with a probability of success 0.7, the geometric 

measure of variation from the mean for the population 

estimated as illustrated in table 1; 

The geometric measure of variation from the mean for un-

weighted dataset is given by the function; 
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Table 1. Estimation for un-weighted Bernoulli population 

Population Number Bernoulli Population    

1 1 0.2 0.2 -1.609437912 

2 1 0.2 0.2 -1.609437912 

3 1 0.2 0.2 -1.609437912 

4 1 0.2 0.2 -1.609437912 

5 0 -0.8 0.8 -0.223143551 

6 1 0.2 0.2 -1.609437912 

7 1 0.2 0.2 -1.609437912 

8 1 0.2 0.2 -1.609437912 

9 0 -0.8 0.8 -0.223143551 

10 1 0.2 0.2 -1.609437912 

Mean 0.8   -1.33217904 

Geometric measure  

3.1.2. Binomial Population 

Consider a population of size 10 which is Binomial distributed with 30 trials and a probability of success 0.64, the geometric 

measure of variation from the mean was estimated as shown in table 2. 

Table 2. Estimation for un-weighted Binomial population. 

Population Number Binomial Population    

1 18 -0.2 0.2 -1.609437912 

2 17 -1.2 1.2 0.182321557 

3 20 1.8 1.8 0.587786665 

4 18 -0.2 0.2 -1.609437912 

5 15 -3.2 3.2 1.16315081 

6 16 -2.2 2.2 0.78845736 

7 23 4.8 4.8 1.568615918 

8 17 --1.2 1.2 0.182321557 

9 20 1.8 1.8 0.587786665 

10 18 -0.2 0.2 -1.609437912 

Mean 18.2   0.023212679 

Geometric measure  

3.1.3. Geometric Population 

Consider a population of size 10 which is Geometric distributed with a probability of success 0.5, the average deviation from 

the mean can be estimated using geometric measure of deviation from the mean for the population as illustrated in table 3; 

Table 3. Estimation for un-weighted Geometric population. 

Population Number Geometric Population    

1 1 -0.9 0.9 -0.105360516 

2 1 -0.9 0.9 -0.105360516 

3 2 0.1 0.1 -2.302585093 

4 3 1.1 1.1 0.09531018 

5 1 -0.9 0.9 -0.105360516 

6 1 -0.9 0.9 -0.105360516 

7 1 -0.9 0.9 -0.105360516 

8 3 1.1 1.1 0.09531018 

9 1 -0.9 0.9 -0.105360516 

10 5 3.1 3.1 1.131402111 

Mean 1.9   -0.161272572 

Geometric measure  

3.1.4. Chi-square Population 

Population of size 10 from Chi-square distribution with 1 degree of freedom was simulated as shown in table 4. The 

calculation of geometric measure for the population was estimated as illustrated in table 4. 

0.8i id x= − id ( )ln id

exp( 1.33217904) 0.263901582 0.2639= − = ≈

18.2i id x= − id ( )ln id

exp(0.023212679) 1.02348419 1.0235= = ≈

1.9i id x= − id ( )ln id

exp( 0.161272572) 0.851060065 0.8511= − = ≈
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Table 4. Estimation for un-weighted Chi-square population. 

Population Number Chi-square Population    

1 3.217024949 1.636957954 1.636957954 0.492839614 

2 2.995690441 1.415623446 1.415623446 0.347570032 

3 3.662891652 2.082824657 2.082824657 0.733724981 

4 1.481728301 -0.098338694 0.098338694 -2.319337698 

5 2.378023987 0.797956993 0.797956993 -0.225700577 

6 0.189166369 -1.390900625 1.390900625 0.329951469 

7 0.093799897 -1.486267098 1.486267098 0.396267673 

8 1.601235263 0.021168268 0.021168268 -3.855251998 

9 0.180945899 -1.399121096 1.399121096 0.335844251 

10 0.000163189 -1.579903805 1.579903805 0.457363962 

Mean 1.580066995   -0.330672829 

Geometric measure  

3.1.5. Normal Distribution Population 

A population of size 10 from a Normal distribution with a mean of 10 and a standard deviation of 2 was simulated as 

illustrated in table 5. The estimation of average deviation from the mean using geometric measure of variation about the mean 

for the population was estimated as illustrated in table 5. 

Table 5. Estimation for un-weighted Normal population. 

