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Abstract: In this paper, the classical fourth-order Runge-Kutta methodis presented for solving the first-order ordinary 

differential equation. First, the given solution domain is discretizedby using a uniform discretization grid point. Next by 

applyingthe forward difference method, we discretized the given ordinary differential equation. And formulating a difference 

equation. Then using this difference equation, the given first-order ordinary differential equation is solved by using the 

classicalfourth-order Runge-Kutta method at each specified grid point. To validate the applicability of the proposed method, 

two model examples are considered and solved at each specific grid point on its solution domain. The stability and convergent 

analysis of the present method is worked by supportedthe theoretical and mathematical statementsand the accuracy of the solution is 

obtained. The accuracy of the present methodhas been shown in the sense ofmaximumabsolute error and the local behavior of 

the solution is captured exactly. Numerical and exact solutions have been presented in tables and graphs and the corresponding 

maximumabsolute errorisalso presented in tables and graphs. The present method approximates the exact solution very well 

and it is quite efficient and practically well suitedfor solving first-order ordinary differential equations. The numerical result 

presented in tables and graphsindicates that the approximate solution is in good agreement with the exact solution. Hence the 

proposed method is accruable to solve ordinary differential equations. 

Keywords: Ordinary Differential Equation, Runge-Kutta Method, Initial Value Problem, Boundary Value Problem,  

Stability and Convergent Analysis, Maximum Absolute Error 

 

1. Introduction 

Numerical analysis is a subject that involves 

computational methods for studying and solving 

mathematical problems. It is a branch of mathematics and 

computer science that creates, analyzes, and implements 

algorithms for solving mathematical problems numerically. 

Numerical methods usually emphasize the implementation 

of numerical algorithms. The aim of these numerical methods 

is, therefore, to provide systematic techniques for solving 

mathematical problems numerically. Numerical methods are 

well suited for solving mathematical problems by using 

modern digital computers, which are very fast and efficient in 

performing arithmetic operations. The process of solving 

problems using high precision digital computers generally 

involves starting from initial data; the concerned appropriate 

algorithms are then executed to yield the required results [1]. 

The ultimate aim of the field of numerical analysis is to 

provide convenient methods for obtaining the solutions to 

mathematical problems and for extracting useful information 

from available solutions that are not expressed intractable 

forms. Such problems may be formulated in terms of 

algebraic equations, transcendental equations, ordinary 

differential equations, and partial differential equations [2, 3]. 

The ordinary differential equation is a mathematical 

equation that is significant in physical phenomena that occur 

in nature. The majority of ordinary differential equations 

difficult to approximate by analytical methods. Its, therefore, 

important to be able to obtain an accurate solution 

numerically [1]. 

Numerical methods for the solution of ordinary differential 

equations may be put in two categories-numerical integration (e.g., 

predictor-corrector) methods and Runge-Kutta methods. The 

advantages of the latter are that they are self-starting and easy to 

program for digital computers but neither of these reasons is very 

compelling when library subroutines can be written to handle 



2 Kedir Aliyi Koroche:  Numerical Solution of First Order Ordinary Differential Equation by Using Runge-Kutta Method  

 

systems of ordinary differential equations. Thus, the greater 

accuracy and the error-estimating ability of predictor-corrector 

methods make them desirable for systems of any complexity. 

However, when predictor-corrector methods are used, Runge-

Kutta methods still find application in starting the computation 

and in changing the interval of integration [11]. One of this 

method Runge-Kutta 4th order method is a numerical technique 

used to solve ordinary differential equations [9]. Runge-Kutta 

methods are considered in the context of using them for starting 

and for changing the interval, matters such as stability and 

minimization of roundoff errors are not significant [11]. 

Traditionally, methods such as the Taylor series method, 

Euler method, RungeKutta second & third order methods, 

and finite difference method, have been used to approximate 

first-order ordinary differential equation. Despite their great 

success in the past decades in mathematics problems, these 

methods require time to consume to solve ordinary 

differential equations. The costs and difficulties in creating 

quality solutions, however, constitute one of the major 

bottlenecks in these methods. However, the complications of 

these methods include a slow rate of convergence, instability, 

low accuracy. To this end, this Project aims to develop a 

fourth-order Runge-Kuttamethod that is capable of producing 

an accurate solution of first-order ordinary differential 

equations on a specific given domain. 

