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Abstract: The incidence of road fatality in the world is most alarming. It is noted that the number of deaths in Nigeria by 

COVID-19 is nothing compared to the deaths by road accidents. As at July 2022 the total number of deaths by COVID-19 is 

3,144 while the number of deaths by road accident is 10116, which is about 69% higher than deaths due to COVID-19. This paper 

hence considered the road accident fatalities during the COVID-19 hit period (2019-2021) in all the states of Nigeria. Due to the 

count nature of the response variable (Number of deaths) Poisson regression and the negative binomial regression are considered 

in other to build a model for predicting number of deaths due to road accidents. Both methods were compared to determine the 

most appropriate. The results of the analysis show that the number of male fatality is more than double that of the female and 

children with a percentage of 70.6%. The data revealed that Akwa Ibom State and Kaduna State have the minimum and the 

maximum number of deaths with 47 and 1070 respectively. The Poisson regression and Negative Binomial (NB) regression were 

considered for analysis. The data showed evidence of over-dispersion rendering the Poisson regression inadequate for the 

analysis, leaving the negative binomial regression as an alternative. Further assessment of the two models based on the 

mean-variance relationship, goodness of fit test, AIC and BIC, identified the NB as a better model for the analysis. The model 

considered the number of people killed as the response variable while the covariates include; speed limit, car issues, dangerous 

driving, fatigue, street light, bad roads and general factors. Applying the NB regression produced an end result model with only 

dangerous driving as a significant factor in road accidents fatalities. This shows that dangerous driving is the major cause of 

deaths on Nigerian roads. The paper also noted that based on the available data, road accidents is a more threatening fatal hazard 

than COVID-19 with a total death toll of 3,144 for COVID-19 and 10,116 for Road accidents in the same period considered. The 

paper suggests that the government should put more weight in curbing road accidents by instructing the road safety commission 

to focus more in developing new strategies or improving on the old strategies for eliminating or reducing dangerous driving by 

drivers on Nigerian roads. 
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1. Introduction 

The incidence of road fatality in the world is most alarming; 

World Health Organization (WHO) reveals that almost 1.2 

million persons get killed from road accidents. Ameratunga S 

et al. [2] observed that deaths and wounds due to road 

accidents have effect on the society and economy at large and 

this is considerably on the increase. The population considered 

in this study is all States in Nigeria with focus on the number 

of people that are killed by road accidents in all the 36 states 

and the Federal Capital Territory from 2019 to 2021. This 

period is we considered as COVID-19 hit era. Though 

COVID-19 is still on the loss in the world, this period 

considered in this work is the most hit period. Our interest was 

aroused by the realization that the number of deaths in Nigeria 

by COVID-19 in this period is nothing compared to the deaths 

by road accidents in the same period. As at July 2022 the total 
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number of deaths by COVID-19 is 3,144 while the number of 

deaths by road accident is 10,116, which tell us that deaths due 

to road accidents is about 69% higher than deaths due to 

COVID-19, in that same period. The paper aims at developing 

model to predictive deaths due to road accidents based on 

some factors. Data on deaths due to road accident constitutes a 

count data, hence it is considered to follow a discrete 

distribution. Since the response (number of killed) is a count 

data the Poisson regression and its modifications are 

considered in other to build this model. 

Research works in Economics and Social Sciences often 

deal with count variables, hence modeling count data is a 

frequent task. In most cases the data usually display 

over-dispersion or in some cases evidence of too many 

number of zeros, hence limiting the use of the classical 

Poisson regression model. The various extension of the 

Poisson regression model has been proven to deal with this 

issue of over-dispersion and too many zeros. These 

extensions are models that belong to the family of 

generalized linear models and they include the use of 

sandwich covariance, the use of the quasi-Poisson model or 

the use the negative binomial (NB) regression [15, 16]. These 

mentioned models typically arrests over-dispersion quiet well, 

but they do not necessarily handle the issue of excess zeros. 

Lambert D [14] proposed the Zero-inflated Poisson (ZIP) 

regression model for handling count data with excess zeros. 

This triggered many interest, both in the econometrics and 

Statistics literature. Lambert D [14] proposed a mixture of 

models that brings together a count component and a point 

mass at zero. Some of the alternative models that can be 

considered for modeling count data are negative binomial 

and hurdle models. In this research work there are no 

non-zero counts therefore Zero-inflated Poisson (ZIP) 

regression was not considered. The study focused on the use 

of Poisson regression and Negative Binomial regression. The 

two models are investigated to ascertain best fit for the data. 

