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Abstract: The construction of new probability distributions is an active field of research. It provides the opportunity for 

dynamic system modelers to choose the best model from a plethora of probability distributions that provide good fit to some 

data set using model selection criteria. In this study a new probability distribution function is constructed based on the gamma 

type-I generator, called the gamma1-epsilon distribution. Its statistical properties are described. The area under the curve of the 

density plots is shown through numerical integration to equal one with very minimal error margins. The density plots show 

shapes that are similar to many standard lifetime distributions. This implies that it is flexible to assume different shapes that 

can model many different random phenomena. Its hazard rate function plots also show varying shapes, namely J-shaped and 

bathtub-shaped, that indicate its possible use as a model for the study of survival life of biological organisms, electrical and 

mechanical components. The distribution is applied to the time to death of women with temporary disabilities, remission time 

of cancer patients and wind speed. The fits to these datasets are good with precise parameter estimates. Its compatibility with 

data from these dissimilar processes shows it holds a good prospect for real life application. 
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1. Introduction 

The dynamic nature of human life comes with several 

challenges requiring new models that are able to capture and 

fully describe the information that characterizes the system. 

Probability distributions play central role in providing such 

information and many existing distributions that were, 

hitherto, the best for describing random phenomena now fall 

short of the requirements of new systems and problem 

situations that are evolving. Hence, the current problems of 

dynamic system modelers are to come up with new 

distributions that are flexible enough to fit and describe new 

data generation processes that are unfolding. Thus, the 

construction of probability distributions is an active field of 

research with several methods in application. 

One of the most applied methods of constructing 

probability distributions is the use of existing lifetime 

distributions as generators. Example of such lifetime 

distributions used as generators include the beta-G due to 

Eugene et al [6]; the gamma-G types I, II, and III, credited to 

Zografos and Balakrishnan [17], Ristic and Balakrishnan [14] 

and Torabi and Montezari [16], respectively; Kumaraswamy-

G due to Cordeiro et al [4]; exponentiated-G of Gupta et al 

[10]; Weibull-G due to Bourguignon et al [3]; and beta 

exponential G due to Alzaatreh et al. [2]. The G in each 

generator is an arbitrary cumulative distribution function 

called the parent distribution. These generators have been 

used to construct probability distributions that are more 

flexible than their respective parent distributions [7]. 

Johnson et al. [11, 12] provide comprehensive study of 

some of the new continuous and discrete probability 

distributions with their applications. Also, Lai [13] and 

Forbes et al. [7] provide a survey of some newly generated 

probability distributions and their applications. Recently, 

some new probability distributions have been constructed 



66 Isaac Esbond Gongsin and Funmilayo Westnand Oshogboye Saporu:  The Gamma1-Epsilon Distribution:  

Its Statistical Properties and Applications 

from the parent epsilon distribution of Dombi et al. [5]; for 

example, Kumaraswamy-epsilon [8] and exponentiated-

epsilon [9] distributions. These have been applied in 

modeling several data generation processes. 

In this study, a new distribution called Type-I gamma-

epsilon distribution, hereafter referred to as gamma1-epsilon 

distribution, is constructed. The other objective is to apply 

the new distribution to real life datasets. 

2. The Gamma 1 - Epsilon Distribution 

The Type-I gamma-G family of distributions is defined [17] 

by the distribution and density functions given, respectively, 

by 
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� � 0 determines the shape of the distribution. The range of 

values of the random variable, !, given in (1) and (2), for 

which the new distribution is defined is determined by its 

range of values in the parent distribution, ����. 

The epsilon distribution is specified by the distribution and 

density functions [5] given, respectively, by 
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where 0 + � + ,, , � 0, * � 0. 

A log-transformation of the parent epsilon distribution 

function (3), gives 
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Substituting (4) and (5) into (1) and (2) gives the Type-I 

gamma-epsilon distribution and density functions, given, 

respectively, by 
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where 50�, �2 is the incomplete gamma function defined by 
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Plots of the gamma1-epsilon distribution at varying param

eter values are presented in Figure 1 below. 

 

Figure 1. Density plots of gamma1-epsilon distribution at varying parameter values. 

It is expedient to show that the Type-I gamma-epsilon 

probability density function specified in (7) is a true 

probability density function. That is, 
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Direct integration of the density function is difficult. 

However, numerical integration can be employed to illustrate 

this integral at various parameter values in order to give an 

indication. Using the parameter values for the density plots in 

Figure 1, the approximate values of the integral and their 

absolute errors are presented in Table 1 (a and b) below. 
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Table 1. Results of numerical integration based on parameters of Figure 1. 

1a 

Parameter values 
Integral value Absolute error = > ? 

5 5 8 1 3.2372e-09 
10 5 8 1 2.0585e-05 

20 5 8 1 1.6266e-07 

40 5 8 1 3.3556e-09 

 

1b 

Parameter values 
Integral value Absolute error = > ? 