Population Number Normal Population    

1 9.4732888 -0.087663944 0.087663944 -2.434244594 

2 10.0179588 0.457006053 0.457006053 -0.783058643 

3 9.833743354 0.272790611 0.272790611 -1.299050771 

4 9.843723505 0.282770761 0.282770761 -1.263118741 

5 7.86179902 -1.699153723 1.699153723 0.530130317 

6 10.54505528 0.98410254 0.98410254 -0.01602518 

7 8.855622899 -0.705329844 0.705329844 -0.349089721 

8 9.473922934 -0.087029809 0.087029809 -2.441504582 

9 13.65741087 4.096458131 4.096458131 1.41012273 

10 6.047001969 -3.513950775 3.513950775 1.256740981 

Mean 9.560952744   -0.53890982 

Geometric measure  

3.1.6. F-distributed Population 

A population of size 10 from a F-distribution with 2 numerator and 5 denominator degrees of freedom was simulated as 

illustrated in table 6. The calculation of geometric measure of variation about the mean for the population was calculated as 

illustrated in table 6. 

Table 6. Estimation for un-weighted Fisher’s population. 

Population Number F-distribution Population    

1 7.650678068 5.377643402 5.377643402 1.682250249 

2 2.329789864 0.056755198 0.056755198 -2.869008029 

3 5.536239586 3.26320492 3.26320492 1.182709817 

4 1.738601369 -0.534433297 0.534433297 -0.626548351 

5 0.771963586 -1.50107108 1.50107108 0.406178907 

6 0.555808899 -1.717225767 1.717225767 0.540710062 

7 1.502359971 -0.770674695 0.770674695 -0.260488921 

8 0.31742318 -1.955611486 1.955611486 0.670702925 

9 0.975575768 -1.297458898 1.297458898 0.260407658 

10 1.351906368 -0.921128298 0.921128298 -0.082155949 

Mean 2.273034666   0.090475837 

Geometric measure  

Based on the illustration shown by the calculations, the geometric measure can be used to estimate the average 

1.580066995i id x= − id ( )ln id

exp( 0.330672829) 0.718440183 0.7184= − = ≈

9.560952744i id x= − id ( )ln id

exp(-0.53890982) 0.583383899 0.5834= = ≈

2.273034666i id x= − id ( )ln id

exp(0.090475837) 1.094695056 1.0947= = ≈
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variation from the mean for both un-weighted discrete and 

continuous datasets. 

3.2. Application on Weighted Datasets 

The study intended to determine if the geometric measure 

could be used in the estimation of average deviations from the 

mean for weighted datasets with specific concentration on 

frequency distributions, where the frequencies were used as the 

weights of the respective data points. Simulated data for three 

discrete distributions (Bernoulli, Binomial and Geometric 

distributions) and three continuous distributions (Normal, Chi-

square and Fishers/F-distributions) where used. 100 

observations were simulated for each distribution after which the 

data were summarized into frequency distributions before 

geometric measure for the average deviation about the mean was 

estimated for each frequency distributions. The results of the 

simulation and the estimation was as illustrated below; 

3.2.1. Bernoulli Population 

Consider a population of size 100 which is Bernoulli 

distributed with a probability of success 0.7, the frequency 

distribution and the estimation of the geometric measure 

variation from the mean for the population was as illustrated 

below; 

The geometric measure of variation from the mean (G) for 

weighted datasets is given by the function; 

 

Table 7. Estimation for weighted Bernoulli population. 

Number (  Frequency (       

0 34 0 -0.66 0.66 -0.415515444 -14.12752509 

1 66 66 0.34 0.34 -1.078809661 -71.20143765 

Total 100 66 
   

-85.32896275 

 

 

Geometric measure  

3.2.2. Binomial Population 

Consider a population of size 100 which is Binomial distributed with 30 trials and a probability of success 0.64, the 

frequency distribution and the estimation of the geometric measure variation from the mean for the population was as 

illustrated in table 8. 

Table 8. Estimation for weighted Binomial population. 

Number ( ) Frequency ( )   

   

11 2 22.0 -8.02 8.02 2.081938422 4.163876844 

12 1 12.0 -7.02 7.02 1.948763218 1.948763218 

13 1 13.0 -6.02 6.02 1.795087259 1.795087259 

14 3 42.0 -5.02 5.02 1.613429934 4.840289801 

15 4 60.0 -4.02 4.02 1.391281903 5.565127611 

16 5 80.0 -3.02 3.02 1.105256831 5.526284157 

17 13 221.0 -2.02 2.02 0.703097511 9.140267648 

18 7 126.0 -1.02 1.02 0.019802627 0.138618391 

19 21 399.0 -0.02 0.02 -3.912023005 -82.15248311 

20 9 180.0 0.98 0.98 -0.020202707 -0.181824366 

21 16 336.0 1.98 1.98 0.683096845 10.92954952 

22 8 176.0 2.98 2.98 1.091923301 8.735386404 

23 7 161.0 3.98 3.98 1.381281819 9.668972735 
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Number ( ) Frequency ( )   

   

24 1 24.0 4.98 4.98 1.605429891 1.605429891 

25 2 50.0 5.98 5.98 1.788420568 3.576841136 

Total 100 1902.0    -14.69981287 

 

 

Geometric measure  

3.2.3. Geometric Population 

Consider a population of size 100 which is Geometric distributed with a probability of success 0.5, the frequency 

distribution and the estimation of the geometric measure variation from the mean for the population was as illustrated in table 9. 

