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Abstract: In this paper, Adomian decomposition method (ADM) will apply to solve nonlinear fractional differential 

equations (FDEs) of Caputo sense. These type of equations is very important in engineering applications such as electrical 

networks, fluid flow, control theory and fractals theory. ADM give analytical solution in form of series solution so the 

convergence of the series solution and the error analysis will discuss. In addition, existence and uniqueness of the solution will 

prove. Some numerical examples will solve to test the validity of the method and the given theorems. A comparison of ADM 

solution with exact and numerical methods are given. 
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1. Introduction 

Fractional Differential equations (FDEs) have many 

applications in engineering and science [1-6], including 

electrical networks, fluid flow, control theory, fractals theory, 

electromagnetic theory, viscoelasticity, potential theory, 

chemistry, biology, optical and neural network systems [7-

13]. In this paper, Adomian decomposition method (ADM) 

[14-19] will use to solve nonlinear FDEs of Caputo sense. 

This method has many advantages; it is efficiently works 

with different types of linear and nonlinear equations in 

deterministic or stochastic fields and gives an analytic 

solution for all these types of equations without linearization 

or discretization [20-23]. The paper organize as follows: In 

section two ADM will apply to the problem under 

consideration. In section three uniqueness, convergence and 

error analysis will discuss. Finally, six numerical examples 

presented by using MATHEMATICA package. 

2. Formulation of the Problem 

Consider the nonlinear FDE, 

0��
������ 	 
���������
 � ����,               (1) 

Subject to the initial conditions, 

�������0� � �� , � � 1,2, … , �.                   (2) 

Where 

0��
��=0��

�� 0��
����  0��

���  0��
�� , 

!" � #  "
%&�

'% , 0 ( '% ( 1, ) � 1,2, … , �. 
The fractional derivative is of sequential Caputo sense. In 

the applications, the Caputo sense are preferred to use 

because the initial conditions of ���� and its derivatives will 

be of integer orders and has a physical meaning. Now 

performing subsequently the fractional integration of order 

'", '"��, … , '�,  this reduces the problem (1)-(2) to the 

fractional integral equation (FIE): 

���� � # ��
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- �/��� . /���������/��0/       (3) 

Assume that ����  bounded  3 � 4 5 � 60, 78, 7 4 9: , 

|
�/�| ( < 3 0 ( / ( � ( 7, < is a finite constant and ���� 

is Lipschitz continous with Lipschitz constant = such as, 

|���� . ��>�| ( =|� . >|                      (4) 



112 Eman Ali Ahmed Ziada:  Solution of Nonlinear Fractional Differential Equations Using  

Adomain Decomposition Method 

Which has Adomian polynomials representation, 

���� � ∑ @"A"&- ��-, ��, … , �")                      (5) 

Where 

@" = �
"!

C�
CD� 6�(∑ EFAF&- �F)8D&-                     (6) 

Substitute from equation (5) into equation (3) we get, 

�(�) = # ��*(!�)
"

�&�
��+�� + 1*(!") , (�

- � − /)�����(/)0/ 

 − �
1(��) 2 
�- (/)(� − /)���� ∑ @"A"&- 0/      (7) 

Let �(�) = ∑ �"A"&- (�) in (7) and applying ADM, we get 

the following recursive relations, 

�-(�) = ∑ G+1(�+)"�&� ��+�� + �
1(��) 2 (�- � − /)�����(/)0/, (8) 

�F(�) = − �
1(��) 2 
�- (/)(� − /)����@F��0/, H ≥ 1. (9) 

Finally, the solution is, 

�(�) = ∑ �FAF&- (�)                            (10) 

2.1. Existence and Uniqueness 

Theorem 1 If 0 < ' < 1  where  ' = KLMN�
1(��:�) , then the 

series (10) is the solution of the problem (1)-(2) and this 

solution is unique. 

