
 
International Journal of Statistical Distributions and Applications 
2021; 7(4): 108-114 

http://www.sciencepublishinggroup.com/j/ijsda 

doi: 10.11648/j.ijsd.20210704.15 

ISSN: 2472-3487 (Print); ISSN: 2472-3509 (Online)  

 

Likelihood-Based Confidence Intervals for the Parameters 
of a Simple Linear Regression Model with Cauchy Errors 

Orawo Luke Akongo 

Mathematics Department, Egerton University, Njoro, Kenya 

Email address: 
 

To cite this article: 
Orawo Luke Akongo. Likelihood-Based Confidence Intervals for the Parameters of a Simple Linear Regression Model with Cauchy Errors. 

International Journal of Statistical Distributions and Applications. Vol. 7, No. 4, 2021, pp. 108-114. doi: 10.11648/j.ijsd.20210704.15 

Received: October 21, 2021; Accepted: November 12, 2021; Published: November 24, 2021 

 

Abstract: The estimators of the slope and the intercept of simple linear regression model with normal errors are normally 

distributed and their exact confidence intervals are constructed using the t-distribution. However, when the normality 

assumption is not fulfilled, it is not possible to obtain exact confidence intervals. The Wald method of interval estimation is 

commonly used to provide approximate confidence intervals in such cases, and since it is derived from the central limit 

theorem it requires large samples in order to provide reliable approximate confidence intervals. This paper considers an 

alternative method of constructing approximate confidence intervals for the parameters of a simple linear regression model 

with Cauchy errors which is based the normal approximation to the Cauchy likelihood. The normal approximation to the 

Cauchy likelihood is obtained by a Tailor series expansion of the Cauchy log-likelihood function about the maximum 

likelihood estimate of the parameters and ignoring terms of order greater two. The maximized relative log-likelihood function 

for each parameter is then derived from the normal Cauchy relative log-likelihood function. The approximate confidence 

intervals for the parameters are constructed from their respective maximized relative log-likelihood functions. These 

confidence intervals have closed form confidence limits, are short and have coverage probabilities close to the nominal value 

0.95. 

Keywords: Normal Approximations, Relative Likelihood Function, Maximized Relative Likelihood Function,  

Likelihood Confidence Intervals 

 

1. Introduction 

The usual assumption on the distribution of the error term 

in a linear regression model is that the errors are identically 

and independent distributed normal random variables with 

mean equal to zero and has constant but unknown variance ��. However, there are situations where this assumption may 

not hold in that the distribution of the errors departs 

significantly from the normal distribution. For instance, in 

finance the distribution of the errors in the capital asset 

pricing model is well known to be ‘fat-tailed’ [22]. Bartolucci 

and Scaccia [2] showed, through a simulation study, that an 

effective strategy to deal with these situations is fitting a 

regression model based on the assumption that the error 

terms follow a mixture of normal distributions. 

The Least Squares method has been widely applied in 

linear regression analysis as a procedure for estimating the 

regression coefficients and its popularity is due to the fact 

that it does not involve heavy computations as well as the 

only assumption is that the errors have finite mean and 

variance. Furthermore, according to the Gauss-Markov 

theorem, the LS estimators will have minimum variance 

within the class of all linear unbiased estimators. In fact, if 

the errors are normally distributed, the LS estimators will be 

equivalent to the Maximum Likelihood estimators. However, 

when non-normality assumption prevails the distribution of 

the errors may not have finite mean and variance and the LS 

estimators will not have minimum variance and not efficient. 

On the other hand, the ML estimators which are based on the 

distribution of the errors are well known to be consistent and 

efficient hence they can be relied on. Some efforts have been 

put in search for better methods in non-normal regression. 

Kadiyala and Murthy [13], compared the ML method with 

the method of minimum sum of absolute errors (MSAE) in a 

multiple linear regression model with Cauchy errors. The 

method of Modified Maximum Likelihood (MML) 

estimation was invoked by Bian and Tiku [3] and Tiku et al 
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[19] to estimate the parameters of the linear regression model 

where the errors assumed a distribution from the Student‘s t 

family of distributions. The MML method utilizes Taylor 

series expansion to approximate some terms in the likelihood 

function so as to make it linear so that closed form estimates 

can be obtained. The MML method was used by Islam et al. 

