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Abstract: A number of indicators (especially economic ones), whose values are monitored with annual periodicity, need to 

be broken down into the so-called seasons, i.e., time periods shorter than one year. And it is necessary not only to respect the 

specifics of these seasons, but at the same time to do so without having to specifically survey these values in the seasons. The 

aim of the paper is to propose a method for distributing the annual values of an indicator into seasons (quarters, months) using 

a suitably chosen indicator, without subsequent correction. This will preserve the link to the processes evolving within the year, 

while removing the formalism of splitting the residual generated in the first step. The paper presents a new approach, in which 

simulated values of the response variables enable us to estimate the series' parameters with the aid of a simple loss function. 

Such a solution reduces the dependence of formal models on real data, which may or may not be available to the official 

statisticians who are responsible for statistical surveys. The paper shows the theoretical concept of the disaggregation method, 

which is the result of research in the given area and was verified on the example of data for the Czech Republic. 
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1. Introduction 

A common practical task we often encounter, especially in 

economics, is to decompose the values of a certain indicator 

(let us denote it by the symbol y), which is available as a 

sequence of its annual values in calendar years t = 1, 2,..., n, 

into shorter time periods (into the so-called seasons, of which 

there are s within each given year). These seasons are 

naturally repeated from year to year.
1
 The purpose of this 

decomposition is largely pragmatic: in situations like this, it is 

assumed that the values of y are not observed in each season 

(most often due to cost-saving or organisational 

circumstances), but they need to be known for certain reasons 

(e.g., for economic decision-making at the national-economy 

level). Despite the pragmatic goals, this procedure is rather 

non-trivial because of the formal tools that are, from the 

                                                             

1 The most frequent instances are those of months, for which s = 12, or quarters, 

for which s = 4. 

mathematical and factual viewpoints regarding the underlying 

economic indicators, necessary to actually decompose the 

annual values into the seasons. 

Each season can have a completely different character (due 

to climatic, social, legislative, budgetary, cultural, etc. factors). 

The aggregate annual value of y cannot therefore be distributed 

in a trivial way, e.g., in proportion to the corresponding uniform 

fraction 1/s, or in any similar simple way. In other words, the 

qualitatively different frameworks of each of the seasons in 

question do not admit capturing in such a trivial way. 

In order to solve this problem, it is usually necessary to 

have the values of at least one other indicator (let us denote it 

by the symbol x), which in its turn is commonly observed 

within seasons and which is in a significant (regression) 

relationship to the y indicator. It is undoubtedly linked to the y 

indicator in a material way. The x indicator thus imprints 

qualitatively significant traces of the seasons (in the form of 

seasonal fluctuations) on the seasonally distributed values of 

the y indicator. 
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Without going into the details of any particular case, which 

is not the goal of the present text, we will illustrate the 

presented idea on a generally relevant example, from which 

the research in this direction stemmed and which is now cited 

as a practical implementation of the disaggregation idea. 

Namely, it is a task typical for economic statistics: the 

complexity of constructing the annual values of the GDP 

aggregates, or other aggregates present in the national 

accounts system, has led to the idea of using the so-called 

indirect methods for estimating the values of quarterly 

aggregates; the latter methods make use of existing short-term 

surveys' results as a basis for disaggregating the values of 

annual national accounts aggregates into quarterly values. 

This indirect method of estimating the quarterly values of the 

national account aggregates, the so-called scheduling method, 

consists in linking the values of short-term survey (i.e., 

'regression-linked') indicators with the values of the annual 

national account aggregate values. The underlying model for 

this procedure is based on the relationship between the 

short-term indicator (x variable) and the annual national 

account aggregate (y variable). Such a model enables us to 

distribute the known annual values into individual quarters so 

that a sum over them is equal to the annual value. 

Historically, two formal approaches have emerged in this 

context: 

1) distribution with subsequent correction, i.e., the sum of 

the seasonal values obtained in the first step from the 

regression relationship does not equal the annual value, 

and the observed difference between the known annual 

value (e.g., the national accounts aggregate) and the sum 

of the seasonal values must then be re-distributed 

(according to a chosen formal criterion) into the 

individual seasons (second step); 

2) distribution without subsequent correction, i.e., the 

construction of the regression model ensures that, in 

each year of the chosen time series, the sum of the 

distributed values (already in the first step) corresponds 

to the known annual value of the y indicator. 

