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Abstract: This paper extends the compound Poisson risk model with a variable threshold dividend payment strategy and 

dependence between claims and inter-claim times, modeled via the Spearman copula. The objective is to establish the ultimate 

ruin probability in this framework. Following an introduction that motivates the study and highlights limitations of traditional 

risk models, the paper reviews relevant literature on risk models, dividend strategies, and copulas. Subsequently, it describes 

the extended model, including the dividend strategy and dependence structure. The Gerber-Shiu transform and Laplace 

transform of the ruin probability are then derived. Finally, the ultimate ruin probability is determined within the proposed 

model. Concluding remarks discuss the implications of the findings and suggest directions for future research. By considering 

a more realistic and comprehensive approach to financial risk modeling in insurance, this paper aims to contribute to the field 

of insurance risk management and provide industry professionals with improved tools for risk assessment and management. 
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1. Introduction 

Traditionally, financial risk models in insurance assumed 

independence between the underlying random variables [1-

3]. However, in certain pratical contexts, this assumption is 

inadequate and too restrictive. For instance, in flood 

insurance, the occurrence of multiple floods in a sort period 

can lead to significant damages and claim amounts due to the 

accumulation of water. In earthquake insurance, it is the the 

opposite, as in a high-risk area, the longer the time between 

two earthquakes, the more significant the second earthquake 

due to the accumulation of energy. 

To remedy this insufficiency, many works integrate 

dependence between certain random variables, particularly 

claims amounts and inter-claim times, into the risk model, 

using Farlie-Gumbel- Morgenstern copula (see for example 

[4-11]). Although this copula is commonly used in the 

literature, it has certain limitations and cannot model tail 

dependencies (see [12-17]). 

This work extends the compound Poisson risk model by 

incorporating a dependence between claim amounts and 

inter-claim times via the Spearman copula, addressing the 

limitations of the Farlie-Gumbel-Morgenstern copula. 

Acknowledging the practical context of insurance 

companies, this work incorporates a dividend payment 

strategy for shareholders into the risk model. Notably, the 

first introduction of an insurance risk model with dividend 

distribution dates back to De Finetti in 1957 (see [27]). Many 

authors have been interested in its study (see for example 

[19-27]. 

This work analyzes a dividend payment strategy with a 

variable threshold barrier defined by equation �� � �� �
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��	where	0 < � ≤ ��; 	0 ≤ � < �.	The risk model with affine 

threshold dividend payment strategy was proposed to 

compensate the non-optimality of the risk model with 

constant threshold dividend payment strategy (see [20]). In 

this model, when the surplus process reaches the variable 

threshold barrier	�� ,	the premium are paid to shareholders as 

a constant rate	� − �.	Denoting by	�����	the surplus process 

in the presence of the threshold dividend 

barrier	�� 	(with	���0� � ��,	the model follows the following 

dynamic: 

������ � ���� − �����	��	����� < �� 	��� − �����	��	����� � ��              (1) 

where: �����	is the surplus process in the presence of the dividend 

barrier of threshold 	�� 	 (with 	���0� � �	 the initial surplus 

and	0 < � ≤ ��. �	is a constant rate of premium collected by the insurer per 

unit of time,	0 ≤ � < �. ���� � ∑ �������� 	 is the aggregated loss process with a 

compound Poisson distribution where: !"���, � ≥ 0$	is the total number of recorded claims up to 

time 	�,	 following a Poisson process with intensity 	% >0.	(Note that	���� � 0	if	"��� � 0�. !�� , � ≥ 1$	is a sequence of random variables representing 

the individual claim amount with a common density 

function	(	and cumulative distribution function	)	assumed to 

follow an exponential distribution with parameter	*. 
The inter-claim times 	!+� , � ≥ 1$	 form a sequence of 

random variables following an exponential distribution with 

parameter 	%,	 with probability density function 	,��� �%-./�	and cumulative distribution	0��� � 1 − -./� . 
This paper investigates the ultimate ruin probability within 

the risk model defined by equation (1). To achieve this goal, 

the work is structured as follows: section 2 establishes the 

fundamental concepts and mathematical framework 

associated with the model. Section 3 introduces the crucial 

tail dependence structure, capturing the relationship between 

extreme events. Section 4 derives the integro-differential 

equation satisfied by the Gerber-Shiu function, a key tool for 

analyzing ruin probabilities. Building upon this, section 5 

determines both the Gerber-Shiu transform and the Laplace 

transform of the ultimate ruin probability, providing essential 

analytical insights. Finally, section 6 culminates in the 

derivation of the ultimate ruin probability itself, representing 

the central result of this investigation. 