[11] to a linear regression model with the errors assumed to 

be from a family of skewed distributions, Weibull and 

generalized logistic. They showed that these estimators are 

efficient and robust. Tiku et al. [20] also applied the MML 

method to a linear regression model with errors from non-

normal symmetric distributions. They also found that the 

estimators are efficient and robust in the presence of outliers. 

Modified Maximum Likelihood estimators for the multiple 

regression coefficients in a linear model with the underlying 

distribution assumed to be one of Student‘s t family were 

developed by Wong and Bian [21]. They demonstrated that 

the MML estimators are more efficient in estimating the 

parameters in the Capital Asset Pricing Model by comparing 

its performance with that of least squares estimators on the 

monthly returns of US portfolios. Akkaya and Tikku [1] 

considered the estimation of the parameters of a simple 

autoregressive model where the errors have asymmetric 

distribution and showed that the OLS estimators are 

inefficient. Xiang et al [23], carried out a simulation study to 

investigate the efficiency of the ordinary least squares 

estimators of the parameters of a simple linear regression 

with non-normal errors and concluded that for large samples 

(n>3000) the OLS estimates are efficient. Howard M. [9] 

used simulation to compare OLS estimators and quantile 

estimators when the assumptions of normality and 

homoscedasticity of error distribution are violated and found 

that quantile estimators perform drastically better than OLS 

estimators. 

A comparison of the ML method with the method MSAE 

was done by Kadiyala and Murthy [13]. They compared the 

performance of these two methods in a multiple regression 

model with Cauchy errors and found that the Maximum 

Likelihood estimators out-performed the MSAE estimators. 

However, the MSAE estimators seemed to be a closer 

competitor of the ML estimators. Bayesian methods have 

also been used by Geweke [8] and Fernandez and Steel [5]. 

Geweke [9] employed Bayesian methods to construct a linear 

model where the errors followed a symmetric t-distribution. 

Fernandez and Steel [5] used Bayesian Markov Chain Monte 

Carlo (MCMC) methods to develop a linear model with the 

errors following a skewed t-distribution. Some pitfalls were 

revealed by Fernandez and Steel [6] on both Maximum 

Likelihood and Bayesian methods of inference from a 

multivariate regression model with independent Student-t 

errors with unknown degrees of freedom. A class of robust 

estimators for the parameters of a regression model with the 

distribution of the error terms coming from a log-gamma 

distribution was proposed Bianco et al. [4]. 

This paper presents construction of approximate likelihood 

confidence intervals and regions for the parameters of a 

simple linear regression model with Cauchy errors by means 

of normal approximation to the Cauchy likelihood model. 

The efficiency of the approximate confidence intervals is 

evaluated by means of coverage probabilities via simulation. 

2. The Cauchy Model 

2.1. Cauchy Probability Distribution 

The Cauchy distribution, also known as the Lorentz 

distribution, is family of continuous probability distributions 

similar to the normal distribution family of curves. However, 

they are more peaked and have heavier tails than the normal 

distribution. The Cauchy distribution serves as counter 

example for some well accepted results and concepts in 

statistics. For instance, Stuart and Ord [18] showed that the 

sampling distribution of the mean of a random sample of � 

independent observations from a Cauchy distribution fails to 

tend to normal for large sample size n and the central limit 

theorem is inapplicable. A random variable �  follows a 

Cauchy distribution with location parameter �  and scale 

parameter � if it has the probability density function 

���	 = ���	�
 �1 + ����� ����
 , −∞ < � < ∞. (1) 

The location parameter � is the location of the peak of the 

distribution (the mode of the distribution), while the scale 

parameter � specifies half the width of the density function at 

half the maximum height. We write �~���, �	 to mean that 

the random variable �  has a Cauchy distribution with 

parameters � and �. 

The cumulative distribution function is given by 

���	 = 
�+ ��
 tan�
 ����� �                    (2) 

The Cauchy distribution is symmetrical about � = �	and is 

bell-shaped just like the normal distribution curve. It is a 

classical example of a distribution that has inexistent 

moments of order greater than or equal to 1. Consequently, it 

does not have both mean and finite variance. However, 

expressions for fractional absolute moments of a Cauchy 

distribution were derived by Goria [7]. The median of the 

Cauchy distribution is θ while the lower and upper quartiles 

are � − �  and � + � , respectively. As a result of the 

divergent moments, the law of large numbers and the central 

limit theorem do not apply. The location parameter θ and the 

scale parameter σ may be regarded as analogous to the mean 

and standard deviation respectively (Johnson et al., [12]. 

