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Abstract: A four-parameter continuous probability model called the Weibull log-logistic {Exponential} distribution 

(WLLED) was introduced and studied in this research using T-log-logistic {Exponential} distribution via T-R{Y} framework 

to extend the two-parameter log-logistic distribution. The objective of this research is to explore the versatility and flexibility 

of the log-logistic and Weibull distributions in modeling lifetime data. Some basic structural properties which include the 

reliability measures and hazard function, cumulative hazard function, Moment, Quantile, skewness, kurtosis, mixture 

representation, order statistics and asymptotic behavior of the WLLED were obtained and established. The shape of the new 

four parameter distribution is also investigated. A simulation study was conducted to evaluate the MLE estimates, bias, and 

standard error for various parameter combinations and different sample sizes. The efficiency of the WLLE distribution was 

compared with other related distribution from the literature using five goodness-of-fit statistics: AIC, CAIC and BIC, 

Anderson-Darling A* and Cramér-Von Mises W*, methods of comparison. The method of maximum likelihood estimation was 

proposed in estimating its parameters. An application to the survival times of 121 patients with breast cancer dataset was 

provided and the WLLED displays a good fit. Finally, it is recommended that the WLLED can be used for modeling positively 

skewed real-life data. 

Keywords: Log-logistic Distribution, Censored Data, Lifetime Data, Mathematical Statistics,  

Maximum Likelihood Estimation 

 

1. Introduction 

Standard distributions have been used extensively over the 

years in describing real life events and for modeling in fields 

like actuarial, biology, engineering, environmental sciences, 

medicine and many others. However, there is a need to 

extend these distributions for better modeling capability 

especially in applied fields of study. Therefore, methods for 

generating new families of distributions have been 

introduced in the literature and several families of 

distribution have also been studied. These attempts were 

aimed at providing greater flexibility in modeling data in real 

life practice. A list of these families of distributions are 

contained in Oguntunde P. E et al [1] and the references 

therein. 

However, the interest of this research is to extend the log-

logistic distribution following the concept of Aljarrah, M. A. 

et al [2]. Examples of some extended forms of log-logistic 

models are: The Type I half-logistic family of distributions 

[3], Zografos-Balakrishnan odd log-logistic family of 

distributions [4], generalized odd log-logistic family of 

distribution [5], beta odd log-logistic generalized family of 

distributions [6], Log-logistic Weibull Distribution [7] and 

many more. 

The motivation for developing the WLLED in this article 

is the advantages presented by these generalized distributions; 

for instance, they have a hazard function that exhibits 

increasing, decreasing and bathtub shapes. The versatility and 

flexibility of the log-logistic and Weibull distributions in 

modeling lifetime data is also another motivation for this 

study. 



2 Obalowu Job and Adeyinka Solomon Ogunsanya:  Weibull Log Logistic {Exponential} Distribution: Some  

Properties and Application to Survival Data 

The structure of the remaining part of this paper is as 

follows: in section 2, the WLLED is derived and its special 

models are identified. A linear representation for the WLLE 

density is derived and some of its mathematical properties 

including ordinary moments and order statistics are obtained 

in section 3. In section 4, estimation of model parameters 

using the method of maximum likelihood is provided. A real 

data set to establish the empirical flexibility of the new model 

is provided in section 5. 

2. Derivation of T-log Logistic 

{Exponetial} Distribution 

The log logistic distribution is the probability distribution 

of a random variable whose logarithm has a logistic 

distribution. Authors like [8-11] have studied the log-logistic 

distribution in some details. It has a cumulative distribution 

function of the form: 

�� = �����
	
�����                                      (1) 

The corresponding probability density function (pdf) is: 

�� = ���������
�	
�����
�                                       (2) 

where α>0 and β>0 are scale and shape parameter 

respectively. This distribution is used in survival analysis as a 

parametric model for events whose hazard rate increases 

initially and decreases later. 

However, the new distribution with T-R{Y} framework is 

given as: 

����� = � ������� = ������������������ � ��
!  

The corresponding pdf is: 

����� = ����� × �������������������������� 

Alternatively, 

����� = ������������� × �ˊ�������� × ����� 

Ogunnsanya et al. [12] explored the properties of Odd 

Lomax-Exponential (type III) (OLE) distribution. 