In this work, we propose a numerical method for solving 

the first-order ordinary differential equation and the 

convergence has been shown in the sense of absolute errors 

that the local behavior of the solution is captured exactly. 

2. Objectives of the Study 

a) General Objective 

The general objective of this study is to develop a classical 

fourth-order Runge-Kutta method for solving the first-order 

ordinary differential equation 

b) Specific Objectives 

The specific objectives of the study are: 

1. To formulate the numerical method for solving first-

order ordinary differential equation; 

2. To test the extent to which the proposed method 

approximates the exact solution; 

3. To describe the advantage of the present method over 

another method. 

3. Significance of the Study 

The outcome of this study provides some background 

information for other researcherswho work on this and the 

related area of study It also introduces the application of 

numerical methods in different fields of study. 

4. Delimitation of the Study 

This study is delimited to the fourth-order Runge-Kutta 

method for solving first-order ordinary differential equation 

given in the form of: 

�� = ����, ���	�, 
 ≤ � ≤ � 

5. Review of Related Literature 

Many problems in science and engineering can be 

formulated in terms of differential equations. A differential 

equation is an anequation involving a relation between an 

unknown function and one or more of its derivatives [17]. 

Most fundamental laws of Science are based on models 

that explain variations in physical properties and states of 

systems described by differential equations [5]. An equation 

that consists of derivatives is called a differential equation. 

Differential equations have applications in all areas of 

science and engineering. The mathematical formulation of 

most of the physical and engineering problems leads to 

differential equations. So, engineers and scientists need to 

know how to set up differential equations and solve them 

[11]. This differential equation is categorized into two parts. 

These two parts are the Ordinary differential equation and the 

Partial differential equation [1, 2, 10]. An ordinary 

differential equation is a differential equation that involves 

derivatives of one or more dependant variables concerning at 

most one independent variable [1, 2, 17]. A partial 

differential equation is a differential equation that involves 

the derivative of one or more dependant variables concerning 

two or more than two variables [2]. It is now well 
established that numerical schemes for solving ordinary 
differential equations (ODEs) may exhibit period-
doubling and chaotic behavior when used with time 
steps above their linearised stability limit [16]. An 

Ordinary differential equation is categorized into the Initial 

value problem and boundary value problem [1, 2, 17]. 

5.1. Initial Value Problem 

Initial value problems for ordinary differential equations 

(ODEs) occur in almost all the sciences, notably in 

mechanics (including celestial mechanics), where the motion 

of particles (resp., planets) is governed by Newton’s second 

law – a system of second-order differential equations. It is no 

wonder, therefore, that astronomers such as Adams, Moulton, 

and Conwell were instrumental in developing numerical 

techniques for their integration. Still, when separated in polar 

coordinates, it reduces to an ordinary second-order linear 

differential equation. Such equations are at the heart of the 

theory of special functions of mathematical physics [4]. 

Within mathematics, ordinary differential equations play 

an important role in the calculus of variations, where optimal 

trajectories must satisfy the Euler equations, Orin optimal 

control problems, where they satisfy the 

Pontryaginmaximum principle. 

In both cases, one is led to boundary value problems for 

ordinary differential equations [4]. Initial Value Problem is 

types of ode that given Information at a single value of the 

independent variable, typically at the beginning of the 

interval [5]. This initial value problem is given in the form 

of �� =	 ���� = ���� , 	���	� = �		, 
 ≤ � ≤ � , for x is an 
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independent variable and �	 = 
 . Different numerical 

methods used to solve these types of problems, like the Euler 

method, the Taylor series method, and finite difference 

method. But this numerical method is a low convergence rate 

and consumes time. So that we develop and use the 

convergent numerical method which is called the classical 

fourth-order Runge-Kutta method. 

5.2. Boundary Value Problem (BV) 

Many problems in applied mathematics require solutions of 

differential equations specified by conditions at more than one 

point of the independent variable. These are called boundary 

value problems; they are considerably more difficult to deal 

with than initial value problems, largely because of their global 

nature. Unlike (local) existence and uniqueness theorems 

known for initial value problems and there are no comparably 

general theorems for boundary value problems. Neither 

existence nor uniqueness is, in general, guaranteed [4]. 