The Cauchy distribution arises in resonance and 

spectroscopy applications in physics, and also serves as an 

additional probability to model fat tails in computational 

finance; the Cauchy distribution can be used to model VAR 

(value at risk) producing much larger probability of extreme 

risk than the Gaussian distribution. Mahdizadeh and 

Zamanzade [17] developed goodness of fit tests for the 

Cauchy distribution and considered its application to 

financial modeling. 

Apart from the maximum likelihood method, an iterative 

method for estimating the scale and location parameters of a 

Cauchy distribution using the empirical characteristic 
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function was proposed by Koutrouvelis [15]. An alternative 

estimator for the location and scale parameters are the 

median and the semi-interquartile range, respectively 

(Howlader and Weiss [10]. 

2.2. The Cauchy Likelihood Model 

Suppose there are �  pairs of observations 

( �
, "
	, ���, "�	, … , ��$ , "$	 . These observations are 

assumed to satisfy the simple linear regression model, and so 

we can write 

"% = & + '�% + (%, ) = 1,2, … , �	               (3) 

where �%  is the predictor variable, "%  is the dependent 

variable, and (%  is the random error term. The (%′,  are 

assumed to be IID ��0, �	 random variables. The distribution 

of the response variable will be ��& + '�% , �	  and the 

likelihood function will be defined as 

.�&, ', �	 = ���	�$∏ �1 + �01�2�3�1� ���			$%4
               (4) 

Taking the logarithm of �4	 the log-likelihood function is 

obtained. 6�&, ', �	 
= −� log � − � log � − ∑ log ;1 + �01�2�3�1� ��<$%4
 		  (5) 

Differentiating partially the above log-likelihood function 

with respect to each of the three parameters, the score 

functions are obtained as 

=>=2 = 2∑ 01�2�3�1�?@�01�2�3�1	?$%4
                     (6) 

=>=3 = 2∑ �01�2�3�1	�1�?@�01�2�3�1	?$%4
 	                   (7) 

=>=� = 2∑ �01�2�3�1	?�?@�01�2�3�1	? − $�$%4
 	              (8) 

The elements of the hessian matrix are the following 

second order partial derivatives of the log-likelihood function 

A�6A&� = −2B �� + �"% − & − '�%	���� + �"% − & − '�%	�	�
$
%4


 

A�6A'� = 4B �"% − & − '�%	��%���� + �"% − & − '�%	�	�
$
%4


− 2B �%��� + �"% − & − '�%	�
$
%4


 

A�6A�� = ��� − 4B �"% − & − '�%	���� + �"% − & − '�%	�	�
$
%4


− 2��B �"% − & − '�%	��� + �"% − & − '�%	�
$
%4


 

A�6A&A' = 4B �"% − & − '�%	��%���� + �"% − & − '�%	�	�
$
%4


− 2B �%�� + �"% − & − '�%	�
$
%4


 

A�6A&A� = −4�B "% − & − '�%��� + �"% − & − '�%	�	�
$
%4


 

A�6A'A� = −4�B �"% − & − '�%	�%��� + �"% − & − '�%	�	�
$
%4


 

The partial derivatives in �6	, �7	 and �8		are equated to 

zero and the resulting equations are then numerically solved 

simultaneously for & , '  and �  to obtain the maximum 

likelihood estimates of the unknown parameters. The starting 

points for &  and '  in the iterative algorithm were the 

corresponding least squares estimates while that of the scale 

parameter was half of the inter-quartile range. 

3. Likelihood Regions and Intervals 

The relative likelihood function (RLF) of	� =��
, ��, … , �F	, is defined as 

G��
, ��, … , �F	 = H��I,�?,…,�J	HK�LI�L?,…,�LJM                          (9) 

Note that 0 ≤ G��	 ≤ 1 andGK�OM = 1. Consequently, the 

natural logarithm of G , called the relative log-likelihood 

function, is defined as 

P��
, ��, … , �$	 = 6��
, ��, … , �F	 − 6K�O
�O�, … , �OFM		   (10) 

A major importance of the joint RLF is that it ranks the 

sets of parameter values according to their plausibility such 

that a set of parameter values with RLF value close to 1 is 

more plausible than any other set with RLF value near zero. 