Since our time series always comprises annual values of an 

aggregate, it is clear that disaggregation into seasons could be 

performed with the aid of a time series model without using 

the short-term indicator as an explanatory variable. This 

approach would also be acceptable from a theoretical point of 

view (in contrast to our model that uses a short-term indicator), 

but it would remove responses to the real phenomena 

occurring in the relevant year. 

The aim of the present paper is to propose a method for 

distributing the annual values of an indicator into seasons 

(quarters, months) using a suitably chosen indicator, without 

subsequent correction. This will preserve the link to the 

processes evolving within the year (given by the choice of an 

appropriate short-term indicator), while removing the 

formalism of splitting the residual generated in the first step. 

This method has resulted from the research in this field and 

has been validated on an example using data from the Czech 

Republic. Here we present only the theoretical concept of our 

method. 

2. Theoretical Background 

Since the 1960s, many authors have been working on the 

issue of distributing annual values into seasons. Their interest 

is implied by pragmatic need; moreover, the non-trivial nature 

of the task poses a certain challenge not only for users (mainly 

economists) but also for statisticians and their modelling 

approaches. Moreover, because of the pragmatic need, the 

solution to the problem is repeatedly re-considered in attempts 

to achieve better results than those accomplished in the past. 

In many of these texts, the term of retropolation is used to 

describe a procedure that decomposes a particular aggregate 

indicator into seasons; retropolation thus adequately captures 

the essence of the problem and can be considered synonymous 

with disaggregation, which is the term used in the title of the 

present paper. 

In addition to a strong theoretical basis, there are many 

practical reasons for addressing the problem of disaggregating 

annual values of a certain indicator into seasons (quarters or 

months). In particular, the requirements for the rapid 

publication of short-term (especially quarterly) values of 

macroeconomic aggregates have led national statistical offices 

to seek ways to meet the requirement for rapid, reliable 

quarterly estimates that are consistent with the annual values 

of the aggregates. Disaggregation methods have gradually 

emerged, with or without the use of another (quarterly or 

monthly) indicator as an explanatory variable; in the former 

case when a short-term indicator is used), both post-correction 

(i.e., two-step) and non-post-correction (i.e., one-step) 

distributing methods have been developed. 

The first author who came up with the idea of 

disaggregating annual values into seasons using short-term 

values of another indicator was undoubtedly [12]. In his work, 

he formulated a hypothesis of a causal relationship between 

the short-term indicator and the annual aggregate, and 

subsequently used a time-series regression model to estimate 

the quarterly values. The method of disaggregation without 

using the short-term surveyed indicator, based on the principle 

of smoothing, was proposed by Boot, J. C. G., et al. [2]. They 

assumed that the unknown short-term trend of the time series 

could be described by a function of time and that the condition 

of consistency between the annual value of the aggregate and 

the sum of its distributed quarterly values was satisfied, as 

well as the smoothness condition for the transition of the 

quarterly values from year to year.
2
 

A particular implementation of the two-step disaggregation 

procedure (i.e., with subsequent correction) in the conditions of 

government-oriented statistics was then formulated by Nasse 

[18]. He not only described a general model of distributing the 

annual values into quarters on the basis of a regression (usually 

linear) model (the first step), but also proposed a simple method 

for distributing the differences between the known annual 

values and the sums of the first-step-distributed values using a 

simple matrix operator. His model became the basis for the 

                                                             

2  This so-called smoothing method later became, among other things, the 

recommended method for allocating differences between the known annual 

aggregate values and the sums of the seasonally distributed values ([10] and [9]). 
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system of quarterly national accounts in France. Subsequently, 

Bournay and Laroque made important contributions to 

improving the methods used [3]. Namely, they proposed to 

estimate a regression model assuming autocorrelation of the 

residuals, which allowed them to reduce the standard error of 

the estimation and significantly improve the quality of the 

disaggregation. In the second step, they replaced the matrix 

operator by a criterion for minimizing first differences between 

outliers. Their approach is still used as a basis for not only the 

French quarterly national accounts, but also as the two-step 

disaggregation method recommended by Eurostat [10], i.e., the 

disaggregation-with-subsequent-correction method. 