2. Preliminaries 

2.1. Instant of Ruin 

Let 	1�	 be the instant of ruin of the insurance 

company.	1�	is defined by: 

1� � �2(!� ≥ 0, ���� < 0$                      (2) 

The situation where the ruin probability is perpetually zero 

leads to the conventional notation denote 	1� � ∞ . 

Consequently, in this setting, 

���� ≥ 0	∀	� ≥ 0. 
2.2. Expected Discounted Penalty Function of Gerber-Shiu 

The expected discounted penalty function of Gerber-Shiu, 

first appeared in the work of Gerber and Shiu in 1998 (see 

[1]). Nowadays, this function is of significant interest in 

research. 

Its analysis remains a central question both in insurance 

and finance, as it is a valuable tool not only for studying the 

probability of ruin but also calculating retirement and 

reinsurance premiums, option pricing, and more. 

It is defined by  

5��� � 6[-.89:;<��9:=�, |���1��|?@�A < ∞�|��0� � �]  (3) 

where: 1� 	is the instant of ruin defined by equation (2). 1�.	is the instant just before ruin. C	is a interest force. 

The penalty function	;�D, E�	is a positive function of the 

surplus just before ruin, 	���1�.�	 and the deficit at 

ruin	|���1��|, ∀	D, E ≥ 0. 1F	is a indicator function, wich equal	1	if event	1F	occurs 

and 0 otherwise. 

3. Model of Dependence Based on 

Spearman Copula 

Copulas introduced by Abe Sklar in 1998, are an 

innovative and relevant tool for introducing dependence 

between multiples random variables. Given the marginal 

distribution functions of several random variables, copulas 

allow us to establish their joint distribution function. 

Nowadays, they are fundamental in modeling multivariate 

distributions in finance, insurance and hydrology. Key 

references on copulas theory include Joe [11] and Nelsen 

[18]. In this article, the structure of dependence is ensured by 

the Spearman copulas. Il is defined for all 	��, G� ∈[0,1]I	and	J ∈ [0,1]	as follow: 

KL��, G� � �1 − J�KM��, G� � JKN��, G�           (4) 

Where: 	KM��, G� � �G;	KN��, G� � O�2��, G�	 and 	J	 is a 

dependency parameter. 

The Spearman copulas allows for the introduction of 

positive dependence as well as tail dependencies in many 

situations. It also includes independence when	J � 0.	Using 

formula (4), the random vectors of claim amounts and inter-

claim times	��, +�	has the joint distribution function given 

by: 

)P,Q�D, �� � KL�)P�D�, )Q���� � �1 − J�)M�D, �� �J)N�D, ��                                  (5) 

Where 	)P	 and 	)Q	 are the marginal distributions of the 

random variables	�	and	+,	respectively. 

In the risk model defined by equation (1), the Gerber Shiu 

function	5����	takes the following form (see [12-16]): 
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5���� � �1 − J� R@�, ��� � @�,I���S � J R@�,T��� � @�,U���S (6) 

where: 

@�, ��� � V 	V -.8�5��� � �� − D��)M�D, ��WXY��Z� ;  
@�,I��� � V 	V -.8�;�� � ��, D − � − ����)M�D, ��ZWXY�Z� ;  
@�,T��� � V 	V -.8�5��� � �� − D��)N�D, ��WXY��Z� ;  

@�,U��� � V 	V -.8�;�� � ��, D − � − ����)N�D, ��ZWXY�Z�   

4. Integro-Differential Equation Satisfied 

by the Gerber-Shiu Function	[\�]� 
To obtain integro-differential equation satisfied by Gerber-

Shiu function	5����	in the risk model defined by equation 

(1), the following approach was adopted: 