Table 9. Estimation for weighted Geometric population. 

Number ( ) Frequency ( ) 
  

   

1 52 52 -1.12 1.12 0.113328685 5.893091636 

2 22 44 -0.12 0.12 -2.120263536 -46.6457978 

3 14 42 0.88 0.88 -0.127833372 -1.789667201 

4 4 16 1.88 1.88 0.631271777 2.525087107 

5 2 10 2.88 2.88 1.057790294 2.115580588 

6 2 12 3.88 3.88 1.355835154 2.711670307 

7 1 7 4.88 4.88 1.58514522 1.58514522 

8 1 8 5.88 5.88 1.771556762 1.771556762 

9 1 9 6.88 6.88 1.928618652 1.928618652 

12 1 12 9.88 9.88 2.290512512 2.290512512 

Total 100 212.0 
   

-27.61420221 
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3.2.4. Chi-square Population 

Population of size 100 from Chi-square distribution with 1 degree of freedom was simulated, the frequency distribution and 

the estimation of the geometric measure variation from the mean for the population was as illustrated in table 10. 

Table 10. Estimation for weighted Chi-square population. 

Number ( )v  Midpoint ( )v  Frequency ( )ς  
vς  d v v= −  ln lnd v v= −  ln lnd v vς ς= −  

0 – 2 1 82 82.0 0.5 -0.69314718 -56.83806881 

2 – 4 3 12 36.0 1.5 0.40546511 4.865581297 

4 – 6 5 5 25.0 3.5 1.25276297 6.263814842 

6 – 8 7 1 7.0 5.5 1.70474809 1.704748092 

Total 
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3.2.5. Normal Distribution Population 

A population of size 100 from a Normal distribution with a mean of 10 and a standard deviation of 2 was simulated. The 

frequency distribution and the estimation of the geometric measure variation from the mean for the population was as 

illustrated in table 11. 

Table 11. Estimation for weighted Normal Population. 

Class Midpoint ( ) Frequency ( )      

4 – 6 5 1 5.0 -5.3 5.3 1.6677 1.667706821 

6 – 8 7 10 70.0 -3.3 3.3 1.1939 11.93922468 

8 – 10 9 38 342.0 -1.3 1.3 0.2624 9.96984205 

10 – 12 11 26 286.0 0.7 0.7 -0.3567 -9.273548542 

12 – 14 13 24 312.0 2.7 2.7 0.9933 23.83804255 

14 – 16 15 1 15.0 4.7 4.7 1.5476 1.547562509 

Total 
 

100 1030.0 
   

39.68883007 

 

 

Geometric measure  

3.2.6. F-distributed Population 

A population of size 100 from a F-distribution with 2 numerator and 5 denominator degrees of freedom was simulated as 

illustrated in table 13. The calculation of geometric measure of variation about the mean for the population was calculated as 

illustrated in table 12. 

Table 12. Estimation for weighted Fisher’s population. 

Class Midpoint ( ) Frequency ( )     

0 – 2 1 69 69.0 1.055 0.05354077 3.694312918 

2 – 4 3 18 54.0 0.945 -0.05657035 -1.018266327 

4 – 6 5 7 35.0 2.945 1.08010882 7.56076172 

6 – 8 7 5 35.0 4.945 1.59837697 7.991884825 

8 – 10 9 0 0.0 6.945 1.93802198 0 

10 – 15 12.5 1 12.5 10.445 2.34612340 2.346123395 

 Total 100 205.5   20.57481653 

 

 

Geometric measure  

Based on the illustration shown by the calculations, the 

geometric measure can be used to estimate the average 

variation from the mean for both weighted discrete and 

continuous datasets. 
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3.3. Application on Probability Mass Functions 

The study considered various probability mass functions to 

illustrate how the function can be used in estimating the 

average variation from the mean for probability mass 

functions. The results were as illustrated below; 

 

3.3.1. Coin Tossing Gambling Game 

In a coin tossing gabling game, a player loses 1 shilling 

whenever a fair coin tosses head and gains 2 shillings 

whenever the fair coin tosses tail. Estimate the average 

variation of the gain using geometric measure of variation 

from the mean. 

The geometric variation for the probability mass function 

is estimated using the functions; 

 

The calculation of the estimate was as follows; 
 

Table 13. Estimation for coin tossing gambling game. 