Another principal work that influenced the development of 

disaggregation methods was undoubtedly that of Chow and Lin 

[6]. The authors proposed a method of disaggregating annual 

values using a short-term indicator (or several indicators) as an 

explanatory variable, with quarterly aggregate values estimated 

in one step. The existence of the regression model then allowed 

users ([18], or [3]) to also estimate the quarterly values for the 

current year (whose annual value is not yet known). The Chow 

and Lin´s method [6] is used by certain national statistical 

offices (e.g., in Spain and Italy).
3
 

The regression model of Chow and Lin [6] did not contain a 

dynamic component. Therefore, modified models with different 

assumptions about the residual component have gradually 

emerged. To name a few, Fernandez [11] used a random walk 

model, Litterman [17] and Di Fonzo [8] followed Fernandez 

[11] and used a Markov model, or Gregoire [13] proposed a 

simple dynamic model to improve the properties of quarterly 

estimates in the French national accounts. 

The above-mentioned procedures and models today represent 

not only the basis for quarterly national accounts in many 

European countries, but also a stepping stone for further 

considerations on how to formally improve disaggregation 

models or how to use them outside the scope of national accounts, 

or even outside the framework of time-wise disaggregation. 

A theoretical and formal framework for estimating partial 

values of time series was presented by Caporin and Sartore [5]. 

It provided a general approach, which involved a backward 

decomposition of time series values, but not only in time (which 

is strongly dominated in the literature) but also in spatial 

allocation. It also pointed out an important circumstance that 

linear models might rank among the preferred types of 

aggregate data allocations. Their methodology was designed 

with a focus on economic time series, but was also applicable to 

other statistical domains. It also provided an empirical example 

of backward decomposition of the EU15 industrial production 

index and compared it with the Eurostat approach and 

methodology [10]. 

An extension of this task is described in the research [4]; 

the author builds an apparatus based on not only a regression 

retropolation model but also a regression interpolation one. In 

constructing the formal methodology, he thus combines both 

interpolation and retropolation. He not only applies his 

approach to national accounting aggregates, but also 

                                                             

3 Cf. [10]. 

complements the methodology with a distribution of 

non-monetary indicators' values, such as employment rate and 

its decomposition into breakdowns by sectors. The data he 

uses come from Liechtenstein statistics. He further compares 

the results of his decomposition method with the official 

national accounts data and finds a satisfactory agreement 

between the methods used. Guerrero and Corona mainly 

present the important role of indicator databases, which can 

positively affect the quality of the retropolation [15]. They use 

a seasonally (quarterly) surveyed index of economic activity 

in Mexico as the reference variable in regression. 

Prados de la Escosura discussed comparisons of economic 

performance over space and time and argued that the quality 

of the results [20], to a large extent, depends on the links 

between the actual statistical data from national accounts and 

their historical estimates. An illustration of this linking is 

made in his paper with the aid of a specific case – the Spanish 

economy in the second half of the 20th century. The author is 

perhaps too sceptical about the possibilities of retropolation, 

concluding that the usual procedure of linking different 

indicators by means of retropolation may have its 

shortcomings, as the method tends to bias the level of GDP 

upwards and consequently underestimate growth rates, 

especially for emerging countries undergoing structural 

changes. He therefore proposes an alternative approach, 

which is, however, based on classical interpolation methods. 

Our paper, on the contrary, seeks to use standard regression 

procedures in disaggregation, so that they are part of, and not 

an alternative to, retropolation. 

Billio, Caporin and Cazzavillan aim to decompose the 

aggregate time series describing the EU15 business cycle into 

monthly and quarterly data, using both parametric and 

non-parametric techniques [1]. The basic idea is to use the 

monthly industrial production index (IPI) series of the EU15 

countries (from 1970 to 2003) as a basis for decomposing the 

GDP of the EU15 countries into months. In other words, the 

monthly GDP data is calculated using time disaggregation 

techniques. Prados de la Escosura follows a similar approach, 

using a decomposition to calculate the performance of the 

Spanish economy in the last 170(!) years [21]. In doing so, he 

relies on estimates of net capital and services as short-term 

indicators and then describes the different stages of the 

Spanish economy's development through the prism of 

investment volumes. However, having in mind the length of 

the period covered (170 years), the considerations are more or 

less hypothetical. 