Alzaatreh et al., ([13-16]) studied respectively, the T-

R{exponential}, T-normal{Y}, T-gamma{Y} and T-

Cauchy{Y} families of distributions with specific 

examples. Weibull Inverse Rayleigh Distribution [17]. 

Some general properties and application of the T-R{Y} 

family was studied by [2]. 

2.1. T-log Logistic {Expontential) Distribution 

A new family of generalized log-logistic distribution based 

on the quantile function of standard exponential distribution 

with a support of the random variable T is (0, ∞) is derived in 

this section as follows: 

Let ( )XF x  be any random variable X and the pdf of any 

random variable Y defined on �0, ∞], 

&��� = � '����������� ��
( = )*���������+ 

����� = ������������� ����� = ���−-./01 − �����2� 

where ����� and ����� are the log-logistic and exponential 

distributions. �����  is any lifetime distribution (T). This 

newly developed method is used to define the T-Log 

logistic{Y} family of distributions by making T the Weibull 

random variable. 

For Log logistic {Exponential} distribution, 

����� = 3 '�����45678	
�����9:;
( = �� 8−-./ <1 +

� >�?@4	9  

The corresponding pdf is: 

����� = ����� × ���−-./01 − �����2����−-./01 − �����2� 

Alternatively, 

����� = �����1 − ����� × ���−-./01 − �����2� 

Therefore, the of generalized T-Log Logistic {Exponential} 

distribution is: 

����� = �� A−-./ <1 + � >�?@4	B                (3) 

The corresponding pdf is: 

����� = ���������
�	
�����
� × CDE45678	
�����9:;F

C�E45678	
�����9:;F             (4) 

Alzaatreh et al. [14], the T-Log Logistic{Exponential} can 

be interpreted as; “let Y be a lifetime random variable having 

Log logistic distribution and the cumulative hazard function 

that an individual (or component) following the lifetime Y 

will die (fail) at a time x is −-./01 − �����2  being the 

quantile function of a standard exponential distribution”. 

Alzaatreh et al [13] proposed the T-X method of 

generating distribution using: W�F�x�� = ��������� =−-./01 − �����2, where W(F(x)) is the quantile function of 

the standard exponential distribution and the T-Log 

logistic{exponential} is a family of distribution from the 

hazard function and the cumulative hazard function of the 
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Log logistic distribution as: 

����� = C�� �	4��� � × ���−-./01 , �����2�  

Alternatively, ����� � J���� " ���K����� 

Survival Function. 

The survival function of T-LLED is given as: 

L���� � 1 , �� A,-./ <1 = � >�?@4	B               (5) 

For M, N O 0 and � P 0. 

Hazard Function. 

The hazard function of the T-LLE distribution is derived 

from this definition: 

J���� �
<��@�����

�;Q�����
�"RDS:TUV8;Q�����9:;W
R�S:TUV8;Q�����9:;W

	4�DE45678	
�����9:;F                       (6) 

For M, N O 0 and � P 0. 

2.2. Weibull-log Logistic {Exponential} Distribution 

Let us consider a lifetime two-parameter Weibull 

distribution with pdf and given by: 

���t; λ, k� � A\] �]̂�\4	 _4�à�bB; t≥0 

where c, d P 0  and ����� � 1 , _4�è�b
and the of Log-

Logistic distribution as given in section 2 of this article. 

Then the proposed WLLE distribution from (3) is: 

����� � 1 , _ ,4
f
gh:TUV8;Q�����9:;

e i
jk

b

                     (7) 

While the corresponding pdf is derived as follows from (4) 

is: 

����� � ���������
�	
�����
� " CDE45678	
�����9:;F

C�E45678	
�����9:;F  

����� � 	? _4��:l� � " bamn<�:l� @a ob:;p:qn<�:l� @a r
b

;np:n<�:l� @n
  

Therefore, the pdf of the WLLE Distribution is given by: 

����� � \?]b>� �?4	 <1 = � >�?@4	 8-./ <1 = � >�?@9\4	 _4�	/]�bt5678	
�����9ub
                             (8) 

where c, M O 0 vw� d, N, � P  0  are parameters of WLLE 

distribution. 