Our aim is to build model for predicting the incidents of 

deaths through road accidents based on some factors, identify 

significant factors that encourage road accidents and 

significant factors that intervene in road accidents deaths. 

2. Linear Exponential Family 

Generalized linear models (GLMs) explains the 

dependence of a scalar variable yi (i = 1,..., n) on a vector of 

regressors xi. In GLMs the conditional distribution of yi |xi 

belongs to the linear exponential family with probability 

density function given as; 

���; �, �� = exp	��������
� + ������      (1) 

where λ is the canonical parameter that depends on the s 

through a linear predictor and � is a dispersion parameter 

that is often known. The functions g(·) and t(·) are known 

and determine which member of the family is used, e.g., the 

normal, binomial or Poisson distribution. Conditional mean 

and variance of the response ��  are given by’ 

����|��� = �� = ������ and �� ���|��� = �������� 
The dependence of the conditional mean E[yi | xi ] = µi on 

the covariates xi is specified via 

!�"�� = ��#$               (2) 

where g(·) is a known link function and β is the vector of 

regression coefficients. 

2.1. Poisson Regression 

The Poisson regression model belongs to the family of 

generalized linear models (GLMs). In a Poisson regression 

analysis it is assumed that the response variable follows a 

Poisson distribution. Cameron, A. C. & Trivedi, P. K. [7] 

stated that Poisson regression models are suitable for 

situations in which the distribution of the event under study 

follows a Poisson distribution. The density function of the 

Poisson distribution is mathematically denoted as; 

���� = %&	'()��%�
*! ; , = 0,1,2…         (3) 

Where the mean is ��,� = � and the variance ��,� = � 

and the dispersion index (DI) is given by 

��,� ��,�1 	= %
% = 1. 

When the variance is greater than the mean over-dispersion 

occurs otherwise, it is called as under-dispersion. 

Over-dispersion has qualitatively similar consequences to the 

failure of the assumption of homoskedasticity in the linear 

regression model [6]. The Poisson regression hinges on the 

assumption that it is possible to model the logarithm of the 

expected outcome of the response variable by a linear 

combination of parameters whose values are not known. 

Poisson regression models the probability of non-negative 

integers (counts). Its model is given as; 

,� = ��,�� + 2� , 3 = 0,1,            (4) 

The i
th

 case mean response, is given by "�  which is 

assumed to be non-negative, and it is usually assumed to be a 

function of a set of predictor variables: 45, 46, … , 4)�5 . 

Given that the distribution of the error terms 2� is a function 

of the distribution of the response �� 	for a Poisson regression, 

we have the regression model given by: 

log	�"�� = 4��$                (5) 

where ��  is the expected values of independent Poisson 

random variables, while X is a vector of the predictor 

variable and $  is a vector of predictor effects. The 

regression coefficients $5, $6, ⋯ , $;  are unknown 

parameters that will be estimated by the method of maximum 

likelihood. The variance-covariance matrix is given by; 

�4�"�4��5. A multiplicative model of the mean is derived by 

exponentiating Equation (4) giving us; 

"� = ��<�4��$�               (6) 
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2.2. Negative Binomial Regression 

The negative binomial (NB) regression model is based on the 

Poisson-gamma mixture distribution; it models the Poisson 

heterogeneity with a gamma distribution. Poisson-gamma model 

a mixture of two distributions as implied by the name and it was 

first derived by Greenwood and Yule [10]. The negative 

binomial can be parameterized in two distinct ways usually 

known as NB1 and NB2. This study focuses on NB2, hence is 

discussed below; 

Let Y follow a Poisson distribution with parameter 	� . 