Proof For existence, 

�(�) =  ∑ �FAF&- (�)  

=  �-(�) + ∑ �FAF&� (�)  

=  �-(�) − �
1(��)  ∑ 2 
�-AF&� (/)(� − /)����@F��0/  

=  �-(�) − �
1(��)  2 
�- (/)(� − /)���� ∑ @F��AF&� 0/  

=  �-(�) − �
1(��)  2 
�- (/)(� − /)���� ∑ @FAF&- 0/  

=  ∑ G+1(�+)"�&� ��+�� + �
1(��) 2 (�- � − /)�����(/)0/  

− �
1(��) 2 
�- (/)(� − /)�����(�(/))0/  

Then the Adomian’s series solution satisfy equation (3) 

which is the equivalent FIE to the problem (1)-(2). 

For uniqueness of the solution: Assume that � and > are 

two different solutions to the problem (1)-(2) and hence, 

|� − >| = O �
1(��) 2 
�- (/)(� − /)����6�(�) − �(>)80/ O  

≤ �
1(��) 2 (�- � − /)����|
(/)||�(�) − �(>)|0/  

≤  KL
1(��) |� − >| 2 (�- � − /)����0/  

≤  KLMN�
1(��:�) |� − >|  

Let 
KLMN�

1(��:�) = ' where, 0 < ' < 1 then, 

|� − >| ≤ ' |� − >| 
(1 − ') |� − >| ≤ 0 

However, (1 − ') |� − >| ≥ 0  and since, (1 − ') ≠ 0 

then, |� − >| = 0 this imply that, � = >  and this completes 

the proof. 

2.2. Proof of Convergence 

Theorem 2: The series solution (10) of the problem (1)-(2) 

using ADM converges if |��| < ∞  and 0 < ' < 1,  ' =KLMN�
1(��:�). 

Proof Define the Banach space (S658, T⋅T), the space of all 

continuous functions on 5  with the norm T�(�)T =max�∈Y|�(�)| . Define the sequence Z["\ such that, [" =∑ �F"F&- (�) the sequence of partial sums from the series 

solution ∑ �FAF&- (�) since, 

�(�) = � ]# �F
A

F&-
(�)^ = # @F

A

F&-
(�-, �� , … , �F) 

So, 

�(�-) = �([-) = @-, 
�(�- + ��) = �([�) = @- + @�, 

�(�- + �� + �_) = �([_) = @- + @� + @_, 
⋮ 

�([") = # @F
"

F&-
(�- , ��, … , �F). 

Let, [" and [a be two arbitrary partial sums with, � ≥ b. 

Now, we are going to prove that Z["\ is a Cauchy sequence in 

this Banach space. 

T[" − [aT = max�∈Y  |[" − [a| = max�∈Y  c # �F
"

F&a:�
(�)c 

 = max�∈Y  c # −
"

F&a:�
1*(!") , 
�

- (/)(� − /)����@F��0/c 

 = max�∈Y  c 1*(!") , 
�
- (/)(� − /)���� # @F

"��

F&a
0/c 

= max�∈Y  d 1*(!") , 
�
- (/)(� − /)����6�(["��) − �([a��)80/d 

≤ 1*(!") max�∈Y  , (�
- � − /)����|
(/)||�(["��) − �([a��)|0/ 
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( =<
*�!"� max�4Y  |["�� − [a��| , (�

- � − /)����0/ 

 ≤ =<7��
*(!" + 1) T["�� − [a��T 

≤ 'T["�� − [a��T 

Let � = b + 1 then, 

T[a:� − [aT ≤ 'T[a − [a��T ≤ '_T[a�� − [a�_T 

≤ ⋯ ≤ 'aT[� − [-T 

From the triangle inequality we have, 

T[" − [aT ≤ T[a:� − [aT + T[a:_ − [a:�T 

 + ⋯ + T[" − ["��T 

 ≤ 6'a + 'a:� + ⋯ + '"��8T[� − [-T 

≤ 'a61 + ' + ⋯ + '"�a��8T[� − [-T 

 ≤ 'a f1 − '"�a
1 − ' g T��(�)T 

Since,  0 < ' < 1  and � ≥ b  then (1 − '"�a) ≤ 1 . 

Consequently, 

T[" − [aT  ≤  'a
1 − ' T��(�)T  ≤  'a

1 − ' max�∈Y  |��(�)| 
However, |��(�)| ≤ ∞ and as b → ∞ then, T[" − [aT →0 and hence, Z["\ is a Cauchy sequence in this Banach space 

so, the series ∑ �"A"&- (�)  converges and the proof is 

complete. 