A somewhat less numerous, but certainly not sporadic group 

of articles is represented by those that present procedures in 

which the values of certain indicators are decomposed into 

smaller units rather than retropolation (in the sense of 

decomposing annual values of an indicator into seasons); the 

temporal decomposition is, however, not the primary one. For 

example, Reymann’s paper [22] presents a rather original and 

non-trivial idea of creating a certain future scenario (strategy 

formation and its implementation) based on the retropolation of 

future scenarios. He combines the strategy and scenario 

technique with a method that allows assessing the strategy by 
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disaggregating it into sub-scenarios (i.e., subsets) of the 

strategies. In effect, such an approach to disaggregation creates 

intermediate steps (i.e., sub-strategies) on the path from the 

current situation to the desired state. Based on this 

decomposition, the intermediate goals and objectives are 

defined that are necessary to implement the overall strategy. In 

other words, goal-based strategic planning decomposed into 

individual process strategies is considered there. Guérois works 

in a completely different application environment, namely, that 

of the statistical spatial classification and geographical 

distribution of Local Administrative Units (LAUs) [14]. It is 

based on the Urban Morphological Zones (UMZ) database. The 

decomposition of values is traced from the current UMZ 2000 

back to 1961. The historical population database of European 

LAUs allows them to assign the population for the period 1961 

through 2011, in the profile and geometry of LAU 2012. The 

disaggregation model created in this way captures the evolution 

and changes in the urban districts of the UMZ 2000 back to 

1961. Pfeuffer and Scherb, consider the retropolation methods 

in the context of analysing new business areas [19]. He 

combines extrapolation and retropolation techniques, but at the 

same time makes a consistent distinction between them. In 

doing so, the latter are used to analyse interactions between 

aggregate strategic requirements on the one hand, and 

discrepancies in the fulfilment of partial objectives on the other 

hand. Overcoming these mismatches or contradictions is 

embodied in the strategic areas of future-oriented business 

(predictive strategies). 

As can clearly be seen from the literature review, the 

problem of decomposition of aggregate quantities, either in 

the temporal or spatial dimension, has been of interest to a 

number of authors who choose many hands-on applications 

for illustration. This is evidence of the importance of the topic, 

which we will also address below. The aim of this paper is to 

present a method of disaggregation in which, by simulating 

the values of the explained variable, the parameters can be 

estimated using a simple loss function. 

3. Disaggregation Model 

From the formal point of view, we consider the ytj indicator to 

be disaggregated. Its values also make sense for j = 1, 2,..., s (e.g., 

they are interpreted as quarterly values for s = 4, or monthly 

values for s = 12, etc.) in the years t = 1, 2,..., n. We thus define a 

variable, ytj, whose values admit disaggregation into the j seasons. 

There are two possible approaches to estimating them: 

1) Let us, for the years t = 1, 2,..., n and seasons j = 1, 2,..., s, 

define an N-component vector of the response variable 

[ ]11 12 1 21 22 2 1 2, ,  ...,  , , ,  ...,  ,  ...,  , ,  ...,
′= s s n n nsy y y y y y y y y y                        (1) 

where N = n·s and s is the number of seasons in each year. Disaggregation of the values into the seasons can reasonably be 

interpreted. The information about the values shown in Formula (1) will later be important for assessing the disaggregation 

quality. Let us further assume that the N-component vector of the response variable is governed by the classical linear model 

2

N Ny X  ,  E( ) 0  a E( ') I= β+ε ε = εε = σ ,                             (2) 

where X is a deterministic N × p matrix of known explanatory 

variables, 1 < p < N, with a rank of p, β stands for a 

p-component vector of unknown parameters and ε is an 

unobservable irregular N-component vector of mutually 

independent random errors with zero means and constant 

variance value σ2
 (fulfilling the homoscedasticity assumptions). 