Given below is the conditional distribution of the random 

variable Y, 

P(Y= ∅� = '>?%∅
∅! 	� = 0,1,2,3, …      (7) 

Assuming ∅ follows a Gamma distribution with scale 

parameter A	and shape parameter $. Its probability density 

function is thus; 

!�∅� = BC
D�E�∅E�52�B∅, F > 0        (8) 

And the joint density of Y and ∅ is thus; 

P(Y=y|∅ = F�!�∅� = '>HIJ
�! 	 BC

D�E�FE�52�BI  (9) 

Hence the unconditional distribution of Y from equation (9) 

above is obtained by summing out F thus we have; 

K�, = �� = L K�, = �|∅ = F�!�∅�M
N �F  

= L '>HIJ
�! 	 BC

D�E�FE�52�BI�FM
N   

= L BC
�!D�E� 	F��E�52��BO5��FM

N   

= L BC
�!D�E� 	F��E�52��BO5��FM

N   

= L BC
�!D�E� 	F��E�52��BO5��FM

N   

= BC
�!D�E�

D��OE�
�BO5�JPC L �BO5�JPC

D��OE� 	F��E�52��BO5�H�FM
N   

Given that L �BO5�JPC
D��OE� 	F��E�52��BO5�H�FM

N = 0 

Hence we are left with; 

= BC
�!D�E�

D��OE�
�BO5�JPC  

∴ �ℎ2	ST	�3U� 3V"�3WX	3U	!3Y2X	V�;	 D��OE�
D��O5�D�E� �

B
BO5�

� � 5
BO5�

E , $ > 0	�X�	A > 0                (10) 

3. Review of Literature 

This section presents some past studies on count data 

analysis and road accidents. There are many research works on 

the travel behavior and choice of mode during the pandemic, 

researchers found that mode of travelling like walking and 

cycling significantly affected the means of transportation during 

the COVID-19 pandemic. Results also revealed that the use of 

public transport significantly went down. This can be found in 

the work of Bhaduri et al [4]. A study done in Japan by Inada et 

al [13] from January to May 2020 concluded that during the 

lock down violations of speed related issues and fatal road 

accidents were on the increase. While in the United Kingdom 

report from their provisional data showed a reduction on the 

volume of road traffic violations (measured in vehicle-miles) 

with a 16% downward trend in the number of road fatalities in 

2020 in comparison to 2019. Evidence showed that the 

downward trend of road fatalities in 2020 was correlated to the 

decline in road traffic violations during COVID-19 era. 

Lambert D [14] proposed a comparative approach for handling 

count data by comparing five regression models on how they 

fitted their count data using the Akaike Information Criterion 

(AIC). Alexander K. M. et al. [1] investigated the performance 

of several count data models and to determine when they can be 

used. 

Probability theory literature defines the Poisson process as 

process that counts the number of incidents that happens 

within a given time interval. The time interval that elapsed 

between a pair of consecutive events is said to follow an 

exponential distribution with parameter lambda, were the 

individual inter-arrival times is assumed to be independent of 

other inter-arrival times. Alexander K. M. et al. [22] also 

observed that the Poisson process can also be used to model 

telephone calls at a call center, while Cannizzaro, F et al. [8], 

noted that the process is also very useful in modeling 

radioactive decay. According to Nixon [17], Poisson 

distribution is generally a go for option when modeling 

observed count data, with the assumption of equal mean and 

variance. Nevertheless, this assumption is rarely met in most 

applications due to the fact that data are usually over 

dispersed. In an over-dispersed data, the Poisson 

distribution’s single parameter � will not be able to fully 

give a detailed report on the event count hence causing the 

Poisson distribution to underestimate the dispersion of the 

observed counts. Nixon [17] noted that the Poisson 

regression is frequently opted for when modeling observed 

count data, with the assumption of equal mean and variance. 

Blackburn, M. L. [5] noted that the issue of over-dispersion 

is pertinent for a suitable choice between the Poisson and 

negative binomial regression model. Paternoster R et al. [19] 

with Paternoster R [18], as an alternative method 

recommended the utilization of negative binomial 

distribution in place of Poisson distribution in the presence 

of over-dispersion. Paternoster R [18] stated that 

over-dispersion is automatically corrected by the use of the 

negative binomial. He defined over-dispersion as a situation 

where the amount of variability in the model’s fitted values is 
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much, and this is not consistent with Poisson regression 

assumption. Favero L. P. et al. [9] in their paper proposed a 

straightforward model selection approach that indicates the 

most suitable count regression model based on relevant data 

characteristics. 