The finite difference method is used to solve ordinary 

differential equations that have conditions imposed on the 

boundary rather than at the initial point. These problems are 

called boundary-value problems. Many academics refer to 

boundary value problems as position-dependent and initial 

value problems as time-dependent [8]. 

We concentrate here on two-point boundary value 

problems, in which the systemof differential equations�� =
	���� = ���� , 	���	� = �	, ����� = ��, 
 ≤ � ≤ � , for �  is an 

independent variable �	 = 
, �� = �  and both�	  and ��  are 

boundary conditions given at boundary points of specific 

domains respectively a and b. This problem has different 

applications in the real-life world. In this project, we discuss 

the solution of initial value problem solving by using the 

Runge-Kutta method [4]. 

5.3. Runge Kutta Methods 

Numerical methods for the solution of ordinary differential 

equations may be put in two categories-numerical integration 

(e.g., predictor-corrector) methods and Runge-Kutta 

methods. The advantages of the latter are that they are self-

starting and easy to program for digital computers but neither 

of these reasons is very compelling when library subroutines 

can be written to handle systems of ordinary differential 

equations. Thus, the greater accuracy and the error-estimating 

ability of predictor-corrector methods make them desirable 

for systems of any complexity. However, when predictor-

corrector methods are used, Runge-Kutta methods still find 

application in starting the computation and in changing the 

interval of integration [11]. Runge-Kutta methods are 

standard in the fields of numerical ODEs [12]. 

One can distinguish between analytic approximation 

methods and discrete-variable methods. In the former, one tries 

to find approximations to the exact solution������ ≈ ����, 
valid for all � ∈ �
, �� where ���  approximate value and 

����exact values of the given problem. These usually take the 

form of a truncated series expansion, either in powers of x, in 

Chebyshev polynomials, or some other system of basic 

functions. So to approximate this solution by using a single 

step and multistep methods. Single-step methods for IV 

problems are Euler, Heun, and Midpoint/Improved Polygon 

and general Runge-Kutta methods. Multi-step methods for IV 

problems are Newton-cotes Adams methods [3, 4]. To solve 

the initial value problem is given in the form of�� =	 ���� =���� , y�x	� = y	, a ≤ x ≤ b , key to the various one-step 

methods is how the slope is obtained. This slope represents a 

weighted average of the slope over the entire interval and may 

not be the tangent at ��� , ���[5]. Hence in our work, we use 

Runge-Kutta methods. Employing single-step 

���� = �� + ℎ ��� , �� , ℎ� 
Increment function or slope,  ��� , �� , ℎ�  is a weighted 

average:  = 
�!�� + 
"!"� +⋯+ 
�!�� +⋯+ 
�!�� ( $%& 

order methods) where:
�= weighting factors (that sum to unity) 

!�� = ℎ���� , ��� 
!"� = ℎ����+'�ℎ+, ���(��!���, 

!"� = ℎ����+'"ℎ+, ���("�!�� + (""!"�� 
……… 

!"� = ℎ�)��+'�*�ℎ+, ���(�*��!�� + (�*�	"!"� +⋯
+ (�*�	�*�!�*��+ 

Now from this general n stage Runge-Kutta Methods, the 

classical fourth-order Runge-Kutta method employing single-

step given as: 

���� = y, + 1 6/ 0!� + 2!" + 2!2 + !34 
where !� = ℎ���� , ��� , !" = ℎ���� + �

" ℎ+, ���
�
" !�� , !2 =

ℎ���� + �
"ℎ+, ���

�
"!"� , !" = 	���� + ℎ+, ���!2� . Global 

truncation error, 5	�ℎ3� . For our discussion, we shall 

consider This explicit Runge-Kutta method only. However, 

Runge-Kutta methods must compare with the Taylor series 

method when they are expanded about the point x = xi.	

6. Study Area and Period 

This study is conducted at the Ambo university's department 

of mathematics in 2020 G. C. conceptually; the study focused 

on the classical fourth-order Runge-Kutta method for solving a 

first-order ordinary differential equation. 

i) Study Design 

This study employed a documentary review and numerical 

experimental design. 

ii) Source of Information 

This study utilized information from books, Google/ internet, 

and the experimental results obtained through coding. 

iii) Mathematical Procedures 

To achieve the stated objectives, the study followed the 

following steps: 1) Defining the problem or formulating of the 

problem; 2) Discrediting the solution domain; 3) Solving first-

order ordinary differential equation by using the method4) 
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Validating the method via some numerical example. 