For Q ≤ 2,  it is possible to plot the RLF as well as its 

logarithmic function. When Q = 2 , the 100R%  likelihood 

region is the set of values ��
, ��	 such that G��
, ��	 ≥ R 

while the curve G��
, ��	 = R, which forms the boundary of 

this region, is called the 100R%	 likelihood contour. The 14.7% and 3.6% likelihood regions correspond to 95% and 99%	confidence regions, respectively. 

It is very hard to plot and interpret the RLF for the case of Q > 	2. Therefore, the parameters can be considered one or 

even two at a time and inference is made just for the selected 

parameters. This can be achieved using the maximized 

relative likelihood function. The maximized relative 

likelihood function of �Z is obtained by holding �Z fixed and 

maximizing the joint RLF over the other Q − 1 parameters. 

Thus, 

G[\]K�^M = max�^	a%�bc G��
, ��, … , �F	         (11) 

If the number of unknown parameters is small in 

comparison with the number of independent observations, 

then the maximized RLF has properties similar to those of a 



 International Journal of Statistical Distributions and Applications 2021; 7(4): 108-114 111 

 

one parameter RLF and satisfactory results will be obtained 

(Kalbfleisch, [14]. Inferences concerning �Z  can be made 

using the maximized RLF of �Z . The 100R%  likelihood 

interval for �Z  is the set of parameter values such that G[\]K�^M ≥ R . The 14.7%  and 3.6%  likelihood regions 

correspond to 95%  and 99%	 confidence regions, 

respectively. 

4. Normal Approximations to the Cauchy 

Likelihood Model 

4.1. The Normal Log-Relative Likelihood 

The normal approximation to the Cauchy likelihood model 

is derived using the Taylor series expansion for the Cauchy 

log likelihood function 6��	  in (5), with � = �&, ', � . The 

Taylor series expansion for the Cauchy likelihood model at 

the maximum likelihood estimate �O = �&d, 'e, �d	 is given by 

6��	 = 6K�OM + K� − �OM6fK�OM + 12 K� − �OM6ffK�OMK� − �OMf 
+⋯+ G$	                                  (12) 

where G$  is the remainder term. Noting that 6fK�OM = 0 and 

ignoring the remainder term and the terms that are of order 

greater 2, the normal approximation to the Cauchy relative 

log likelihood function, P��	, is obtained as 

Ph��	 = − 
� K� − �OMiK�OMK� − �OMf	              (13) 

where iK�OM = −6ffK�OM.	 The matrix i  is the information 

matrix. Expanding the above equation results to the 

following normal approximation to the Cauchy likelihood 

model with j = �&, ', �	 
Ph�&, ', �	 = −12 �& − &d	�ie

 

−12 K' − 'eM�ie�� − 12 �� − �d	�iekk 

−�& − &d	K' − 'eMie
� − �& − &d	�� − �d	ie
k 

−K' − 'eM�� − �d	ie�k	                       (14) 

Differentiating equation �14	  partially with respect to �, 
and equating it to zero and solving for � as a function of both & and	' yields. 

�d�&, '	 = �d − �2�2l	meIn@K3�3LMme?nmenn 	                (15) 

Substituting �15	 into �14	, the maximized log-RLF of & 

and ' is obtained as 

Pop��&, '	 = −12 �& − &d	� qie

 − ie
k�iekk r
− 12 K' − 'eM� qie�� − ie�k�iekk r 

−�& − &d	K' − 'eMie
� �ie
� − meInme?nmenn �	                   (16) 

The construction of approximate confidence intervals for 

individual parameters requires Pop��&	, 	Pop��'	 
andPop���	, the maximized relative log likelihood functions 

of & , '  and �,	 respectively. To obtain Pop��&	 , equation 

(14		is maximized over �', �	 while holding the parameter & 

constant. Thus, 

Pop��&	 = PhK&, 'e�&	, �d�&	M	                    (17) 

The functions 'e�&	  and �d�&	  are solutions to the 

simultaneous equations 
=st=3 = 0 and 

=st=� = 0. These solutions 

are as follows 

�d�&	 = �d + �& − &d	 ;me??meIn�meI?me?nme?n?�me??menn <	              (18) 

'e�&	 = 'e + K' − 'eM ;meI?menn�meInme?nme?n?�me??menn <             (19) 

Substituting these equations into �17	, Pop��&	 is obtained 

as 

Pop��&	 = −12 �& − &d	� 

Kie

 + u�ie�� + v�iekk + 2uie
� + 2vie
k + 2vuie�kM	    (20) 

where the terms v and u are given as below. 

v = ie��ie
k − ie
�ie�kie�k� − ie��iekk , 
u = ie
�iekk − ie
kie�kie�k� − ie��iekk . 