2.3. Error Analysis 

For ADM, we can estimate the maximum absolute 

truncated error of the Adomian’s series solution in the 

following theorem. 

Theorem 3: The maximum absolute truncation error of the 

series solution (10) to the problem (1)-(2) estimated to be, 

max�∈Y  c�(�) − # �F
a

F&-
(�)c ≤  'a

1 − ' max�∈Y  |��(�)| 
Proof. From Theorem 2 we have 

T[" − [aT  ≤  'a
1 − ' max�∈Y  |��(�)| 

But, [" = ∑ �F"F&- (�) as � → ∞ then, [" → �(�) so, 

T�(�) − [aT  ≤  'a
1 − ' max�∈Y  |��(�)| 

Therefore, the maximum absolute truncation error in the 

interval 5 is, 

max�∈Y  c�(�) − # �F
a

F&-
(�)c ≤  'a

1 − ' max�∈Y  |��(�)| 
Hence, the proof is completed. 

3. Numerical Examples 

Example 1. Consider the initial value problem [20], 

�i� = �_ + 1, b − 1 < j ≤ b, 0 < � < 1,     (11) 

�(%)(0) = 0, ) = 0,1, … , b − 1.              (12) 

Operating with 5i on both sides of equation (11) and using 

the initial conditions (12) we obtain, 

�(�) = 5i618 + 5i6�_8,                      (13) 

Using ADM and replace the nonlinear term �(�) = �_ by 

its corresponding Adomian polynomials we have, 

�- = 5i618,                                (14) 

 �" = 5i6@"��8, � ≥ 1.                      (15) 

From the two relations (14) and (15), the six terms 

approximation are, 

kl = ∑ S%�(_%:�)im%&- ,                     (16) 

Where, the coefficients given by, 

S- = 1*(j + 1) , S� = *(2j + 1)*(3j + 1) S-_, 
S_ = *(4j + 1)*(5j + 1) (2S-S�), Sr = *(6j + 1)*(7j + 1) (2S-S_ + S�_), 

Su = *(8j + 1)*(9j + 1) (2S-Sr + 2S�S_), 
Sm = *(10j + 1)*(11j + 1) (2S-Su + 2S�Sr + S__). 

The solution of the problem (14)-(15) by using the 

numerical method is: 

ℎ�i # y�(i)�"�� − �"_ = 1
"

�&-
, 

Where, �" = �ℎ, �" = �(�"), y�(i) = (−1)� zi� { , (�, � =0,1,2, … ) therefore, we get 

ℎ�i #(−1)� *(j + 1)*(� + 1)*(j + 1) �"�� − �"_ = 1
"

�&-
, 

Then, 

�" = ℎi + ℎi  �"��_ − ∑ (−1)� 1(i:�)
1(�:�)1(i��:�) �"��"�&� , b − 1 < j ≤ b, � ∈ 60, 78, � = b, b + 1, ….       (17) 
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Figures 1-6 illustrate the comparison between ADM 

solution (� � 5) and the numerical solution (x � 0.01). For 

j � 0.5;  the numerical method gives unbounded solution 

when � 4 60,18, see Figure 1, while, ADM gives a bounded 

solution in the same interval, see Figure 2. 

Notices: 

1. All computations and figures made using 

MATHEMATICA software for all the given examples. 

2. In all figures, the solid curve represents ADM solution, 

while the other curve for the other method. 

 

Figure 1. ADM and Numerical Sol. [j � 0.5]. 

 

Figure 2. ADM Sol. [j � 0.5]. 

 

Figure 3. ADM and Numerical Sol. [j � 1.5]. 

 

Figure 4. ADM and Numerical Sol. [j � 2.5]. 

 

Figure 5. ADM and Numerical Sol. [j � 3.5]. 

 

Figure 6. ADM and Numerical Sol. [j � 4.5]. 

Table 1 shows the relative error between exact and ADM 

solution of j � 1. The value j � 1 (ODE) is the only case 

for which we know the exact solution (� � tan �) and our 

approximate solution is in good agreement with the exact 

values. 

Table 1. Relative Error. 