4. Methodology 

4.1. Data Collection 

The dataset for this project is retrieved from the National 

Bureau of Statistics bulletin of Nigeria. The individual 

records of dead victims from road accidents that occurred in 

all states of Nigeria including the Federal Capital territory 

of Nigeria from 2019 to 2021 with the factors that affected 

the incidents were obtained. The factors considered in this 

work include; number of individuals killed (killed) which is 

our response variable, the covariates include speed limit 

(SL), bad roads (BR), car issues (CI), fatigue (Fati.), and 

street light (SL), dangerous driving (DD) and general 

factors (GF). The models considered for fitting the data are 

the Poisson regression and the negative binomial regression. 

Below gives the description of model estimation. The 

analysis was done in R and estimation of NB applied the 

glm.bn function in R following procedure by Venables and 

Ripley [21]. 

4.2. Model Buildup 

Let the response variable number of deaths (��� follow a 

Poisson distribution that is ��~K���� with mean µi which is 

equal to the variance, where the mean depends on the 

covariates, we have; 

log	���� = 4��$              (11) 

where, ��  is the mean response, 4�  is the vector of 

covariates and $ represents the model regression coefficient, 

it expresses the expected change in the log of the mean 

response per unit change in the covariate xi. This simply 

means that one unit increase in the covariates xi translates to 

an increase of 	$  in the log of the mean response. A 

multiplicative model of the mean is derived by 

exponentiating Equation (10). 

"� = ��<�4��$� = ��<[$N + ∑ ��]$])
^_5 + 2�`   (12) 

The exponentiated model yields an exponentiated 

regression coefficient exp{β} that expresses the multiplicative 

effect of the i
th

 covariate on the mean response. Hence a one 

unit increase in the covariate (X) multiplies the mean response 

by a factor exp{β}. This log link is used because empirical 

observations have shown that with count data there is 

evidence of multiplicative effect of the covariates on the mean 

rather an additive effect. Our model is thus; 

�U�3a��2	W�	a2�X	X"aV2 	W�	�2��ℎU = ��<�bc + de + Tf + gg + h��3. +bc + jh�            (13) 

4.2.1. Estimation of Poisson Regression Model 

Given the model in equation (3), the likelihood function is as follows: 

c�$� = ∏ �%�lE��&mno	��%�lE��pqrs
∏ *q!pqrs

                                   (14) 

Once the functional form of ��4$�is chosen, the maximization of (14) produces the maximum likelihood of the likelihood 

function: 

tXc�$� = ∑ ,�ln	[��4$�]x�_5 − ∑ �x�_5 �4$� − ∑ tX�,�!x�_5 �                     (15) 

The maximum likelihood estimates $N, $5, … , $)�5are then 

derived through numerical search procedures. Iteratively 

reweighted least squares can again be used to obtain these 

estimates. After the maximum likelihood estimates are 

obtained, the model can be fitted. The goodness of fit of the 

model will be measured by the deviance. The deviance is 

given by; 

gz = ∑  x�_5 |��ln	��� �̂�~ � − ��� − �̂���       (16) 

If the observed value of the response is very close to the 

predicted mean of the response, the value of the deviance in 

equation (16) will be very small producing a good fitted model. 

The value of the residual deviance (RD) compared to the 

degrees of freedom (DF) will give an indication of presence or 

absence of over-dispersion. If the RD<DR there is no 

over-dispersion and the Poisson model will be adequate but if 

the reverse is the case (RD>DF), the Quasi-Poisson and the 

Negative Binomial regression will be used. 

The Aikaike Information Criteria (AIC) as given by Hilbe J. 

M. [12]; 

�ed = 6����)O5��
x              (17) 

and Bayesian Information Criteria as given by Hilbe J. M. [12]; 

Ted = g − �X − < − 1� ln X      (18) 

Where L is the log likelihood, p is the number of regression 

covariates, D is the deviance and n is the number of 

observations. 

4.2.2. Estimation of Negative Binomial (NB) Regression 

Model 

The regression coefficients of NB for this paper are 

estimated using the method of maximum likelihood, but if a 

person wants to use simulation-based estimation methods, you 

can check [11]. Let the distribution of the negative binomial be 

as in equation (9) and following the parameterization of 
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� = 5
B by [3, 20]. 

K�, = �� = D��O�>s�
�!D��>s� |

��
5����

� �1 � �"��s�, � G 0, " G 0	&	� 	 0,1,2, …                  (19) 

It is regarded in a regression setting that "� 	 R�5���� where R�5(.) represents the inverse of the link function and �� 	 ���$ 

represents the linear predictor with ��� being a vector of covariates and $ a vector or regression coefficients. 