Gain  Probability       

-1 0.5 -0.5 -1.5 1.5 0.405465108 0.202732554 

2 0.5 1 1.5 1.5 0.405465108 0.202732554 

Total 1 0.5    0.405465108 
 

 

3.3.2. Dice 

When an individual roll a die, he can get one of the numbers ranging from 1 to 6, estimate the variation of obtaining a 

number when a die is rolled. 

Table 14. Estimation for rolling a dice. 

Number  Probability       

1 0.166666667 0.166666667 -2.5 2.5 0.916290732 0.152715122 

2 0.166666667 0.333333333 -1.5 1.5 0.405465108 0.067577518 

3 0.166666667 0.5 -0.5 0.5 -0.693147181 -0.11552453 

4 0.166666667 0.666666667 0.5 0.5 -0.693147181 -0.11552453 

5 0.166666667 0.833333333 1.5 1.5 0.405465108 0.067577518 

6 0.166666667 1 2.5 2.5 0.916290732 0.152715122 

Total  3.5    0.20953622 

 

 

3.3.3. Bernoulli Distribution 

Consider a Bernoulli distribution with probability mass 

function; 

             (22) 

Where  is the probability of success, the natural 

logarithm of the geometric measure of variation about the 

mean can be estimated for the function by; 

              (23) 

Hence, 

      (24) 

3.3.4. Binomial Distribution 

Consider a binomial distribution with probability mass 

function 

           (25) 

Where  is the probability of success, the natural 

logarithm of the geometric measure of variation about the 

mean can be estimated for the function by; 

           (26) 
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Hence, 

  (27) 

3.3.5. Geometric Distribution 

Consider a geometric distribution with probability mass 

function 

               (28) 

Where  is the probability of success, the natural 

logarithm of the geometric measure of variation about the 

mean can be estimated for the function by; 

             (29) 

            (30) 

           (31) 

        (32) 

Hence, 

 (33) 

3.3.6. Poisson Distribution 

Consider a Poisson distribution with probability mass function; 

              (34) 

Where  is the average rate of event occurrence, the 

natural logarithm of the geometric measure of variation about 

the mean can be estimated for the function by; 

               (35) 

Hence, 

             (36) 

The above illustrations show how the geometric measure 

about the mean can be used to estimate the average variations 

about the mean of probability mass functions. 

3.4. Application on Probability Density Functions 

The study considered various probability density functions 

to illustrate how the function can be used in estimating the 

average variation from the mean for probability density 

functions. The results were as illustrated below; 

3.4.1. Simple Probability Density Function 

Consider a random  variable which is distributed in the 

interval  with a probability density function; 

 

We can estimate the average deviation from the mean for 

 using the geometric measure as follows; 

The geometric average deviation from the mean is given 

by the function; 

 

Therefore, for the example pdf, we can obtain the expected 

value of the distribution as follows; 

 

The natural logarithm of the geometric measure of 

variation from the mean by definition is given by the formula; 

 

Hence, for the above probability density function; 

 

Therefore, the geometric measure of variation from the 

mean will be given by; 
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3.4.2. Uniform Distribution 

Consider a random variable v which is distributed 

uniformly in the interval . By definition, the 

probability density function of v will be given by; 

 

The expectation of the function is given by; 

 

Therefore, the natural logarithm of geometric measure of 

variation from the mean for the distribution will be given by; 

 

Therefore, the geometric measure of variation from the 

mean will be given by; 

 

3.4.3. Exponential Probability Density Function 

Consider an exponential distribution with probability 

density function; 

 

By definition, 

 

Therefore, the natural logarithm of geometric measure 

about the mean is given by; 

          (37) 

Hence, 

                 (38) 

The above illustrations show that the geometric measure of 

variation from the mean can be used to estimate the average 

deviation from the mean, however, the function faces a 

challenge in the estimation especially when the limits are 

infinite. Also, the challenge arises when conducting partial 

integration for complex probability density functions which 

do not have finite integrals for the integration by parts. For 

example, consider the case of standard normal probability 

density function; 

3.4.4. Standard Normal 

Consider a standard normal distribution for a random 

variable v illustrated as follows; 

 

Therefore, the natural logarithm of geometric measure 

about the mean is given by; 

        (39) 

Hence, 

             (40) 

This shows that it is almost impossible to integrate such 

functions. This is a short coming of the geometric measure of 

variation especially during its application on probability 

density functions 

4. Conclusion 

In conclusion, geometric measure of variation about the 

mean can be used to estimate the average deviation from 

the population mean for un-weighted datasets, weighted 

datasets, probability mass and probability density 

functions with finite intervals, however, the function faces 

serious integration problems when estimating the average 

deviation for probability density functions as a result of 

complexity in the integrations by parts involved and also 

integration on infinite intervals. The geometric measure of 

variation was also determined to give smaller estimates of 

the variation from the mean compared to standard 

deviation. 
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