�  Exact solution ADM solution Relative error 

0.1  0.100334672  0.100334672  3.3195594351 � 10��m  0.2  0.2027100355  0.2027100355  1.4756006633 � 10���  0.3  0.3093362496  0.309336249  1.921474304 � 10��  0.4   0.42279321874  0.42279319296  6.097058134 � 10��  0.5  0.54630248984   0.54630200191   8.931495255 � 10��  0.6  0.68413680834  0.68413131533  8.0291143934 � 10�l  0.7  0.84228838046  0.84224495232  0.0000515597  0.8  1.02963855705  1.02937191571  0.000258966  0.9  1.26015821755  1.25879891374  0.001078677  1.0  1.55740772466  1.5513676447  0.003878291  

Example 2. Consider the following nonlinear FDE with 

nonhomogeneous initial conditions, 

�i� � �
u �� 	 �, � I 0, 1 J j ( 2,             (18) 

�0� � 1, ���0� � 2. 
This problem was solved by Nabil Shawagfeh in [20] by 

using ADM but the given solution was incorrect. Here, we 

give the correct solution. 

Operating with 5i on both sides of (18), we get 

� � 1 	 2� 	 �
u 5i���� 	 5i���.             (19) 

Using ADM and Adomian polynomials to the equation (19) 

and since the computation of @"  depends heavily on �-  we 
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will use a slight modification [24]. This will ease the 

computations considerably. Thus, 

 �- � 1,                                    (20) 

 �� � 2� 	 �
u 5i�@-� 	 5i��-�,                 (21) 

 �" � �
u 5i�@"��� 	 5i��"���,   � I 2.           (22) 

Using relations (20)-(22), the first three-terms of the series 

solution for j � 1.25 are, 

���� � 1 	 2� 	 2.86848��._m 

	1.66715�_._m 	 2.0781�_.m 	 e,             (23) 

And for j � 1.5, 

���� � 1 	 2� 	 2.44482��.m 	 1.27883�_.m 	1.15104�r 	 e,                        (24) 

And for j � 1.75, 

���� � 1 	 2� 	 2.02069��.�m 	 0.960889�_.�m 	0.593742�r.m 	 e,                  (25) 

And for j � 2, 

 ���� � 1 	 2� 	 �r� 
� 	 ��

�l� �r�32 	 13�� 	 e.    (26) 

The plots for some values of j 4 �1,28 given in figures 7-

10 (� � 5). 

In Shawaghfeh’s study [20], the mistake was ignoring the 

third term in equation (21). A comparison between ADM 

solution and exact solution (j � 2) is given in Figure 10 and 

its relative error is given in table 2. 

 

Figure 7. ADM and Exact Sol. [j � 1.25]. 

 

Figure 8. ADM Sol. [j � 1.5]. 

 

Figure 9. ADM Sol. [j � 1.75]. 

 

Figure 10. ADM and Exact Sol. [j � 2]. 

Table 2. Relative Error. 

� Exact solution ADM solution Relative error 0.1  1.216978142472 1.216978192217 4.08761� 10��  0.2  1.470990374716 1.470993749521 2.29424� 10�l 0.3  1.767049231411 1.767089933573 0.0000230339715 0.4  2.110740852297 2.11098272054 0.0001145892651 0.5  2.508287449206 2.509262171435 0.0003886006884 0.6  2.966616537584 2.969687894858 0.0010353064631 0.7  3.493437642763 3.501601616183 0.0023369455119 0.8  4.097327267145 4.116482251175 0.0046749948883 0.9  4.787822988191 4.82867126594 0.0085317017462 1.0  5.575527649637 5.656298489041 0.0144866718416 

Example 3. Consider the following nonlinear FDE, 

 �� 	 ��/_� . 2�_ � 0, ��0� � �.           (27) 

Where c is a constant. 

This problem was solved by Saha Ray in [25] by using 

ADM but the given solution was incorrect. Here, we give the 

correct solution. 