The plots for the pdf and of the WLLED are displayed in 

Figures 1and 2 respectively. 

 

Figure 1. Plot for the pdf of the WLLED. 

 

Figure 2. CDF of the WLLE distribution. 
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Figure 3. Histogram of different combination of parameters. 

Figure 3 shows that a-c and e are negatively skewed while 

d and f are positively skewed this is an indication that the 

new model can fit both negatively and positively skewed data. 

Survival Function 

The survival function of the WLLE distribution is derived 

from this definition: L���� = 1 , ����� 

where ����� is the of the WLLE distribution. The survival 

function S(x) can be written as: 

L���� � _4�	/]�b5678	
�����9b
                     (9) 

For x>0, λ, β, k>0 and t>0. The probability that a system 

having age x units of time will survive up to x+t units of time 

is given by: 

L�� x �� � y� 
^�y� �   

L�� x �� � p:�;/a�bTUV8;Q��Q`� ��9b

p:�;/a�bTUV8;Q�����9b   

Hazard Function 

The hazard function of the WLLE distribution is derived 

from this definition: 

J���� � Cz� �	4�z� �  
where �����  and �����  are the PDF and CDF WLLE 

distribution. Therefore, the hazard function h(x) of the 

WLLED can be written as: 

J���� � b�ab�� �:;8	
�����9:;5678	
�����9b:;p:�;/a�bTUV8;Q�����9b

	4{|
|}	4p:�;/a�bTUV8;Q�����9b

~�
��

  

J���� � \?]b>� �?4	 <1 = � >�?@4	 -./ <1 = � >�?@\4	
                                                   (10) 

The corresponding plot for the survival function and 

hazard function of the WLLE distribution are displayed in 

Figures 4 and 5 respectively. 
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Figure 4. Survival rate plot of WLLE distribution for sample size=1000 and for various values of k, λ when α=1 and k=2. 

 

Figure 5. Hazard rate plot of WLLE distribution for sample size=1000 and for various values of k, λ when α=1 and k=2. 

The log hazard of the WLLED which is frequently used in modeling is given by: c���� = -./�J���� 

c���� = -./ � \?]b>� �?4	 <1 = � >�?@4	 -./ <1 = � >�?@\4	
  

c���� � -./ � \?]b>�� = �N , 1�-./� = -./ <1 = � >�?@4	 = -./ �-./ <1 = � >�?@\4	
  

-./ < dNc\M?@ � N( 

c���� � N( = �N , 1�-./� , -./ <1 = � >�?@ = -./ �-./ <1 = � >�?@\4	
                                 (11) 

Reversed Hazard Function (RH) of the WLLED is: 
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)K��� = b�ab�� �:;8	
�����9:;5678	
�����9b:;p:�;/a�bTUV8;Q�����9b

	4p:�;/a�bTUV8;Q�����9b                                                 (12) 

Cumulative Hazard Function 

The cumulative hazard function of the WLLE distribution 

is derived from this definition: K���� = −-./pL���� 

where S(x) is the survival function of WLLE distribution. 

Hence, 

K���� = −-./p �_4�	/]�b5678	
�����9b�             (13) 

Simplifying (13) further, we have: 

K���� = �1/c�\-./ <1 = � >�?@\
            (14) 

The plots for the cumulative hazard function is displayed 

in Figure 6 while its plot against the survival rate is displayed 

in Figure 7. 

 

Figure 6. The Cumulative hazard rate of the WLLED. 

 

Figure 7. Survival rate Versus Cumulative hazard rate of the WLLED. 
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Shapes of the density and hazard rate function. 