1) The first claim occurs at time	�	befor the surplus process 

reaches the barrier 	�� 	 (ie 	� < �^.WY._ ). Its 

amount	D	satisfies	D < � � ��. 
2) The first claim occurs at time	�	befor the surplus process 

reaches the barrier 	�� 	 (ie 	� < �^.WY._ ). Its 

amount	D	satisfies D > � � ��. 
3) The first claim occurs at time	�	after the surplus process 

reaches the barrier 	�� 	 (ie 	� > �^.WY._ ). Its 

amount	D	satisfies	D < �� � ��. 
4) The first claim occurs at time	�	after the surplus process 

reaches the barrier 	�� 	 (ie 	� > �^.WY._ ). Its 

amount	D	satisfies	D > �� � ��. 
By conditioning on the time and the amount of the first 

claim and considering the different scenarios mentioned 

above, the integrals	@�, ���	and	@�,I���	in relation (6) become: 

@�, ��� � V 	V -.8�5��� � �� − D��)M�D, ��WXY��
:^=`a=b� � V 	V -.8�5���� � �� − D��)M�D, ��_�X�^�Z:^=`a=b .  

@�,I��� � V 	V -.8�;�� � ��, D − � − ����)M�D, ��ZWXY�
:^=`a=b� � V 	V -.8�;��� � ��, D − �� − ����)M�D, ��Z_�X�^Z:^=`a=b .  

By defining	@���� � @�, ��� � @�,I���,	it can be shown that: 

@���� � V 	V -.8�5��� � �� − D��)M�D, ��WXY��
:^=`a=b� � V 	V -.8�5���� � �� − D��)M�D, ��_�X�^�Z:^=`a=b � V 	V -.8�;�� �ZWXY�

:^=`a=b���, D − � − ����)M�D, �� � V 	V -.8�;��� � ��, D − �� − ����)M�D, ��Z_�X�^Z:^=`a=b   

@���� � % V 	V -.�8X/��5��� � �� − D�(P�D��D��WXY��
:^=`a=b� � % V 	V -.�8X/��5���� � �� − D�(P�D��D��_�X�^�Z:^=`a=b �

%V 	V -.�8X/��;�� � ��, D − � − ���(P�D��D��ZWXY�
:^=`a=b� � %V 	V -.�8X/��;��� � ��, D − �� − ���(P�D��D��Z_�X�^Z:^=`a=b   (7) 

To streamline the notation of equation (7), the following definitions are introduced: 

c��� � V ;��, D − ��(�D��DZW ; 	d���� � V 5��� − D�(�D��D � c���W�                                       (8) 

Equation (7) becomes: 

@���� � % V -.�8X/��d��� � �����	:^=`a=b� � % V 	-.�8X/��d���� � �����	Z:^=`a=b                                      (9) 

The relation (9) can be put in the form: 

@���� � % V -.�8X/��d�<�� � ��� ∧ ��� � ���?��	Z�    (10) 

where:	� ∧ G � min��, G� 
Let us now determine the integrales	@�,T���	and	@�,U���	in 

relation (6). 

The support of copula	KN	is	i � !	��, G� ∈ [0,1]I: � � G$. 
On the domain	[0,1]I ∖ i, lmnolWlp � 0	and on	i,	KN	follows 

an uniform distribution. 

Since the structure of dependence between the claim 

amounts and inter-claim times is described by the 

copula 	KN ,	 these are monotonous and there almost surely 

exists an increasing function 	q,	 such that � � q�+�	 (see 

Nelsen [18, P.27]. The following result is established (see 

[12-15]): 

q��� � /r �                             (11) 

The joint distribution 	)P,Q�D, ��	 of the random 

vector	��, +�	is singular, and its support is the domain	is �!�D, ��: )P�D� � )Q���$ � !�D, ��: x � q���$. 
Its distribution is 	u��� � )N�q���, �� � 1 − -./�	 on the 

domaine	is � v�D, ��: x � /r �w. 
The integral	@�,T���	becomes: 
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@�,T��� � V V -.8�5��� � �� − D�WXY��
:^=`a=b� �)N�D; �� � V 	V -.8�5���� � �� − D���Z:^=`a=b �)N�D; ��  

� V -.8�5��� � �� − D��u��� �x V -.8�5���� � �� − D��u���y                                             (12) 

where: 

0 � v� ∈ ℝX: 0 ≤ � ≤ �^.WY._ 	�2�	0 ≤ D � /r � ≤ � � ��w  
� v� ∈ ℝX: 0 ≤ � ≤ �^.WY._ 	�2�	 R/r − �S � ≤ �w  