Operating with 5� on both sides of equation (27), we get 

 � � � . 5����/_�
 	 25���_�.             (28) 

Then we obtain, 

� � � 	 G��/ 
1�r/_� . 5�/_��� 	 25���_�.         (29) 

In [25], the mistake was ignoring the second term in 

equation (29). Using ADM and the reliable modification [24] 

to equation (29). Thus, 

�- � �,                                (30) 

�� � G��/ 
1�r/_� . 5�/_��-� 	 25��@-� � 2�_�,       (31) 
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 �" � .5� ��"��� 	 25��@"���, � I 2.        (32) 

From relation (32), we have 

�_ � . 8�_�r/_
3√� 	 4�_�_, 

 �r � �_�_ . �_�G���/ 
�m√� 	 8�u�r,                (33) 

�u � u
�-m �_�m/_ z105�√��1 	 4�_�� . u��:�m_G �


√� {,  
` 

Therefore, the solution of equation (27) is: 

���� � � 	 �2�_�� 	 �. �G �� 
r√� 	 4�_�_�  

	 z�_�_ . �_�G���/ 
�m√� 	 8�u�r{ 	 e.             (34) 

Now, consider the special case when � � 1, equation (27) 

will be: 

 �� 	 ��/_� . 2�_ � 0, ��0� � 1.              (35) 

From equation (34), the solution of equation (35) will be, 

���� � 1 	 �2�� 	 �. ��� 
r√� 	 4�_� 	 z�_ . �_���/ 

�m√� 	 8�r{ 	 e.                                         (36) 

Consequently, the practical solution may take as n-term 

approximation to � as follow, 

k" � ∑ �F"��F&- .                             (37) 

 

Figure 11. ADM Sol. [n=5]. 

 

Figure 12. ADM Sol. [n=10]. 

 

Figure 13. ADM Sol. [n=15]. 

Figures 11-13 show ADM solution of problem (27) at 

different values of �.  Table 3 shows the absolute error 

between the truncated series at different values of �. We see 

from this table that, as the number of terms � increases, the 

error will be decrease. 

Table 3. Absolute Error. 

�  |�� . ��|  |��� . ��|  |��� . ���|  |��� . ���|  
0.0  0  0  0  0  

0.1  0.00234004  0.000076351  1.99985 � 10��  4.93579 � 10��_  

0.2  0.0179593  0.0010773  8.40649 � 10��  2.46319 � 10��  

0.3  0.0833554  0.0130684  0.0000717527  7.04296 � 10��  

0.4  0.260574  0.0974659  0.00419549  0.000197369  

0.5  0.637506  0.507904  0.0890769  0.0161493  

Example 4. Consider the nonlinear FDE, 

 ��/_� . �_ � Γ zr
_{ . �, ��0� � 0,          (38) 

Which has the exact solution ��/_. 

Applying 5�/_ to both sides of equation (38), we obtain 

 � � ��/_ . ��/ 
1�m/_� 	 5�/_��_�.              (39) 

Using ADM to the equation (39), we get 

�- � ��/_ . ��/ 
1�m/_�,                         (40) 

�" � 5� �@"���, � I 1.                           (41) 

From the relations (40) and (41), we have 

�- � √� . u�� 
r√� ,

�� � u�� ��-m��__u√��:�_�� 

r�m�� ,

�_ � �_��� ��_�lm�� �_�l_�l��:__m�-√�� ����_-���
r_�uu_m�� ,

`

   (42) 
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From equation (42), the solution of equation (38) will be, 

���� � z√� . u��/ 
r√� { 	 zu��/ ��-m��__u√��:�_�� 


r�m��/ { 	 z�_���/ ��_�lm��/ �_�l_�l��:__m�-√�� ����_-��

r_�uu_m��/ { 	 e.      (43) 

Consequently, the practical solution may take as, 

k" � ∑ �F"��F&- .                                (44) 

Figures 14-15. It is clear that, as the number of terms � 

increases, the solution will be more accurate. 

Example 5. Consider the nonlinear FDE, 

 �r/_� � �
_ �_ 	 �_,      0 J � ( 1,            (45) 

��0� � 0,  ���0� � 0. 
Using ADM to the equation (45), we get 

�- � 5r/_��_�,                                (46) 

�" � �
_ 5� �@"���, � I 1.                      (47) 

From the relations (46) and (47), the first three-terms of 

the series solution are, 

  ���� � zr_��/ 
�-m√�{ 	 z �-u�m�l���/ 

�_-l-����m√�{ 	 z �u-�r�u��rmmr_�� �/ 
m����u_�l�lm�l��ur�m√�{ 	 e.                                     (48) 

The comparison between ADM and exact solution given in 

figures 16-19 show ADM solution of problem (45) at 

different values of b. 