2) We will consider a situation in which the y vector 

defined in Formula (1) is unknown but the annual (that is, 

seasonally-non-disaggregated) values are known, 

arranged in an n-component vector 

[ ]1 2, ,  ...,  
′= nY Y Y Y ,                                      (3) 

where the following notation 

1

Y , 1,  2, ..., 
s

t tj
j

y t n
=

= =∑ ,                                 (4) 

can be used for the annual sums. It means that each annual value equals a sum of its disaggregated values. A linear relation 

Qy Y= ,                                             (5) 

holds true for vectors y and Y, and 

1, 1, ..., 1, 0, 0, ..., 0, 0, 0, ..., 0, ..., 0, 0, ..., 0

0, 0, ..., 0, 1, 1, ..., 1, 0, 0, ..., 0, ..., 0, 0, ..., 0

0, 0, ..., 0, 0, 0, ..., 0, 1, 1, ..., 1, ..., 0, 0, ..., 0

. . . . . . . . . . . . . . . . .

0, 0, ..., 0, 0, 0, ..., 0, 0, 0, ..., 0, ..., 1, 1, ..., 1

Q

 


=










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is a deterministic n·× N matrix. 

Let us now define an n·× p deterministic matrix W 

W QX=                 (6) 

and an n-component vector ζ of unobservable irregular 

random errors such that 

ζ Qε= .                 (7) 

Since, within the model for y whose validity we assume, the 

identity 

QQ Ins′ =                 (8) 

holds true, we get the following formula for the structure of 

the Y vector: 

2Y W ζ , E(ζ) 0  a E(ζζ ) In nsβ σ′= + = = .    (9) 

An original method for disaggregating the annual values 

into seasons is represented by the following formula: 

1 1u Q Y (X Q W)Bs s− −′ ′= + − ,       (10) 

where the N-component vector u can be interpreted as an 

estimate of the unknown vector y, and B stands for an estimate 

of the unknown vector β. A specific feature of the estimate is 

worth mentioning: the formula 

Qu Y= ,                 (11) 

holds true for any vector B, which means that this estimate 

preserves the known annual values. 

However, this method of disaggregation brings about 

another problem, which is usually not referred to in the 

literature; namely, what should be our choice of the vector B – 

an estimate of the unknown vectorβ? 

a) Such a problem would not arise if we knew the vector y 

in Formula (1) because then the estimate would be derived 

with the aid of the standard least square method: 

-1

0B (X X) Xy′ ′=             (12) 

for an N × p, matrix X, representing the estimate with the 

optimum features. Since the following identity 

0E(B ) β= ,               (13) 

is valid, it is an unbiased estimate achieving the minimum 

square of error, namely: 

2 2 -1

0 0(B ,f) E(f (B ) ) f (X X) fR β σ′ ′ ′= − = ,   (14) 

where f stands for the given p-component non-zero vector. 

In this situation, we know the vector y shown in Formula 

(1). This is important because the actual values, as mentioned 

above in connection with Formula (1), will actually be used as 

criteria for the quality of the estimates. We now proceed to 

obtain an estimate of vector β. However, the solution found 

will only be a starting point for the actual disaggregation 

comparisons, in particular for a possible specification of the 

losses that we will have to admit in the parameter estimation. 

b) Let us now consider an estimate based on the model for 

the annual sums, that is, 

-1

1B (W W) W Y′ ′= .            (15) 

With respect to the structure of the vector whose 

components are the annual values, this estimate can be taken 

for unbiased. In comparison with the ideal estimate B0, this 

one is a reduced version: instead of the N values contained in 

the rows of the X matrix, just n = N/s values contained in the 

W matrix are used, deliberately ignoring the information 

given by the rows of the X matrix. In other words, the known 

values of the explanatory variables in individual years' seasons 

are neglected. This is another reason why we will work on 

additional estimates below. 