The shapes of the density and hazard rate can be described numerically. The critical points of the new proposed density are 

the roots of the equation: 

� >�? dN -./ <1 + � >�?@\4	
  

�� >�? �d − 1�N -./ <1 + � >�?@4	 + �N − 1� <1 + � >�?@ − �����\? 5678	
�����9b:;
]b − � >�?� = 0  

� >�? �d − 1�N -./ <1 + � >�?@4	 + �N − 1� <1 + � >�?@ − �����\? 5678	
�����9b:;
]b − � >�? = 0  

� >�? N -./ <1 + � >�?@4	 t�d − 1� − \ ]b -./ <1 + � >�?@\u + �N − 1� <1 + � >�?@ − � >�? = 0                (15) 

The critical points of the WLLE hazard are obtained from the equation: 

� >��? dN-./ <1 + � >�?@\4	
  

AN-./ <1 + � >�?@4	 �d − 1� − NB + � >�? d�N − 1� <1 + � >�?@ AN-./ <1 + � >�?@\4	B = 0  

� >��? dN-./ <1 + � >�?@\4	
  

AN-./ <1 + � >�?@4	 �d − 1� − NB + � >�? d�N − 1� <1 + � >�?@ AN-./ <1 + � >�?@\4	B = 0  

� >��? dN-./ <1 + � >�?@\4	 AN�d − 1�-./ <1 + � >�?@4	 − N + � >�4? �N − 1� <1 + � >�?@B = 0  

N�d − 1�-./ <1 + � >�?@4	 − N + � >�4? �N − 1� <1 + � >�?@ = 0                                            (16) 

By using any numerical software, the equations (15) and 

(16) can be examined to determine the local maximum and 

minimum and inflexion points of WLLED. 

Quantile Function for the WLLE Distribution 

This is used for the generation of some moments of 

random variables such as skewness and kurtosis. 

Furthermore, can be used to obtain the median and 

generation of random numbers. It is derived by taking 

the inverse of the inverse of a given probability 

distribution. The quantile function of WLLE distribution 

is given as: 

�� = M �_]�4��� �	4���;/b − 1�	/?
                   (17) 

Where p ~ U (0,1) 

Asymptotic behavior of WLLE distribution 

The asymptotic behavior of the WLLE distribution when � → 0 and when � → ∞ is determined as follows: 

lim →(�(�) = lim →( \?]b>� �?4	 <1 + � >�?@4	 -./ <1 + � >�?@\4	 _4(	/])b5678	
�����9b = 0                (18) 

lim →��(�) = lim →� \?]b>� �?4	 <1 + � >�?@4	 -./ <1 + � >�?@\4	 _4(	/])b5678	
�����9b = 0             (19) 

Since lim�?4	 →( = 0, then equation equals zero. 

Similarly, since lim →�_4(	/])b5678	
�����9b = 0  as x 

approaches zero and infinity, the density of the proposed 

distribution also tends towards zero. 
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3. Mixture Representation and Nth 

Moment of WLLE Distribution 

In this section, a useful representation for the WLLE 

distribution is provided. Using the pdf (8) of the WLLED, we 

have: 

Theorem 1: let X be a random variable of WLLE 

distribution, the linear representation is given as: 

����� = \�?]b>� �d − 1���,�,��?���
�
	�4	                                                               (20) 

Where � ≥ 0, � > 0, � > 0, ' ≥ 0 and M, c > 0. 

����� = \?]b>� �?4	 <1 + � >�?@4	 -./ <1 + � >�?@\4	��������������
_4�	/])b5678	
�����9b��������������   

  = -./ 81 + ��M�?9\4	 = (d − 1)-./ 81 + ��M�?9 

¡ = _4(	/])b5678	
� >��9b
 

Using series expansion, A and B can be rewritten as: 

  = (d − 1) ¢ (−1)�
	 ��M�?�
�

�
�£	

 

¡ = ¢(−1)� (1/c)�\-./ <1 + ��M�?@�\
'!

�
�£(

 

And the Taylor series expansion of <1 + � >�?@4	
is given as: 

81 + ��M�?94	 = ¢(−1)� <1� @�
�

��M��?
 

After substituting A and B, then, 

��(�) = \�?]b>� (d − 1) ∑ ∑ (−1)�
�
�
�
��	��(1/c)�\' �����(¦§)
�×�×�!��£	�̈£	 �?4	  

��(�) = d�Nc\M? (d − 1) ¢ (−1)�
�
�
�
�(1/c)�\'�
�,�,�£(,�©(

<1� @ �?(��
	
�)4	M?(��
�) × � × � × '! 
��(�) = \�?]b>� (d − 1) ∑ �	�� (4	)¦Q§QªQ«Q�(	/])ªb�>�(¦§Q«)×�×�×�!��.�£(,�©( �?(��
	
�)4	  

Let: 

��,�,�,� = \�?]b>� (d − 1) ∑ �	�� (4	)¦Q§QªQ«Q�(	/])ªb
>�(¦§Q«)×�×�×�! '��.�,�£(                                                  (21) 

Where � ≥ 0, � > 0, � > 0, ' ≥ 0. 