� v� ∈ ℝX: 0 ≤ � ≤ �^.WY._ 	�2�	� ∈ ℝXw  
Because	� > /r 	�2�	� > 0	(solvency condition:	{[�+ − �] > 0) and	� ≥ 0. 
Therefore: 

0 � |0;	�^.WY._ }                                                                                     (13) 

~ � v� ∈ ℝX: � ≥ �^.WY._ 	�2�	D � /r � ≤ �� � ��w  
� v�: ∈ ℝX: � ≥ �^.WY._ 	�2� R/r − �S � ≤ ��w  

/r − � < 0; � > 0	�2�	� ≥ 0	 ⟹ v� ∈ ℝX: R/r − �S � ≤ ��w � ℝX  

Therefore: 

~ � |�^.WY._ ; �∞|                                                                                (14) 

Using relations (13) and (14), the integral	@�,T���	can be written as: 

@�,T��� � V -.8�5��� � �� − D�	:^=`a=b� �u��� � V -.8�5���� � �� − D�	Z:^=`a=b �u���  
� % V -.�8X/��5� R� � �� − /r �S:^=`a=b� �� � % V -.�8X/��5� R�� � �� − /r �SZ:^=`a=b ��	                  (15) 

The analogous case yields: 

@�,U��� � V V -.8�;�� � ��, D − � − ���ZWXY�
:^=`a=b� )N�D; �� � V 	V -.8�;��� � ��, D − �� − ���Z_�X�^Z:^=`a=b )N�D; ��  

� V -.8�-.8�;�� � ��, D − � − ����u��� �x� V -.8�;��� � ��, D − �� − ����u���y�                                     (16) 

where: 

0s � v� ∈ ℝX: � ≤ �^.WY._ 	�2�	0 ≤ D � /r � ≥ � � ��w  
� v� ∈ ℝX: � ≤ �^.WY._ 	�2�	 R/r − �S � ≥ �w  

But: v� ∈ ℝX	�2�	 R/r − �S � ≥ �w � ∅ 

Therefore: 

0s � ∅                                                                                         (17) 

~s � v� ∈ ℝX: � ≥ �^.WY._ 	�2�	D � /r � ≥ �� � ��w  
� v�: ∈ ℝX: � ≥ �^.WY._ 	�2�	 R/r − �S � ≥ ��w  



 International Journal of Statistical Distributions and Applications 2024; 10(1): 1-9 5 

 

The formula v� ∈ ℝX	�2�	 R/r − �S � ≥ ��w � ∅ is obtained. 

Therefore: 

~s � ∅	                                                                                          (18) 

Substituting relations (17) and (18) into equation (16) yields: 

@�,U��� � 0                                                                                        (19) 

Assume	@�⋆��� � @�,T��� � @�,U���.	Applying relations (15) and (19) yields: 

@�⋆��� � % V -.�8X/��5� R� � �� − /r �S:^=`a=b� �� � % V -.�8X/��5� R�� � �� − /r �SZ:^=`a=b ��	                        (20) 

The relation (20) can be put in the form: 

@�⋆��� � % V -.�8X/��5� �R� � �� − /r �S ∧ R�� � �� − /r �S�	Z� ��                                  (21) 

From the relations (6), (10) and (21), the Gerber-Shiu function	5����	can be put into the form: 

5���� � %�1 − J�V -.�8X/��d�<�� � ��� ∧ ��� � ���?��	Z� � J% V -.�8X/��5� �R� � �� − /r �S ∧ R�� � �� − /r �S�	Z� �� (22) 

By setting	� � � � ��; 	� � � � �� − /r �	in the relation (22), it can be shown that: 

5���� � /Y �1 − J�V -.R���a S��.W�d� �� ∧ R� �.WY � ��S� ��	ZW   

� Lr/rY./ V -.rR ����a=�S��.W�5� �� ∧ �* � _.��rY./� �� − ��� � ���	ZW ��	                                       (23) 

Theorem 4.1: The Gerber-Shiu function	5����	satisfies the following integro-differential equation:: 

R� − r�8X/�rY./ ℓS R� − 8X/Y ℓS5���� � Rr/�8X/�� .L�Y�rY./� ℓ − /Y �1 − J��Sd���� � RLr/�8X/�Y�rY./� ℓ − Lr/rY./�S5����	          (24) 

where:	�	and	ℓ	are the differentiation and identity operators respectively. 