Equation �20	 can be rewritten as 

Pop��&	 = − 
� �& − &d	�w2		                  (21) 

where 

w2 = ie

 + u�ie�� + v�iekk + 2uie
� + 2vie
k + 2vuie�k	 (22) 

The other maximized relative log likelihood functions, Pop��'	 and Pop���	, are obtained in a similar manner and 

are given as 

Pop��'	 = − 
� K' − 'eM�w3 	          (23) 

where 

w3 = x�ie

 + ie�� + G�iekk + 2xie
� + 2Gxie
k + 2Gie�k	   (24) 

G = ie

ie�k − ie
�ie
kie
k� − ie

iekk  

x = ie
�iekk − ie
kie�kie
k� − ie

iekk  
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and 

Pop���	 = − 
� �� − �d	�w�	                     (25) 

where 

w� = y�ie

 + z�ie�� + iekk + 2yzie
� + 2yie
k + 2zie�k	  (26) 

y = ie��ie
k − ie
�ie�kie
�� − ie

ie��  

z = ie

ie�k − ie
�ie
kie
�� − ie

ie��  

4.2. Likelihood Confidence Intervals 

The maximized log-relative likelihood functions for the 

individual parameters are quadratic in nature and closed form 

likelihood interval of each of the parameters can be obtained. 

The limits of 100R% likelihood interval for & is the solution 

to the equation 

Pop��&	 = −12 �& − &d	�w2 = logR 

This solution is 

& = &d ± |−2 log Rw2  

Therefore, the 100R% likelihood for & is 

&d − }�� ~�� ��� ≤ & ≤ &d + }�� ~����� 	               (27) 

Similarly, the respective 100R% likelihood for ' and � are 

'e − }�� ~����� ≤ ' ≤ 'e + }�� ~�� ��� 	               (28) 

and 

�d − }�� ~����� 	≤ � ≤ �d + }�� ~����� 	             (29) 

The quantities 	w2 > 0 	w3 > 0, and w� > 0 are defined as 

in equations �22	, 24 and �26	, respectively. 

5. Simulation 

In this study, data simulated from a simple linear 

regression model in (3) was used. The parameters &, '	and � 

were arbitrarily chosen to represent the true values of the 

population parameters. For the purpose of simulation study 

the values for the predictor variable � were generated from 

the uniform distribution. With parameter values fixed 

at �&, ', �	 = �7,13,2	 , four datasets were simulated for � = 50, 250, 500, 1000 and the respective 95% approximate 

likelihood confidence intervals for the parameters &, '  and �	were computed and are shown in table 1 below. 

 

Table 1. The 95% approximate likelihood intervals for &, '  and �  when � = 50, 250, 500,	and 1000. 

n � � � 

50 5.3907, 7.9058 9.4551, 15.0463 1.2325, 2.5702 

250 6.1561, 7.4558 12.2513, 13.7473 1.4357, 2.0556 

500 6.5381, 7.4939 12.0326, 13.7473 1.8371, 2.3561 
1000 6.6707, 7.3047 12.2423, 13.3959 1.7448, 2.0790 

Further, the graph of Gop��&, '	  was plotted for 

appropriate values of & and	'. As shown in figure 1. Figure 2 

shows the 75%, 50% and 10% contour likelihood regions for & and ' To show the accuracy in estimating &, '	and	� alone, 

the graphs of Gop��&	, Gop��'	and Gop���	 are plotted as 

they are in figures 3, 4 and 5, respectively. 

 

Figure 1. The graph of the maximized relative likelihood function of & 

and	'. 

 

Figure 2. The 0.1, 0.5 and 0.75 contour likelihood regions for & and	'. 

 

Figure 3. A plot of Gop��&	. 
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Figure 4. A plot of Gop��'	. 