Then, 

��(�) = ��,�,��?(��
�
	)4	                                                                           (22) 

Hence the PDF of Weibull Log logistic 

{Exponential}Distribution is a mixture of PDF and 

Exponentiated x with power parameter N(�� + � + 1): 
��(�) = 1N(�� + � + 1) ��,�,��?(��
�
	) 
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The n
th

 Moment of WLLE Distribution: 

If X1, X2,... Xn be independent and identically distributed 

(IID) random variables that follow the WLLED�M, N, c, d� 

model, let ­	®  and ­�®  be the first two sample moments. 

­®̄ = � �¯�
( ������� 

­®̄ = � �¯�
( ��,�,��?���
�
	�4	�� 

­®̄ = ��,�,� � �¯
?���
�
	�4	�
( �� 

Given that 3 �¯
?���
	�4	�( �� = °�¡�w + N��� + � +1�, 1� 

Theorem 2: If X ∼ WLLED �M, N, c, d� , then the nth 

moment of X is given by: ­®̄ = ��,�,�°�¡�w + N��� + � + 1�, 1� 

­®̄ = ²§,¦,ª¯
?���
�
	�                             (23) 

And first, second moments and variance are given below: 

­	® = ²§,¦,ª	
?���
�
	�, ­�® = ²§,¦,ª�
?���
�
	� 
³v'�vw´_ = ��,�,�2 + N��� + � + 1� − < ��,�,�1 + N��� + � + 1�@�

 

³v'�vw´_ = ��,�,� E 12 + N��� + � + 1� − ��,�,��1 + N��� + � + 1���F 

Standard deviation of X is given by: 

¶ = ·��,�,� E 12 + N��� + � + 1� − ��,�,��1 + N��� + � + 1���F 
Skewness and Kurtosis 

In this research, the coefficient of skewness and kurtosis 

are calculated using quantile function which is defined by [17] 

and [18] respectively: 

L = ��¸/¹)4��(º/¹)
�(�/¹)�(¸/¹)4�(�/¹)                         (24) 

and 

» = �(¼/¹)4�(½/¹)
�(¾/¹)4�(	/¹)�(¸/¹)4�(�/¹)                    (25) 

Theorem 3: The skewness and kurtosis of WLLE 

distribution do not depend on parameter M. 

Proof. Recall the quantile function of WLLE distribution 

given in (17) as: 

��(¿) = M �_](4��� (	4�));/b − 1�	/?
  

Put (17) in (24) to have 

L = >�pa(:ÀÁÂ (�/Ã));/b4	�;/Ä4�>�pa(:ÀÁÂ (Å/Ã));/b4	�;/�
>�pa(:ÀÁÂ (Æ/Ã));/b4	�;/�
>�pa(:ÀÁÂ (�/Ã));/b4	�;/�4>�pa(:ÀÁÂ (Æ/Ã));/b4	�;/�   

Dividing the numerator and denominator by M 

L = �pa(:ÀÁÂ (�/Ã));/b4	�;/Ä4�pa(:ÀÁÂ (Å/Ã));/b4	�;/�
�pa(:ÀÁÂ (Æ/Ã));/b4	�;/�
�pa(:ÀÁÂ (�/Ã));/b4	�;/�4�pa(:ÀÁÂ (Æ/Ã));/b4	�;/�   

The same procedure is also used to prove that the kurtosis does not contain parameter M. Put (17) in (25) to have 

» = >�pa(:ÀÁÂ (;/Ã));/b4	�;/�4>�pa(:ÀÁÂ (Ç/Ã));/b4	�;/�
>�pa(:ÀÁÂ (È/Ã));/b4	�;/�
>�pa(:ÀÁÂ (�/Ã));/b4	�;/�4>�pa(:ÀÁÂ (Æ/Ã));/b4	�;/�   

Dividing through by α: 

» = �pa(:ÀÁÂ (;/Ã));/b4	�;/�4�pa(:ÀÁÂ (Ç/Ã));/b4	�;/�
�pa(:ÀÁÂ (È/Ã));/b4	�;/�
�pa(:ÀÁÂ (�/Ã));/b4	�;/�4�pa(:ÀÁÂ (Æ/Ã));/b4	�;/�   

Table 1. The Galtons skewness and Moors kurtosis for some values of (M, N, c, d) of the new WLLE distribution. 