7. Description of Numerical Experiment 

In this section, we use the fourth-order RungeKutta 

method for finding the approximate solutions of the initial 

value problem (IVP) of the first-order ordinary differential 

equation has the form 

�� = ���, ��, � ∈ ��	, ���, ���	� = �	               (1) 

where�� = ��
��,���, ��is given smooth faction and ����is the 

solution of Equation (1). Numerical methods employ 

Equation �1� to obtain approximations to the values of the 

solution corresponding to various selected values of�� =�	 + $ℎ , = 1,2,3, … , 8 − 1 . The parameter ℎ	 is called the 

step size. The numerical solutions of �1� are given by a set of 

points :��� , ������, $ = 0,1,2, …… < and each point ��� , ��� 
is an approximation to the corresponding point ��� , ������on 

the solution curve [6]. 

Stability and Convergent Analysis. 

In contrast to the form (1), we shall consider equations of 

the form 

�’	 = 	>�	 + 	?��, ��                              (2) 

It is assumed that ?  satisfies a Lipchitz condition with 

constant @ such that: 

‖?��, B� − ?��, C�‖ ≤ @‖B − C‖                    (3) 

This form includes the ones traditionally considered. 

Associated with Eq. (1) is the “model problem,” 

�� = >�                                      (4) 

Because the model problem is comparatively easy to 

analyze in detail, we shall view Eq. (1) as arising from the 

addition of a (possibly) nonlinear term to the equation Eq. (3). 

We shall continually ask what happens for the model 

problem and then ask to what degree the general problem 

shares this behavior. 

For the sake of simplicity and definiteness, it is assumed 

that the matrix ‘A’ can be diagonalized by a similarity 

transformation 

											D>D*� = Λ = FG
H�I��                        (5) 

It is then easy to analyze the stability of the model 

problem. Assumed that the vector norm implicit in Eq. (2) is 

the Euclidean norm. The associated subordinate matrix norm 

will be used. Our analysis is based on another vector norm, 

the P-norm, defined by 

‖C‖J ≤ ‖DC‖ 

where P  is the matrixes given in Eq. (5). Its subordinate 

matrix norm is 

‖K‖� ≤ ‖DCD*�‖ 

Inequalities in one norm are connected to inequalities in 

the other by the condition number of ‘P’, !�>� = ‖D‖‖D*�‖ 

‖C‖ ≤ ‖B‖ Implies ‖C‖ ≤ !�>�‖B‖  and  ‖C‖� ≤ ‖B‖� 

implies‖C‖� ≤ !�>�‖B‖�. 

In particular, Eq. (3) implies 

‖?��, B� − ?��, C�‖� ≤ @!�>�‖B − C‖�              (6) 

With these preliminary observations it is now easy 

weobtain a stability result for the model problem. 

Lemma 1: Let�L���, ��� ) be two solutions toEq. (4). If 

>satisfies Eq. (5), then 

‖�L���� − �����‖� ≤ ‖�L���� − �����‖�MN��*�O�         (7) 

Where 

		P = QMR�I��.                                    (8) 

Proof: Any solution���) of Eq. (4) can be written as 

���� = �����MS��*�O� 
from which it is obvious that 

‖�L���� − �����‖� ≤ TMS��*�O�||||��L���� − ������T� 

At this point the roles played by the assumption Eq. (5) 

and the P-norm are seen: 

VWMS��*�O�WVX ≤ T'MS��*�O�'*�T 

= TFG
H)MYZ��*�O�+T = MN��*�O� 
The standard theory applied to the model problem (4) 

leads to (6) with 

@ = ‖>‖X = TFG
H�I��T = max)I�+ = \�>� 
Where \�>� is the spectra radius of coefficient matrix>. 

The result Eq. (7) is advantageous whenP	 ≤ \�>� . A 

difference between the two approaches is made clear on 

considering the two scalar problems y’ = Ay and y ’ = - Ay. 