Simulating y Vector's Components 

Under the circumstances described above, simulation of the 

elements of the y vector's components appears to be a viable 

way to improve the statistical properties of the estimates for 

the β parameter vector. Let us consider several options 

stemming from two starting points. 

a) Recall that knowledge of the response variable's annual 

values Yt, t = 1, 2,..., n, is assumed. The average values of the 

response variable per season can, in each year, be determined 

by calculating 

y0,tj = s-1Yt constant for seasons j = 1, 2,..., s in years t = 1, 2,..., n; (16) 

in the first approximation, they can be considered the trend 

components of the response variable time series. 

b) We further suppose that we have at our disposal an N × 2 

matrix of explanatory variables; after transposition, its first 

row contains all entries equal to 1 and the second row the 

values of the sole explanatory variable 

11 12 1 21 22 2 1 2, ,  ...,  , , ,  ...,  ,  ...,  , ,  ...,s s n n nsx x x x x x x x x .  (17) 

The β vector of parameters contains two scalar values then: 

a free parameter β0 and the slope value β1. 

For the above-defined sequence of the response variable's 

annual values, the given variance value comparable to that of 

the variance corresponding to the sequence y0,tj, t = 1, 2,..., n, j 

= 1, 2,..., s, denoted by S
2
, a new sequence of random variables 

can be simulated 

1, 0,tj tj tjy y ψ= + , t = 1, 2,..., n, j = 1, 2,..., s,    (18) 

where 

ψtj, t = 1, 2,..., n, j = 1, 2,..., s       (19) 

are the simulated values of the stochastic component 

generated by a random sample from, say, the normal 

distribution with zero mean and variance equal to S
2
. 
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In this context, the model 

1, 0 1tj a tj tjy xβ β η= + ⋅ + ,  t = 1, 2,..., n, j = 1, 2,..., s,  (20) 

can be used for estimating the β vector with two components 

β0 and β1. In addition to variables already defined for t = 1, 

2,..., n and j = 1, 2,..., s, two more sequences are relevant: axtj, 

which contains seasonally adjusted time series of the 

explanatory variable xtj, and a sequence of random errors ηtj. 

The estimates in this model can be obtained with the aid of the 

standard least squares, and the estimate b1 of the unknown 

parameter β1 is calculated as a ratio of covariance and variance, 

that is, 

1
1

cov( , )

var( )

a

a

y x
b

x
= .              (21) 

Simulations can also be taken as acceptable if they reflect 

the initial idea, namely, that the simulated explanatory 

variable is considered rather similar to the explanatory 

variable, and therefore it is also comparable to it regarding the 

nature of the seasonal component. In our view, if such a 

hypothesis is justified, the seasonal component contained in 

the sequence of the explanatory variable can also be grafted 

instead of the simulated explanatory variable, thereby further 

specifying it for our purposes. 

This idea can be reformulated as follows: suppose that, in 

years t = 1, 2,..., n and seasons j = 1, 2,..., s, the explanatory 

variable xtj can be described with the aid of a multiplicative 

model, i.e., a system of seasonal indices Itj that systematically 

change their values in seasons j = 1, 2,..., s and are repeated 

each year, while the following formula holds true: 

1

1

1
s

tj
j

s I
−

=
=∑ ;             (22) 

this formula represents an additional assumption that the 

arithmetic mean of the seasonal indices within one year 

equals 1 and a sum of those indices equals s. If an 

assumption is justified that that seasonal effects are equally 

strong on all variables. the response variable can be 

simulated in the form 

3, 2,tj tj tjy y η= + , t = 1, 2,..., n, j = 1, 2,..., s,   (23) 

where 

2, 0,tj tj tjy I y= ⋅ , t = 1, 2,..., n, j = 1, 2,..., s   (24) 

is an estimate of the mixed model comprising regular (trend 

and seasonal) components for the time series in question. We 

can say that, in this model, the deterministic component of the 

time series equals a constant value of Itj · y0,tj and the 

corresponding stochastic component equals the simulated 

value of ψtj for all t = 1, 2,..., n and j = 1, 2,..., s in the sense 

specified above. 