Equation (19) can be rewritten as; 

K�, 	 �� 	 D��O�>s�
�!D��>s� �

�'�qC
5��'�qC�

�q [1 � �2(qE`�
s
�                           (20) 

The likelihood function as given by Cameron (2013); 

c�$, �� 	 ∏ D��O�>s�
�!D��>s�

x�_5 � �'�qC
5��'�qC�

�q [1 � �2(qE`�
s
�                          (21) 

And the log likelihood is given by; 

tXc�$, A� 	 ∑ [��tX� � �����$� y ��� � ��5� ln[1 � �2(qE` � tXΓ��� � ��5� y tXΓ��� � 1� y tXΓ���5�x�_�   (22) 

The values of $ and A that maximize c�$, �� will be the 

maximum likelihood estimates. 

5. Results 

 

Figure 1. Pie chart of deaths by States. 

The plot in figure 1 above shows the proportion of deaths in 

all the states, the biggest proportion represents Kaduna State 

with the maximum deaths of 1070 and smallest chunk 

represents Akwa Ibom state with 47 deaths. 

 

Figure 2. Pie chart according to groups. 

Table 1. Group Distribution of Persons Killed. 

Groups killed % killed 

Male adult 7140 70.6 

Female adult 2277 22.5 

Children 699 6.9 

TOTAL 10116  

Figure 2 and table 1 above displays the distribution of 

deaths by groups namely; male female and children. The 

figure 2 and table 1 clearly shows that approximately 70% of 

people killed by road accidents are male adults, 23% are 

female adults and 7% are children. This is an indication that 

the male population is more prone to road accidents, hence 

resulting to most deaths in that group. 

5.1. Poisson Regression Results 

Null deviance: 5426.9 on 36 degrees of freedom 

Residual deviance: 1858.8 on 29 degrees of freedom 

ACI: 2139.7 

BIC 2152.838 

Table 2. Fitness of good test. 

Deviance Degrees of freedom P-value 

1858.751 29 0 

The table 2 above, reveals that the Poisson regression 

model is not a good fit for the data, since the P-value is less 

than 0.05. 

Table 3. Poisson Regression Model. 

Parameter Estimates Std, error z-value P-value 

Intercept 4.805 0.0208 231.08 <2.e16* 

SL �$5� 2.427e-05 1.6e-05 1.588 0.1124 

CI �$6� 7.983e-04 2.3e-04 3.521 0.0004* 

BR ($�) 7.100e-03 8.7e-04 8.158 3.41e-16* 

DD ($�) 2.268e-03 1.8e-04 12.628 <2e-16* 

Fati. ($�) 1.62e-02 8.3e-04 13.998 <2e-16* 

SL ($�) -2.587e-03 1.5e-04 -17.76 <2e-16* 

GF ($�) 2.416e-03 3.5e-04 6.817 9.31e-12* 

Significant at 0.05*. 

The Poisson regression results in table 3 above shows 

that all the variables had a significant effect on the response 

except speed limit. The residual deviance obtained is higher 

than the degrees of freedom; hence there is presence of 

over-dispersion, in other words the Poisson regression 
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assumption has been violated and hence cannot be applied 

in the analysis. 

5.2. Negative Binomial Regression Results 

Null deviance: 98.149 on 36 degrees of freedom 

Residual deviance: 38.252 on 29 degrees of freedom 

AIC: 463.2164 

BIC: 476.317 

Dispersion parameter: 4.7115 (1.09) 

2 x log-likelihood: -445.216 

Table 4. Fitness of good test. 

Deviance Degrees of freedom P-value 

38.252 29 0.1168 

The table 4 above reveals that the negative binomial 

regression model fits the data very well, since the P-value is 

greater than 0.05. 

Table 5. Negative binomial Regression Model. 

Variables Estimates Std error Z-value P-value 

Intercept 4.674 0.1351 34.592 <2.e16* 

SL �$5� 5.07e-06 9.61e-05 0.053 0.9579 

CI �$6� 3.39e-04 1.77e-03 0.192 0.8479 

BR ($�) 7.72e-03 5.97e-03 1.294 0.1957 

DD ($�) 4.12e-03 1.49e-03 2.772 0.0056* 

Fati. ($�) 3.16e-03 7.17e-03 0.440 0.6596 

SL ($�) -1.53e-03 1.14e-03 1.348 0.1776 

GF ($�) 2.22e-03 2.72e-03 0.817 0.4140 

Significant at 0.05*. 