α β λ k Skewness Kurtosis α β λ k Skewness Kurtosis 

0.1 0.1 0.1 10 0.2277 1.37 0.1 2 0.1 20 -0.1300 1.32 

0.1 0.1 0.1 20 0.0472 1.24 0.1 2 0.5 2 0.0014 1.27 

0.1 0.1 0.1 5 0.5305 2.22 0.1 2 0.5 5 -0.0810 1.28 

0.1 0.1 0.5 20 0.0880 1.25 0.1 2 0.5 10 -0.1101 1.30 

0.1 0.1 0.5 5 0.6284 2.89 0.1 2 0.5 20 -0.1250 1.32 
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α β λ k Skewness Kurtosis α β λ k Skewness Kurtosis 

0.1 0.1 2 10 0.5817 2.59 0.1 2 2 2 0.1448 1.39 

0.1 0.1 2 20 0.2671 1.44 0.1 2 2 5 -0.0164 1.26 

0.1 0.1 5 10 0.9111 11.37 0.1 2 2 10 -0.0766 1.28 

0.1 0.1 5 20 0.6237 2.85 0.1 2 2 20 -0.1080 1.30 

0.1 0.1 10 10 0.9957 134.90 0.1 2 5 2 0.3723 1.94 

0.1 0.1 10 20 0.9102 10.58 0.1 2 5 5 0.0917 1.29 

0.1 0.1 20 20 0.9958 120.71 0.1 2 5 10 -0.0203 1.26 

0.1 0.5 0.1 0.5 0.8551 7.95 0.1 2 5 20 -0.0794 1.28 

0.1 0.5 0.1 10 -0.0640 1.27 0.1 2 10 5 0.2500 1.48 

0.1 0.5 0.1 20 -0.1021 1.29 0.1 2 10 10 0.0653 1.26 

0.1 0.5 0.5 10 -0.0429 1.26 0.1 2 10 20 -0.0355 1.26 

0.1 0.5 0.5 20 -0.0913 1.29 0.1 2 20 10 0.2297 1.41 

0.1 0.5 2 10 0.0432 1.25 0.1 2 20 20 0.0513 1.25 

0.1 0.5 2 20 -0.0472 1.26 0.1 5 0.1 0.5 0.0225 1.29 

0.1 0.5 5 5 0.5216 2.40 0.1 5 0.1 2 -0.0962 1.29 

0.1 0.5 5 10 0.2310 1.41 0.1 5 0.1 5 -0.1222 1.31 

0.1 0.5 5 20 0.0520 1.25 0.1 5 0.1 10 -0.1311 1.32 

0.1 2 0.1 0.5 0.2351 1.47 0.1 5 0.1 20 -0.1356 1.33 

0.1 2 0.1 2 -0.0406 1.26 0.1 5 0.5 0.5 0.1025 1.55 

0.1 2 0.1 5 -0.0999 1.29 0.1 5 0.5 2 -0.0637 1.29 

0.1 5 2 0.5 0.3598 3.33 0.1 5 0.5 5 -0.1076 1.30 

0.1 5 2 2 0.0377 1.30 0.1 5 0.5 10 -0.1235 1.32 

0.1 2 0.1 10 -0.1199 1.31 0.1 5 0.5 20 -0.1317 1.32 

 
Table 1 shows that WLLE distribution has tendency to 

exhibit both positive skewness and negative skewness, 

when M, N, c, d are greater than zero but less than one the 

WLLE distribution exhibits positive skewness hence 

otherwise. 

Entropy 

In information theory, entropy is an important concept in 

information theory and can be defined as measure of the 

randomness or uncertainty associated with a random variable. 

However, the Shannon entropy for a random variable X with 

pdf ����� is defined as É*−-./�������+. 