Proof of theorem 4.1: 

Let us derive the function	5����	in the relation (23) with respect to	�. 
5s���� � /Y �1 − J� R8X/Y S V -.R���a S��.W�d� �� ∧ R� �.WY � ��S� ��	ZW   

� Lrm/�8X/��rY./�m V -.rR ����a=�S��.W�5� �� ∧ �* � _.��rY./� �� − ��� � ���	ZW �� − /Y �1 − J�d���� − Lr/rY./5����                (25) 

Using the differentiation and identity operators	�	and	ℓ, let us calculate	���� � R� − 8X/Y ℓS5����. 
���� � − /Y �1 − J�d���� − Lr/rY./5���� � Lr/rY./ R rrY./ −  YS × V -.rR ����a=�S��.W�5� �� ∧ �* � _.��rY./� �� − ��� � ���	ZW �� (26) 

Let us derive the function	����	in the relation (26) with respect to	�. 
�s��� � − /Y �1 − J�ds���� − Lr/rY./5s���� � Lrm/rY./ R rrY./ −  YS R 8X/rY./S  
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× V -.rR ����a=�S��.W�5� �� ∧ �* � _.��rY./� �� − ��� � ���	ZW �� − Lr/�8X/�rY./ R rrY./ −  YS5����                        (27) 

Using the differentiation and identity operators	�	and	ℓ	let us calculate	ℎ��� � R� − r�8X/�rY./ ℓS ����. 
ℎ��� � r/�8X/�Y�rY./� �1 − J�d���� − /Y �1 − J�ds���� − Lr/rY./5s���� � Lr/�8X/�Y�rY./� 5����                            (28) 

From the relations (26) and (28), the equation (24) can be deduced. 

5. Laplace Transforms of Gerber-Shiu and Ultimate Ruin Probability 

Lemma 5.1: The Laplace transform of Gerber Shiu	5����	is given by: 

5����� � ��,:���X�m,:�����,:���X�m,:���                                                                               (29) 

where: 

� ,���� � Rr/� .L��8X/�Y�rY./� − /� .L�Y �Sc���� � /� .L�Y c�0�  
�I,���� � R� � Lr/Y.�8X/��IrY./�Y�rY./� S5��0� � 5s��0�  

i ,���� � �I � Lr/Y.�8X/��IrY./�Y�rY./� � � r�8X/�m.Lr/�8X/�Y�rY./�   

iI,���� � r/� .L��rY./��Y�rX���rY./� − rm/� .L��8X/�Y�rX���rY./�   

Proof of the lemma 5.1: 

Let’s put: 

� ��� � R� − r�8X/�rY./ ℓS R� − 8X/Y ℓS5����  
�I��� � Rr/� .L��8X/�Y�rY./� ℓ − /� .L�Y �Sd���� � RLr/�8X/�Y�rY./� ℓ − Lr/rY./�S5����  

By taking the Laplace transform of both sides of the equation (7), it can be shown that: 

V -.�WZ� � ����� � R�I − �8X/��IrY./�Y�rY./� � � r�8X/�mY�rY./�S5����� �	R�8X/��IrY./�Y�rY./� − �S5��0� − 5s��0�                 (30) 

V -.�WZ� �I����� � Lr/�8X/�Y�rY./� 5����� − � Lr/rY./5����� � Lr/rY./5��0� � Rr/� .L��8X/�Y�rY./� − /� .L�Y �S R rrX�S5�����  
�Rr/� .L��8X/�Y�rY./� − /� .L�Y �Sc���� � /� .L�Y c�0�	                                                                        (31) 

From the relations (30) and (31), the relation (29) can be deduced. 

Theorem 5.1: The Laplace transform of the ultimate ruin probability is given by: 

������ � ��,:���X��,:�����,:���X��,:���                                                                              (32) 

where: 

�T,���� � r/m� .L�Y�rY./��rX�� − /� .L�Y�rX�� � � /� .L�Y c�0�  
�U,���� � R� � Lr/Y./�IrY./�Y�rY./� S5��0� � 5s��0�  
iT,���� � �I � Lr/Y./�IrY./�Y�rY./� � � r/m� .L�Y�rY./�   
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iU,���� � r/� .L��rY./��Y�rX���rY./� − �r/�m� .L�Y�rX���rY./�  
Proof of the theorem 5.1: 

By setting	;�D, E� � 1	and	C � 0	in the equation (29), c���� �  rX� can be obtained and the relation (32) can be deduced. 