9 3 8 1 4.8478e-08 

9 2 8 1 2.2579e-06 
9 1.5 8 1 1.0402e-05 

9 0.5 8 1 1.0459e-04 

3. Moments of Gamma 1 - Epsilon 

Distribution 

For a continuous random variable, ! , from a gamma1-

epsilon distribution, the @�A moment is given by 
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where @ � 1, 2, 3,···. 
Although the expression for the moments of the gamma1-

epsilon distribution is not explicit, numerical integration can 

be employed to determine any moment for estimated 

parameter values. In this case, parameters of the gamma1-

epsilon distribution should be first estimated. 

4. Survival Function 

The survival function denoted by G�
�  gives the 

probability of surviving after 
. That is 
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For the gamma1-epsilon distribution, this is derived as 
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Two functions relate to the survival function; namely, 

hazard rate and mean residual life (MRL) functions. These 

are derived for the gamma1-epsilon distribution below. 

4.1. Hazard Rate Function 

The hazard rate function describes the instantaneous 

failure rate of a component that has survived up to time 
. For 

the survival time variable, K, of components characterized by 

the gamma-epsilon distribution, its hazard rate function is 

given by 
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Plots of the hazard rate function at various parameter 

values are presented in Figure 2 below. The J-shaped 

function depicted in the figure show that the gamma1-epsioln 

distribution can be useful in describing systems with zero 

mortality rate at the beginning of their lifetimes. The bathtub-

shaped functions describe systems with high mortality in 

their early lives, minimal mortality in useful life and high 

mortality as the system ages.   

 

Figure 2. Plots of the gamma1-epsilon hazard rate function at varying parameter values. 

4.2. Mean Residual Life Function 

The mean residual life gives the expected lifetime of a 

component after time 
. Its function is defined by the relation 

X�
� � B�K � 
|K � 
� 
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For a random variable, K, specified by the gamma1-epsilon 

distribution, the mean residual life function is given by 
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time to failure of the component, given by 
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where _ is defined above. 

5. Applications 

5.1. The Data 

To illustrate its potential in modeling real life processes, 

the gamma1-epailon distribution is applied to three real life 

datasets. The first data is the age (in years) of 280 retired 

women with temporary disabilities who died in 2004; the 

data was obtained from Tahir et al [15]. The second dataset is 

the remission times (in months) of a random sample of 128 

bladder cancer patients obtained from Almheidat et al [1]. 

The third dataset is the daily wind speed data collected at the 

Christmas Island Aero Station, Australia between October 1, 

2018 and November 28, 2019. The wind speed data, 

originally recorded in km/h and converted here to m/s, were 

obtained at www.bom.gov.au/climate/dwo/. 

5.2. Parameter Estimation 

The gamma1-epsilon distribution was fitted to the three 

datasets using the optim package in R statistical 

programming language. The results are given below. Also, 

the results of parameter estimation by other authors for the 

respective datasets are shown for the purpose of comparison. 

5.2.1. Mortality Data 

The fit result of the gamma1-epailon probability density 

function (7) to the age at death dataset is given in Table 1 below. 

Table 2. Gamma1-epsilon and Weibull-Dagum fit results of the age at death dataset. 

Distribution Parameter Estimate (std error) `` �bcd� KS (cv) Remark LDP 

Gamma1-Epsilon 
� 13.3031 (1.3915) �1053.257 

(2112.534) 
0.0805 (0.0813) Good fit 

NA 

* 0.2498 (0.0290) 

, 97.1203 (5.4298) 

Weibull-Dagum* 
* 1282.2665 (881.4295) �1050.590 

(2109.180) 
0.0687 (0.0813) Good fit , 3.9888 (0.1683) 

e 2183.6861 (2072.9163) 

KS=Kolmogorov-Smirnov statistic value. cv=critical value. ff=log-likelihood value. LDP=likelihood gain per data point of Gamma1-Epsilon 

relative to Weibull-Dagum distribution. * obtained from Tahir et al (2014). NA=not applicable (exponents of LLs equal zero). 

The plot of the gamma1-epsilon probability density fit to 

the age at death dataset for the estimated parameter values is 

presented in Figure 3. 

 

Figure 3. Gamma1-epsilon density plot of age (years) of women with 

temporary disabilities. 

The hazard rate function plot for the mortality of women 

with temporary disabilities is given in Figure 4, below. 

 

Figure 4. Gamma1-epsilon hazard rate function of the mortality data. 
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5.2.2. Remission Time Data 

The fit results of the remission time (months) of cancer 

patients are given in Table 3 below. The density plot is 

represented in Figure 5. 

Table 3. Gamma1-epsilon and CW{L} fit results of the remission time dataset. 