 

Figure 5. A plot of Gop���	. 
The coverage probability achieved by the approximate 95%  confidence intervals for the three parameters were 

calculated for 500 repeated simulations each of size � = 250 

and the summary statistics for the coverage probability are 

presented in table 2. 

Table 2. Summary statistics for coverage probabilities of the approximate 

confidence intervals. 

Summary statistics � � � 

Min 0.9183 0.9160 0.9060 

Mean 0.9447 0.9459 0.9456 

Max 0.9673 0.9760 0.9760 
Std deviation 0.01076 0.01001 0.01003 

6. Discussion 

The derivation of the normal approximation to the Cauchy 

likelihood model using the Taylor series expansion has been 

presented. The relevance of this approximation is that it is 

used to express the maximized relative likelihood functions 

of one or two of the three parameters explicitly as a function 

of the data. The maximized log-relative likelihood functions 

for & , '  and �  are quadratic in nature and therefore the 

closed form end points of the approximate likelihood 

intervals in (27), (28) and (29) are easy to derive and 

compute. 

The effect of the sample size is seen on the accuracy of the 

approximate 95% confidence intervals for &, '  and � . In 

table 3 it can be noted that for � = 50 the intervals for the 

interval estimates are wider for all parameters but they are 

narrower as the sample size increased to � = 1000  as is 

expected. A more detailed evaluation of the accuracy of the 

approximate 95% confidence intervals is provided in table 2. 

The minimum, mean and maximum values of the 500 

computed coverage probabilities indicate that the actual 

coverage probabilities for these approximate confidence 

intervals are very close to 95%. The standard deviation of the 

computed values of coverage probability for confidence 

interval for each parameter is low, presenting additional 

evidence of reasonable accuracy. 

Table 3. The length of approximate likelihood intervals. 

� � � � 

50 2.5151 5.5912 1.3377 

250 1.2997 1.496 0.6199 

500 0.9558 1.7147 0.519 
1000 0.634 1.1536 0.3342 

The accuracy in jointly estimating & and ' was examined 

by plotting the graph of the maximized relative function and 

contour regions for &  and '  as shown in figures 1 and 2, 

respectively. The plot of the maximized relative likelihood 

for & and ' is clearly seen to be analogous to a surface sitting 

on a mountain. A pair of parameters �&, '	 that is close to the 

peak of the likelihood graph is more plausible than those 

which are far from the peak. The relative likelihood surface 

is steep and has a sharp peak and as a result produces 

narrower likelihood regions in figure 2. This indicates good 

accuracy on the estimates of the regression coefficients & and '. Even within the 10% likelihood region, these values are 

very close to the true parameters,�7,13	. The joint evaluation 

of the accuracy of the estimates of regression coefficients is 

not possible with the traditional Wald interval estimation 

method but is important because the joint likelihood function 

is not orthogonal in terms of the parameters. This paper has 

not considered a data-based comparison of the Wald method 

and the likelihood normal approximation, but the Wald 

method is expected to perform poorly than the likelihood 

normal approximation method when the sample size is small. 

The normality assumption requires very large samples for it 

to be valid (see [9]) 

7. Conclusion 

It is generally recognized that non-Normal samples occur 

very frequently in practice. This study has considered the 

construction of approximate likelihood regions and 

confidence intervals for the parameters of a simple linear 

regression model with the errors assumed to follow a Cauchy 

distribution. These likelihood regions and intervals were 

constructed by applying Taylor series expansion to obtain the 

normal approximation to the Cauchy likelihood. An attractive 

feature about this approximation is that it is possible to obtain 

the relative likelihood function of one parameter and the two 

regression coefficients in terms of the data, and hence made it 

possible to obtain closed form of the limits of the confidence 

intervals for individual parameters and construct the 
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likelihood confidence region for the regression coefficients. 

By simulation we have demonstrated that the approximate 

confidence intervals for all the three parameters have short 

lengths and that their coverage probabilities are close to 95% 

(see table 2); indicating that they are accurate. Future 

research may be to extend the likelihood normal 

approximation method to a multiple linear regression model 

with Cauchy errors and construct confidence intervals for the 

regression coefficients and the standard deviation. The idea 

of normal approximation can also be applied to other 

nonnormal error distributions apart from the Cauchy 

distribution for the purpose of constructing the likelihood 

intervals. 
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