6. Ultimate Ruin Probability 

Lemme 6.1: The Laplace transform of ultimate ruin probability can be put in the form: 

������ � n��mXnm�Xn������                                                                            (33) 

where: 

K � ��*� − %�5��0� KI � %�1 − J��*� − %��c�0� − 1� � �J*%� − *%� � �*� − %�I�5��0� � ��*� − %�5s��0� KT � *%�1 − J��*� − %�c�0� � <J*I%� − *%�2*� − %�?5��0� � *��*� − %�5s��0� i��� � ��I�*� − %� � ��J*%� − *%� � �*� − %�I� − *%�*� − %� 
Proof of the lemma 6.1: By multiplying the numerator and the denominator of the relation (10) by	��* � ���*� − %�, the 

desired result is obtained after simplification. 

Theorem 6.1: The ultimate ruin probability in the risk model defined by relation (1) has the explicit expression given by: 

����� � /� .L��rY./�Y�mXrY -��W                                                                     (34) 

where: 

� � rY/.Lr/Y.�rY./�m. �Lr/Y.r/YX�rY./�m�mXUr/Y�rY./�mIY�rY./� < 0                                           (35) 

�I � rY/.Lr/Y.�rY./�mX �Lr/Y.r/YX�rY./�m�mXUr/Y�rY./�mIY�rY./� 	> 0                                          (36) 

Proof of the the theorem 6.1: 

The polynomial 	i���	 in the relation (33) is clearly a 

polynomial of degree 2 in 	�	 of discriminant 	Δ ��J*%� − *%� � �*� − %�I�I � 4*%��*� − %�I > 0	 and 

poles	� 	and	�I	given by relations (35) and (36). 

The denominator of relation (33) is clearly a polynomial of 

degree 3 in s while its numerator is a polynomial of degree 2. 

By decomposition into simple elements, the Laplace 

transform of the ultimate ruin probability in the relation (33) 

can therefore be put in the form: 

������ � Y�£�X£mX£���mXY�.£���.£��m.£m�m.£�����X£�Y���mY���.�����.�m� 	 (37) 

where: 	¤ , ¤I, ¤T ∈ ℝ;  � 	and 	�I	are given by the relations 

(35) and (36). 

The analysis of relations (33) and (36) leads to: 

¤ � n�Y���m                           (38) 

¤T � Y£���Xn��mXnmY��m.���                       (39) 

¤I � n�Y − ¤ − ¤T                      (40) 

where:	K , KI	and	KT	are given by the relation (33). 

By the inverse Laplace transform, the ultimate ruin 

probabilty can therefore be put in the form: 

����� � ¤ � ¤I-��W � ¤T-�mW           (41) 

where: 	¤ , ¤I	and 	¤T	are respectively given by the relations 

(38), (39) and (40). 

Given that limW⟶XZ����� � 0	(natural condition), it can 

be deduced that: 

¤T � 0                               (42) 

¤ � 0                              (43) 

¤I � �*� − %�5��0�                     (44)	
5��0� � /� .L�rYXY�m                          (45) 

By injecting the relations (42); (43); (44) and (45) in the 

relation (41), the desired result can be obtained. 

Graphic illustration 

Example 6.1. By fixing the parameters 	� � 1; 	% �0.5; 	* � 0.7; �� � 10	 and using MATLAB, curves 

illustrating the probability of failure for various values of the 

dependent parameter J. are presented. 
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Figure 1. Curve of	�����	as a function of	�	and dependent parameter	J. 

Remark: Analysis reveals that the ultimate ruin probability ��  is a 

decreasing function of � and the dependent parameter J. 
7. Conclusion 

This work focuses on the ultimate ruin probability in a 

compound Poisson risk model with variable threshold 

dividends and Spearman copula-dependent claims. 

The remainder of this work will be devoted to the 

applications of the results obtained in insurance companies. 
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