The classical theory does not distinguish these problems and 

Lemma 1 does. According to Eq. (7), the integral curves of 

the model problem do not spread apart at all if P < 0 and 

come together if P < 0. More generally, an equation Eq. (2) 

is said to be contractive in the P-norm if 

‖�L��� − ����‖� ≤ ‖��L���� − ������‖� 

for all pairs of distinct solutions�L���	
$F		���.) 

Lemma 2: If A satisfies Eq. (5), the model problem Eq. (4) 

is contractive in the p-norm if, and only if, P < 0. 

Proof. One direction is an immediate consequence of (7). 

Suppose now that �L��� − ���� = C� is an eigenvector of 

Acorresponding to the eigenvalues	I�. Then 

‖�L��� − ����‖� = ^VC�M)YZ��*�O�+V^ =
|M)YZ��*�O�+|‖��L���� − ������‖�  

Clearly, these two solutions do not approach one another 
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unless QM
R)I�+ < 0 and we conclude that necessarily	P < 0. 

Now let us derive a stability result like Eq. (7) for the whole 

class Eq. (2). The classical variation of constants formula 

provides a generalization of Eq. (5) which exposes the roles 

of A  and	?: 

���� = �����MS��*�O� + _ M�S��*%��
�O ?�`, ��`��F`       (9) 

Theorem 1: Let�L���, ���) be two solutions of Eq. (1). If > 

satisfies Eq. (5) and	? satisfies Eq. (3), then 

‖�L��� − ����‖� ≤ ‖�L���� − �����‖�M��*�O��N�ab�X�� 
Proof. Let 

 ��� = ‖�L��� − ����‖� 

Then by the Lipchitz and the representation Eq. (9) lead 

easily to 

 ��� ≤  ����TMS��*�O�T� +c TMS��*%�TX@!�D�
�

�O
 �`�F` 

On bounding the norms of the exponential matrices as in 

the proof of Lemma 1 and on introducing 

d��� =  ���M*N� 

it is found that 

d�e� ≤ f�eg�. +c @!�D�
�

�O
d�`�F` 

Gronwall’s inequality then states that 

d�e� ≤ f�eg�Mib�����*�O�. 
which is equivalent to the result desired. 

Corollary 1: With the assumptions of Theorem 1, the 

problem (2) is contractive in the P-norm if 

P + @!�'� < 0 

Theorem 1 includes the classical result when A = 0. It is 

more informative and is obtained at the price of analysis only 

a little more complicated. The most interesting situation is 

when A has Eigen-values I�  with |I�|  large and jM (I� )<
	0	 because we obtain than much more realistic stability 

bound. We have an attractive formulation of contractility: If 

the model problem is contractive in the P-norm, so is the 

general problem for all sufficiently small C. In any case, we 

see that for “small” C, the stability bound is much the same 

as that for the model problem. 

Theorem 2: In our case, the classical fourth-orderRunge-

Kutta method is applied to solve ODE in Eq. (1) so it has the 

representation of the form: 

B� = k��ℎ>�B	 +lk�	��ℎ>�
�*�

�*	
?)�� , B�+, m = 1	,2, … 4 

���� = Bo = k.�ℎ>�B	 + ℎlko	��ℎ>�
3

�p	
?��� , B�� 

where the polynomials k��q�,  k�q�.  and k�	��q� are defined 

by 

k��q� = 1 + zlβ,t
,*�

tp	
Kt�z�, i = 1,2, . .4. 

k �q� = 1 + zlα,
3

tp	
K,�z� 

k�	��q� = β,t + z l β,�
,*�

xpt��
K�t�z�	,0 ≤ j < G ≤ 4 

ko	��q� = α, + z l α,�
3

xpt�x
K�t�z�	, j = 0,1,2,3,4. 

Lemma 3: Let�L���   ,����be the results of applying the 

Runge-Kuttamethod to the model problem Eq. (2) starting 

with the approximations �L�  ,��, respectively. Suppose that J 

satisfies (5) and that P < 0. Then 

‖�L��� 	− ����‖z ≤ ‖�L� 	− ��‖z 

for all �L�  ,��if, and only if,ℎI	{	Β for all eigenvalues of A 

Proof: LetΚ be stability polynomial and B be a (compact) 

region in the complex plane defined by  ~ = :q: jM
R�q� ≤
0< and|k�q�| ≤ 1. Then from Eq. (7) we have 

‖�L���	– ����‖z = ‖Κ�hA���L�	– ���‖z 

≤ ‖Κ�hA�‖z‖�L� 	− ��‖z 

Now if eachℎI� ∈ ~, this proves sufficient par. If �L� 	− �� is 

an eigenvector C� of > corresponding to the eigenvalueI� then 

‖�L���	– ����‖z = Tk)hI�+��L�	– ���Tz 

= Tk�hI��Tz‖�L� 	− ��‖z 

From which it is seen that |k)hI�+| ≤ 1 is necessary. Hence 

for P < 0 implies		ℎI� ∈ ~, the general solution of Eq. (1) is 

stable. 