Two comments should be made in this context. 

a) Let us consider the sums 

2, 0,
1 1

s s

tj tj tj
j j

y I y
= =

= ⋅∑ ∑ .              (25) 

for the t-th year, t = 1, 2,..., n. From the definition of the 

variable y0,tj it follows that 

1

2,
1 1

s s

tj t tj
j j

y s Y I
−

= =
=∑ ∑ .             (26) 

holds true for all t = 1, 2,..., n, and j = 1, 2,..., s. With regard to 

the identity 

1

s

tj
j

I s
=

=∑ ,                 (27) 

the following formula is obtained 

2,
1

s

tj t
j

y Y
=

=∑ , t = 1, 2,..., n,         (28) 

which can be interpreted as follows: the variables y2,tj in the 

given year t, t = 1, 2,..., n, can be taken for rough estimates of 

the response variable's unknown values ytj in seasons j = 1, 2,..., 

s. 

b) If the hypotheses stated in this paragraph about the 

simulated values of the response variable are justified, the 

linear model 

3, 0 1.tj tj tjy xβ β ω= + + , t = 1, 2,..., n, j = 1, 2,..., s   (29) 

can be used and the estimate b2 of the parameter β1 can be 

calculated by the least squares method, i.e., using the known 

formula 

1
2

cov( , )

var( )

y x
b

x
= .                 (30) 

It turns out that, by simulating the values of the response 

variable, we can achieve a relatively simple approach to 

modelling, namely, estimating the necessary parameters 

using a simple loss function provided by the least square 

method. In fact, any simplification of this – not entirely 

trivial – task alleviates the dependence of formal models (in 

this situation, of course, parametric) on real data, which may 

(or may not) be available to the official statisticians 

conducting the surveys. 

The context of simulations is also important for another 

reason. The deterministic component of the response 

variable's time series is equal to the constant value of 

Itj · y0,tj, and the corresponding stochastic component is 

obtained by simulation. This is important from the point of 

view of the future work, as discussed at the end of the 

present paper. 

4. Conclusion 

From a mathematical point of view, our approach is 

formally classified as parametric. However, from a pragmatic 
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point of view and from our past experience, it is difficult to 

determine which of the two approaches – parametric vs. 

non-parametric – leads to better results. Classification and 

evaluation of such methods is difficult, among others due to 

the fact that the quality of the disaggregation achieved 

depends not only on the chosen approach, but also on the 

specific data actually available from statistical surveys. Put 

another way, the specific data given in the non-stochastic 

matrix of known explanatory variables in Formula (2) is 

important. Disaggregation levels of the y vector according to 

Formula (1) are also important. Certain variables have a high 

degree of aggregation (e.g., national account aggregates), but 

it may be difficult to find a suitable explanatory reference 

variable for them. And even the reverse is true. Hence in 

practice, disaggregation methods are not directly used to 

estimate quarterly GDP or GVA of the national economy, but 

to estimate quarterly values of, for example, output and 

intermediate consumption values by sector, from which GVA 

by sector and then GVA of the national economy are 

subsequently estimated. 

To a certain extent, a separate problem of the 

disaggregation problem is the formulation of the seasonality 

model's concept: how the character of seasonal variations 

should be translated into the disaggregation. These variations, 

of course, evolve in time, changing their qualitative 

manifestations as well as their relationships to the trend. In the 

concept of this paper (cf. Formula (22)), we assume that the 

arithmetic mean of the seasonal indices within a given year is 

equal to one and their sum is exactly equal to s. Our simulation 

concept is based on these assumptions. However, there is no 

doubt that other concepts of seasonality could be incorporated 

into the model. Therefore, we would like to address to this 

issue in the future, or switch to a different assumption about 

the type of the seasonal components. 

Last but not least, our considerations also largely depend on 

the length of the time series we have available. The literature 

review in the Theoretical Background Section shows that 

some authors try allocation procedures on time series of 

various indicators that are many decades long. This is 

undoubtedly tempting from a purely statistical point of view; 

on the other hand, the relationships between the x and y 

variables y and x are not constant in time and are subject to 

significant variations (leaving aside the changing 

methodological and legislative practices under which the 

statistical indicator values are collected). Therefore, the choice 

of disaggregation methodology should not be based on 

unimaginative stereotypes. 

In future our work, we would therefore like to arrive at a 

certain pragmatic taxonomy based on our empirical 

experience: how the quality of the variables that enter the 

parametric model should be determined and what variables 

represent the relevant outcome of statistical surveys. 
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