The negative binomial regression results in table 5 above 

shows that all the variables had no significant effect on the 

response except for dangerous driving (DD). The AIC and the 

residual deviance were greatly reduced and the model has a 

dispersion parameter value of 4.7115. Using equation (12) and 

considering the significant variable below, the best model is thus; 

���<2��2�	a2�X	�2��RU�"� 	 2��       (23) 

Table 6. Fitness of good test. 

model Deviance DF AIC BIC P-value (Goodness of fit) 

Posisson 1858 29 2139.7 2152.838 0 

Negative Binomial 38.252 29 463.22 476.317 0.1168 

 

In the table 6 above based on the P-value of goodness of fit 

test, it shows that the negative binomial (NB) regression 

model is a good fit while Poisson regression model does not fit 

the data. The AIC of the NB is equally smaller than that of 

Poisson model, hence also an indication of a better fit. It can 

also be seen that the residual deviance of the Poisson 

regression model is higher that the degrees of freedom, which 

is an indication of over-dispersion, prompting the inadequacy 

of the Poisson model for this data analysis. Due to the 

goodness of fit of the NB and the presence of over-dispersion 

in the data, the NB is opted for as a better fit for the data. 

Table 7. Exponentiated Estimates with Confidence Interval for NB regression 

Model. 

Parameter ���������� UL LL 

Intercept (�$N) 107.136 0.9998 1.00025 

SL �$5� 1.0000 0.9965 1.00412 

CI �$6� 1.0004 0.9965 1.0041 

BR ($�) 1.0078 0.9955 1.0198 

DD ($�) 1.0041 1.0008 1.0076 

Fati. ($�) 1.00316 0.9871 1.0195 

SL ($�) 0.9984 0.9965 1.0006 

GF ($�) 1.0022 0.9975 1.0073 

*UL means Upper limit. 

* LL means lower limit. 

Table 7 above presents the exponentiated estimates with the 

confidence intervals. The width of the confidence interval tells 

us that the estimates are very precise. The result reveals that 

the percent change in the incident rate of deaths due to road 

accidents has a 1% increase for every unit increase in the 

number of dangerous driving. 

 

Figure 3. Mean-Variance Ration Plot. 

The graph in figure 3 above plots the mean-variance relation 

where the overlaying curves represents the over-dispersed 

Poisson model, with variance φµ, and the negative binomial 

model with variance µ(1+µσ2). The Poisson variance function 

has a good representation for majority of the data, but fails to 

capture the high variance. The negative binomial variance 

function is similar to it but, shows a quadratic form that can rise 

faster and hence capturing the high end. 
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6. Conclusion 

In this paper we carried out analysis on deaths due to road 

accidents in Nigeria considering the COVID-19 hit period 

(2019-2020). The Poisson regression and Negative Binomial 

regression were considered. The result shows Akwa Ibom with 

47 deaths as the state with the minimum number of deaths while 

the maximum of 1070 deaths was seen in Kaduna state. The 

study revealed that 70% of the deaths were male victims while 

approximately 23% were female and 7% were children. The 

study showed evidence of over-dispersion in the data making 

the Poisson regression inadequate for the analysis, leaving the 

negative binomial regression as an alternative. Further, an 

assessment of the Poisson regression and the negative binomial 

regression based on the mean-variance relationship, goodness 

of fit test, AIC and BIC revealed that Negative binomial model 

is a good fit for the data and provides a better description of the 

data. The end result model presented a parsimonious model 

with only dangerous driving as a significant factor in road 

accidents fatalities. This shows that in Nigeria dangerous 

driving is the major cause of deaths on Nigerian roads. The 

paper also noted that based on the available data from Nigeria, 

road accidents is a more threatening fatal hazard than 

COVID-19. The paper suggests that the government should put 

more weight in curbing road accidents and that the road safety 

commission should focus more in developing new strategies or 

improving on the old strategies for eliminating or reducing 

dangerous driving by drivers on Nigerian roads. 
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