Theorem 3: Let :BL�<	, �L��� and :B<� 	, ���� are the solution 

of Eq. (1) obtained by classical range Kutta method starting 

with the approximations g �L�  and,��, respectively. Suppose 

that A satisfies Eq. (5) and ?  satisfies Eq. (3). Suppose 

jM(I�)	≤ 	0 for all eigenvalue I� of A that is jM(I�� = 0, for 

onlyI� = 0. Suppose further that ℎI� ∈ ~ for all I�. Then 

‖BL� − B�‖X ≤ ‖k�⋇ + ℎ��‖XG = 1, 2, 3, …� 

‖�L��� − ����‖X ≤ �k�⋇ + ℎ�.�‖�L� − ��‖X 

‖�L��� − ����‖X ≤ �1 + ℎ@!�D�Υ�ℎ�.�‖�L� − ��‖X 

Where k�	�⋇ = max�∈�Wk�	��q�W 	 ,0 ≤ m < G ≤ 5 

k�⋇ = max�∈� |k�	�q�|	 ,0 ≤ G ≤ 4 
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k.⋇ = max�∈� |k�	(q)| = 1 

�� = @!(')lk�	�⋇ (k�⋇
�*�

�p	
+ ℎ��)	0 ≤ m ≤ 4 

Υ(ℎ) = @!(')lko	�⋇ (k�⋇
3

�p	
+ ℎ��) 

Where	k�(q),  k(q).  and k�	�(q) are defined in Theorem 2. 

Proof. From the representation of Theorem 2, 

BL� − B� = 	k�(ℎ>)(BL	 − B	) + ℎ	k�,	(ℎ>)[?(�	, BL	) − ?(�	, B	)] 
Using the Lipchitz condition Eq. (6) satisfied by ? one finds 

‖BL� − B�‖� ≤ (W|	k�(ℎ>) + ℎ@!(D)|W�	k�,	(ℎ>))‖BL	 − B	‖�  

Then 

‖	k�(ℎ>)‖� = ‖FG
H{	k�(ℎ>)}‖ = maxi W	k�)ℎI�+W ≤ k�⋇ 

and similarly, 

T	k�,	(ℎ>)T� ≤ ki		⋇  

Because	k	 ≡ 1, �	 = 0, the conclusion of the theorem is seen to hold for	G = 	1. Suppose now that the statement holds 

through indexG	 − 	1. Then 

BL� − B� = k�(ℎ>)(BL	 − B	) + ℎlk�	�(ℎ>)
�*�

�*	
[?)�� , B�+ − ?)�� , B�+] 

Hence taking matrixes norm on both sides this equation, we obtain: 

‖BL� − B�‖� ≤ ‖k�(ℎ>)‖�‖(BL	 − B	)‖� + ℎlTk�	�(ℎ>)T�
�*�

�*	
@!(D)TBL� − B�T� 

≤ (k�⋇ + ℎ@!(D)lk�	�⋇
�*�

�*	
(k�⋇ + ℎ��)‖BL	 − B	‖� 

≤ (k�⋇ + ℎ��‖BL	 − B	‖� 

The result for ����  is verified in the same way. Hence 

from this, the global error in our scheme of classical 

RungeKutta method is bounded, so the scheme is stable. 

Hence the proposed method is convergent. Farther to more 

understanding stability and convergent Analysisof 

RungeKutta method of stage s you con seereference [18]. 