Theorem 4 If �  is a random variable that has 

WHLED��; d, Ê, Ë� then the Shannon’s entropy is given as: 

É*−-./�������+ = Ì−-./���,�,��?���
�
	�4	�Í = ÉÌ−-./���,�,�,��Í + ÉÌ−-./��?���
�
	�4	�Í 

= É S−-./ � d�Nc\M? �d − 1� ¢ <1� @ �−1��
�
�
�
��1/c)�\M?(��
�) × � × � × '! '�
�,�.�,�£(

d�W + ÉÌ−-./��?(��
�
	)4	�Í 

Order Statistics 

Order statistics is an important concept in probability 

theory. Let a random sample �	, ��, . . . �¯,  from the 

distribution function F(x) and corresponding pdf f(x), 

therefore the pdf of ith order statistic is given as 

Proposition 5 If �  is a random variable that has 

WLED(�; d, Ê, Ë) and let ����� denote the pdf of ith order 

statistic which is given as: 

����� = ¯!(�4	)!(¯4�)! ∑  �Î£( (−1)Î <w − 1Ï @ � 	?(��
�
	)��
Î4	 ���,�,�,���
Î Ð �(¦§Q«Q;)ÑÒQÓ:;
                     (26) 

where d, Ê, Ë ≥ 0 are parameters of WHLE distribution 

Proof: Given 

����� = ¯!(�4	)!(¯4�)! �(�)�(�)�4	01 − �(�)2¯4	                                                          (27) 

����� = ¯!(�4	)!(¯4�)! ∑  �Î£( (−1)Î <w − 1Ï @ �(�)�(�)�
Î4	  

From equations (20) and (21) 

����� = ¯!(�4	)!(¯4�)! ∑  �Î£( (−1)Î <w − 1Ï @ Ð��,�,�,��?(��
�
	)4	Ñ Ô 	?(��
�
	) ��,�,�,��?(��
�
	)Õ�
Î4	
           (28) 

By factorizing equation (28), we have 
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����� = ¯!��4	�!�¯4��! ∑  �Î£( �−1�Î <w − 1Ï @ � 	?���
�
	���
Î4	 Ð��,�,�,��?���
�
	�4	ÑÐ��,�,�,��?���
�
	�Ñ�
Î4	
  

Then, it becomes 

����� = ¯!��4	�!�¯4��! ∑  �Î£( �−1�Î <w − 1Ï @ � 	?���
�
	���
Î4	 ���,�,�,���
Î Ð ��¦§Q«Q;�ÑÒQÓ:;
   

4. Parameter Estimation 

To estimate the parameters of the WLLE distribution, the 

method of Maximum Likelihood Estimation (MLE) was used 

as follows; Let X=x1, x2,..., xn be a random sample of n 

independently and identically distributed random variables 

each having the WLLE distribution, the likelihood function is 

given as follows: 

����� = \?]b>� �?4	 <1 + � >�?@4	 8-./ <1 + � >�?@9\4	 _4�	/])bt5678	
�����9ub
  

L(�� ; M, N, c, d) = ∏ \?]b>� ��?4	 <1 + � «> �?@4	  8-./ <1 + � «> �?@9\4	 _4(	/])bt5678	
��«� ��9ub
�̄£	                 (29) 

And the log-likelihood function is given as: 

-./Ø(�� ; M, N, c, d) = w-./(dN) − w-./�c\M?�  + (N − 1) ∑ -./(��) �̄£	 + ∑ -./ <1 + � «> �?@4	
�̄£	   

+ (d − 1) ∑ -./ <log (1 + � «> �?@�̄£	 − � 	]b� ∑ 8-./ <1 + � «> �?@9\
�̄£	                                                          (30) 

The log-likelihood function is differentiated with respect 

to the unknown parameters, equated to zero and solved 

simultaneously. The solutions are not in closed form, so the 

estimates of the parameters (M, N, c, d) must be obtained 

using iterative methods such as Newton-Raphson procedure. 

5. Application and Discussion 

In this section, the WLLE distribution is compared with other 

existing distributions using a real life application. In each case, the 

parameters are estimated by maximum likelihood method using 

the R3.4.4 version. First, we describe the data sets and give the 

MLEs (and the corresponding standard errors in parentheses) of 

the parameters and the values of the Akaike Information Criterion 

(AIC), Consistent Akaike Information Criterion (CAIC) and 

Bayesian Information Criterion (BIC) statistics. 