Distribution Parameter Estimate (std error) `` �bcd� KS (cv) Remark LDP 

Gamma1-Epsilon 
� 1.1255 (0.1280) 

-415.203 (836.405) 0.0817 (0.1202) Good fit 

3.2% 

* 0.1148 (0.0166) 

, 95.5076 (8.9085) 

3-Parameter CW{L}* 
e 1.5623 (0.3614) 

-419.233 (844.5) 0.0826 (0.1202) Good fit g 1.7888 (0.3215) 

* 7.3836 (0.6402) 

4-Parameter CW{L}* 

� �2.3040 (1.0937) 

-416.0965 (840.2) 0.0667 (0.1202) Good fit 0.7% 
e 2.0205 (0.4585) 

g 3.0673 (0.7319) 

* 12.663 (2.6326) 

KS=Kolmogorov-Smirnov statistic value. cv=critical value. ff=log-likelihood value. LDP=percent likelihood gain per data point of Gamma1-Epsilon relative 

to Cauchy-Weibull {Logistic} (CW{L}) distributions. * obtained from Almhedat et al (2015). 

The mean remission time estimated from the fitted 

gamma1-epsilon distribution is 9.63 months with absolute 

error less than 0.00034. 

5.2.3. Wind Speed Data 

The fit results of the wind speed data (m/s) measured at the 

Christmas Island, Australia, are presented in Table 4. 

Table 4. Gamma1-epsilon and Weibull fit results of the wind speed dataset. 

Distribution Parameter Estimate (std error) `` �bcd� KS (cv) Remark LDP 

Gamma1-Epsilon 
� 5.9685 (0.4834) 

-722.731 (1451.46) 0.0466 (0.0672) Good fit 

1.72% 
* 0.8927 (0.0812) 

, 8.6557 (0.1323) 

Weibull 
� 4.2295 (0.1685) 

-729.710 (1463.42) 0.0685 (0.0672) Good fit e 5.8616 (0.0720) 

KS=Kolmogorov-Smirnov statistic value. cv=critical value. ff=log-likelihood value. LDP=percent likelihood gain per data point of Gamma1-Epsilon relative 

to Weibull distribution. 

 

Figure 5. Gamma1-epsilon density plot of remission time (months) of cancer 

patients. 

Some important characteristics of the wind speed at the 

Christmas Island can be summarized as in Table 5 below. 

Table 5. Energy characteristics of Wind Speed at Christmas Island, Australia 

as obtained from fitting Gamma1-epsilon distribution. 

Mean wind speed Absolute error Energy Potential 

5.32 m/s 6.4e-04 92.07 W/m2 

Plots of the gamma1-epsilon and Weibull probability 

density functions for the wind speed dataset at the estimated 

parameter values are presented in Figure 6 below. 

 

Figure 6. Gamma1-epsilon density plot of wind speed (m/s) dataset. 

6. Discussion 

From the plots of the density function presented in Figure 

1 for different parameter values, the various shapes show that 

the gamma1-epsilon distribution can be employed as a model 

for the study of lifetime data generation processes. Density 

curves skewed to both right- and left-hand directions depicts 
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the model’s flexibility in providing fit to different random 

phenomena. In addition, the model exhibits symmetrical 

properties within its parameter space. 

The hazard rate function curves in Figure 2 also shows the 

gamma1-epsilon distribution has the potential to model 

systems with different lifetime behaviour. For example, the 

bathtub shape represents system with infant mortality (high 

early mortality that decreases sharply), low and constant 

hazard rate that characterizes the useful life of the system and 

an increasing hazard rate appropriate for systems 

experiencing wear and tear. 

The results of the log-likelihood values and percent gain in 

likelihood per data point given in Tables 2, 3, and 4 show 

that the fit of the Gamma1-epsilon distribution favourably 

compares to those of other distributions fitted to the three 

datasets by other authors. 

For gamma1-epsilon distribution, the results of the parameter 

estimate in all three cases were precise as seen in Tables 2, 3 and 

4. The overall goodness-of-fit test show the model is appropriate 

for describing the processes that generated the datasets. These 

are also depicted by the density plots superimposed on the 

histograms in Figures 3, 5 and 6, respectively. 

There are some inference that are derivable from fitting the 

gamma1-epsilon distribution to the three datasets. Specifically, 

the hazard rate function plot for the mortality data shows that the 

number of deaths slowly increases until age 40 and thereafter 

picks up rapidly. This is a more realistic trend. The mean 

remission time for the cancer patients to recuperate is 9.63 

months after treatment. For the wind speed datasets, the average 

wind speed is 5.32 which is capable of generating 92.07 W/m
2
 

of electrical energy at Christmas Island, Australia. 

7. Conclusion 

In this study, a new probability distribution called the 

gamma-epsilon Type-I (referred to as gamma1-epsilon) 

distribution is constructed. It is a flexible distribution with 

the potential to model diverse lifetime data generation 

processes. It also exhibits properties of symmetric density 

curves, bathtub-shaped and J-shaped hazard rate functions. 

The model is compatible with three different lifetime datasets 

and comparable with fits of other existing distributions for 

the same datasets. Consequently, it is hoped that the new 

probability distribution will attract wide applications in 

engineering, reliability analysis, biological system studies 

and other areas of research. 
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