8. Investigating the Accuracy of the 

Method 

In this section, we investigate the accuracy of the present 

method. There are two types of errors in the numerical 

solution of ordinary differential equations. Round-off errors 

and Truncation errors occur when ordinary differential 

equations are solved numerically. Rounding errors originate 

from the fact that computers can only represent numbers 

using a fixed and limited number of significant figures. Thus, 

such numbers or cannot be represented exactly in computer 

memory. The discrepancy introduced by this limitation is 

called a Round-off error. Truncation errors in numerical 

analysis arise when approximations are used to estimate 

some quantity. The accuracy of the solution will depend on 

how small we make the step size, h. To show the accuracy of 

the present method, the maximum absolute error M�is used to 

measure the accuracy of the method. The maximum absolute 

error [7] is calculated by M� = max�����(|�(��) − ��|)where 8 

is the maximum number of step, 	�(��)  is exact and �� 

approximation solution of IVP in Eq. (1) at the grid point ��. 

9. Numerical Experiments 

Numerical results and errors are computed and the 

outcomes are represented tabularly and graphically. 

Example 1: solve IVP given by 
��
�� =

�
� , �(0) = 1, and its 

exact solution is � = √�" + 1 for 0 ≤ � ≤ 1. 
Example 2: Consider the initial value problem

��
�� =�(1 + �), �(0) = 1. Compute �(0.8) with h=0.1. The exact 

solution is�(�) = −1 + 2M�� "/ . 
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Table 1. Computations numerical and exact solution for the first order initial value problem given in example 1 and listing their corresponding maximum 

absolute errors. 

X_ (grid point) y_(Approximate solution) y_(Exact solution) er_(absolute error) 

0 1.000000000000000 1.000000000000000 0 

0.1 1.004987572425429 1.004987562112089 1.0313e-08 

0.2 1.019803941472437 1.019803902718557 3.8754e-08 

0.3 1.044030729213235 1.044030650891055 7.8322e-08 

0.4 1.077033081960091 1.077032961426901 1.2053e-07 

0.5 1.118034147228578 1.118033988749895 1.5848e-07 

0.6 1.166190567243875 1.166190378969060 1.8827e-07 

0.7 1.220655770449989 1.220655561573370 2.0888e-07 

0.8 1.280625068576675 1.280624847486570 2.2109e-07 

0.9 1.345362631261068 1.345362404707371 2.2655e-07 

1 1.414213789413370 1.414213562373095 2.2704e-07 

 

Figure 1. Graphs of the numerical and exact solution of example one and their absolute error expiration. 

Table 2. Computations numerical and exact solution for the first order initial value problem given inexample 2 and listing their corresponding maximum 

absolute errors. 

X_ (grid point) y_(Approximate solution) y_(Exact solution) er_(absolute error) 

0 1.000000000000000 1.000000000000000 0 

0.1 1.010025041666667 1.010025041718802 5.2135e-11 

0.2 1.040402679516737 1.040402680053512 5.3677e-10 

0.3 1.092055717771941 1.092055719817434 2.0455e-09 

0.4 1.166574129640990 1.166574135349917 5.7089e-09 

0.5 1.266296892235075 1.266296906133653 1.3899e-08 

0.6 1.394434694825263 1.394434726243620 3.1418e-08 

0.7 1.555242558938220 1.555242626409774 6.7472e-08 

0.8 1.754255389803884 1.754255528671914 1.3887e-07 

 

Figure 2. Graphs of the numerical and exact solution of example two and their absolute error expiration. 
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10. Discussion 

In this project paper, we Appling the classical fourth-order 

Runge-Kutta method for solving a first-order ordinary 

differential equations. To demonstrate the competence of the 

method, we applied it to two model examples. Numerical 

results obtained by the present method have been associated 

with their exact solution and the results are summarized in 

Tables and graphs. Ascan be seen from the numerical results 

predicted in the tables and graphs above, the present method 

is approximate the exact solution very well. To further verify 

the applicability of the planned method, graphs were plotted 

for the above examples for exact solutions versus the 

numerical solutions with correspondence absolute errors. As 

figure 1 indicates good agreement of approximation of exact 

solution for example 1. Figure 2 indicate the numerical 

solution has a good agreement of the results with the exact 

solution for example 2. Further, the numerical solutions 

presented in this Project paper validate the improvement of 

the numerical approximation for the solution of the first-

order ordinary differential equation. 