Data set: Breast Cancer data 

The data represents the survival times of 121 patients with 

breast cancer obtained from a large hospital in a period from 

1929 to 1938 (Lee 1992). It was also reported and used by 

[18]. The observations are: 

Table 2. Breast Cancer data set. 

0.3, 0.3, 4.0, 5.0, 5.6, 6.2, 6.3, 6.6, 6.8, 7.4, 7.5, 8.4, 8.4, 10.3, 11.0, 11.8, 12.2, 12.3, 13.5, 14.4, 14.4, 14.8, 15.5, 15.7, 16.2, 16.3, 16.5, 16.8, 17.2, 17.3, 

17.5, 17.9, 19.8, 20.4, 20.9, 21.0, 21.0, 21.1, 23.0, 23.4, 23.6, 24.0, 24.0, 27.9, 28.2, 29.1, 30.0, 31.0, 31.0, 32.0, 35.0, 35.0, 37.0, 37.0, 37.0, 38.0, 38.0 

 

Table 3. Data summary for Breast Cancer. 

Statistic Values 

N 100 

Minimum 0.39 

1st Quarter 1.84 

Median 2.7 

Mean 2.621 

3rd Quarter 3.22 

Variance 1.027964 

St Deviation 1.013885 

Maximum 5.56 

Skewness 0.3681541 

kurtosis 3.104939 

Table 4 shows the performance of the WLLE 

distribution with the McDonald Weibull (McW), ZBLL, 

Beta Log-Logistic (BLL) and Kumaraswamy Log-Logistic 

(KwLL) distributions. The following goodness of fit 

statistics (Anderson-Darling A* and Cramér-Von Mises 

W*) and model selection criteria: AIC (Akaike 

information criterion), CAIC (consistent Akaike 

information criterion) and BIC (Bayesian information 

criterion) are used. 

AIC=-2(l)+2p, CAIC=-2(l)+ 
��¯ ¯4�4	 and BIC=-2(l)+ plogn 

where (l) denotes the log-likelihood function evaluated at the 

maximum likelihood estimates, p is the number of 

parameters, and n is the sample size. 
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Table 4. Parameter Estimates, Standard Errors (in parentheses), AIC, CAIC, BIC, A* and W*. 

Distributions Estimates A* W* AIC CAIC BIC 

WLLE (α, β, λ, k) 
29.21 0.024 0.699 76.905 0.256 0.040 1166.152 1166.573 1174.539 

(3.29) (0.002) (0.002) (1.118) 
     

KLL (a, b, γ, a) 
33.70 23.048 0.336 0.044 1.511 0.232 1189.937 1190.282 1201.120 

(4.81) (13.979) (0.043) (0.020) 
     

BLL (a, b, α, β) 
0.36 0.732 53.251 3.368 0.494 0.066 1171.861 1172.206 1183.045 

(0.23) (0.482) (9.731) (1.716) 
     

ZBLL (a, α, β) 
0.35 77.856 3.098 

 
0.454 0.053 1167.063 1167.268 1175.450 

(0.10) (12.562) (0.579) 
      

ELL (a, α, β) 
0.32 70.715 3.401 

 
0.455 0.053 1167.341 1167.546 1175.728 

(0.09) (10.458) (0.658) 
      

 

6. Conclusion 

A new class of distributions called the T-Log logistic 

{Exponential} family has been proposed in this study. Some 

structural properties of the Weibull Log-logistic {Exponential} 

distribution including linear representation of its density 

function have been established. Explicit expressions for the 

moments, model, mean deviations and quantile function have 

been obtained. The maximum likelihood method is employed 

to estimate the WLLE distribution parameters. The proposed 

distribution (WLLE) was fitted to a real data set using five 

goodness-of-fit statistics. The WLLE distribution however 

provides consistently better fits than the other four competing 

models. The WLLE distribution is therefore a competitive 

model and it is hoped it will attract wider applications in 

several fields of study such as reliability engineering, 

insurance, hydrology and economics. 
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