11. Conclusion 

In this project paper, we have used classical fourth-order 

Runge- Kutta methods for solving initial value problems 

(IVP). To achieve the desired accuracy of the numerical 

solution it is necessary to take is smallstepsize. It means the 

accuracy increase the step length decrease. Therefore, it is an 

important task to make a proper balance between the 

accuracy andefficiency of the solutions. Further, the 

numerical solutions presented in this Project paper validate 

the improvement of the numerical approximation for the 

solution of the first-order ordinary differential equation. 

Acknowledgements 

First of all, I would like to express my thanks to God, 

forgiving me for life and the time to accomplish my tasks. In 

the name of God, The Most Greatest and Most Merciful, 

there is no power except by the power of God and I humbly 

return my acknowledgment that all knowledge belongs to 

god. I thanksGod for granting me this opportunity to broaden 

my knowledge in this field. Nothing is possible unless He 

made it possible. 

Secondly, greatly appreciate the help of my ShamoBusho 

and my father AliyiKorochee, without the help of them I 

would not be here today. 

Last but not least, thanks a lot to all my beloved friends; 

your kindness and helps will be a great memory for me. 

 

References 

[1] Ray, S. (2018). Numerical analysis with algorithms and 
programming. CRC Press. 

[2] Francis B. Hildebrand (1987). Introduction to numerical 
analysis, Second edition 

[3] Sastry, S. S. (2006). Introductory method of numerical 
analysis, Fourth-edition. 

[4] Walter Gautschi (2012) Numerical Analysis Second Edition 

[5] Butcher, J. C., & Goodwin, N. (2008). Numerical methods for 
ordinary differential equations (Vol. 2). New York: Wiley. 

[6] Md. Amirul Islam. "A Comparative Study on numerical 
Solutions of Initial Value Problems (IVP) for Ordinary 
Differential Equations (ODE) with Euler and RungeKutta 
Methods”, America Journal of Computational Mathematics, 

[7] Kadalbajoo, M. K. "Geometric mesh FDM for selfadjoint 
singular perturbation boundary value problems", Applied 
Mathematics and Computation, 

[8] Le Veque, R. J. (2007). Finite difference methods for ordinary 
and partial differential equations: steady-state and time-
dependent problems. Society for Industrial and Applied 
Mathematics. 

[9] Kaw, A. (2009). Runge-Kutta 4th Order Method for Ordinary 
Differential Equations. Ordinary Differential Equations, 08-
04. 

[10] Ralston, A. (1962). Runge-Kutta methods with minimum error 
bounds. Mathematics of computation, 16 (80), 431-437. 

[11] Hull, T. E., Enright, W. H., Fellen, B. M., & Sedgwick, A. E. 
(1972). Comparing numerical methods for ordinary 
differential equations. SIAM Journal on Numerical Analysis, 9 
(4), 603-637. 

[12] Mungkasi, S., & Christian, A. (2017, January). Runge-Kutta 
and rational block methods for solving initial value problems. 
In Journal of Physics: Conference Series (Vol. 795, No. 1, p. 
012040). IOP Publishing. 

[13] Butcher, J. C. (1966). On the convergence of numerical 
solutions to ordinary differential equations. Mathematics of 
Computation, 20 (93), 1-10. 

[14] Griffiths, D. F., Sweby, P. K., & Yee, H. C. (1992). On 
spurious asymptotic numerical solutions of explicit Runge-
Kutta methods. IMA Journal of numerical analysis, 12 (3), 
319-338. 

[15] Islam, M. A. (2015). Accurate solutions of initial value 
problems for ordinary differential equations with the fourth-
order RungeKutta method. Journal of Mathematics Research, 
7 (3), 41. 

[16] Griffiths, D. F.; Swaby, P. K.; and Yee, Helen C. (1992), On 
spurious asymptotic numerical solutions of explicit Runge 
Kutta methods NASA Publications. 244. 

[17] Habtamu Garoma Debela and Masho Jima Kabeto (2017) 
Numerical solution of fourth-order ordinary differential 
equations using fifth-order Runge – Kuttamethod. Asian 
Journal of Science and Technology Vol. 08, Issue, 02, pp. 
4332-4339. 

[18] Shampine L. F. (1984). Stability of explicit Runge-Kutta 
methods Camp & Mark with Appi. 7. Vol. IO. No. 6. pp 419-
432. 1. 

 