  

Figure 14. ADM and Exact Solutions. [n=5]. 

 

Figure 15. ADM and Exact Solutions. [n=10]. 

 

Figure 16. ADM Sol. [m=5]. 

 

Figure 17. ADM Sol. [m=10]. 

 

Figure 18. ADM Sol. [m=15]. 

 

Figure 19. ADM Sol. [m=20]. 

Now, we will use Theorem 3 to evaluate the maximum 

absolute truncated error of the series solution (48). So, we 

evaluate the following values, 

1) Lipschitz constant (=): 
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|���� . ��>�| � |�_ . >_| ( |� 	 >||� . >| ( 2|� . >|  �  = � 2. 
2) < |
�/�| ( �

_  �  < � �
_. 

3) ': ' � KLM�
1�i:�� � �

1�m/_�. 
4) max�4Y |�����| � �-u�m�l

�_-l-����m√�. 
5) The maximum error: 

max�4Y  c���� . # �F
a

F&-
���c (  'a

1 . ' max�4Y  |�����| 
1) For b � 5: 

 max�4Y  c���� . # �F
m

F&-
���c ( 0.00047693. 

2) For b � 10: 
max�4Y  c���� . # �F

�-

F&-
���c ( 0.000114889. 

3) For b � 15: 

max�4Y  c���� . # �F
�m

F&-
���c ( 0.0000276756. 

4) For b � 20: 
max�4Y  c���� . # �F

_-

F&-
���c ( 6.66678 � 10�l. 

Example 6. Consider the nonlinear FDE, 

�m/_� � �
u �u 	 �,      0 J � ( 1,                (49) 

��0� � 0,  ���0� � 0,  ����0� � 0. 
Using ADM to the equation (49), we get 

 �- � 5m/_���,                               (50) 

 �" � �
u 5� �@"���, � I 1.                        (51) 

From the relations (50) and (51), the first three-terms of 

the series solution are, 

 ���� � z�l��/ 
�-m√�{ 	 z _�u����-l�uu���/ 

_--���lll�l�_�mr�_m��/ { 	 z lrr�_mr--��u��u�--�u�rm�l-_l�����/ 
m��ll-��rlr�lmlu�llru�r�u���r��_l-um���ur�m��/ { 	 e.   (52) 

Figures 20-23 show ADM solution of problem (49) at 

different values of b. 

 

Figure 20. ADM Sol. [m=5]. 

 

Figure 21. ADM Sol. [m=10]. 

 

Figure 22. ADM Sol. [m=15]. 

 

Figure 23. ADM Sol. [m=20]. 

Now, we will evaluate the maximum absolute truncated 

error of the series solution (52). Therefore, we evaluate the 

following values,  

1) = : |���� . ��>�| � |�u . >u|  ( |�_ 	 >_||� 	 >||� .>| ( 4|� . >|  �  = � 4.  
2) <: |
�/�| ( �

u  �  < � �
u.  

3) ': ' � KLM�
1�i:�� � �

1��/_�.  
4) max�4Y |�����| � _�u����-l�uu

_--���lll�l�_�mr�_m��/ .  
5) The maximum error:  

a) For b � 5:  
max�4Y  c���� . # �F

m

F&-
���c ( 8.66908 � 10���. 

b) For b � 10: 
max�4Y  c���� . # �F

�-

F&-
���c ( 2.13841 � 10��r. 

c) For b � 15: 
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max�4Y  c�(�) − # �F
�m

F&-
(�)c ≤ 5.27486 × 10��l. 

d) For b = 20:  
max�∈Y  c�(�) − # �F

_-

F&-
(�)c ≤ 1.30116 × 10���. 

4. Conclusion 

In this paper, an interesting method (ADM) used to solve 

fractional differential equations. This method gives analytical 

solution and when we comparing ADM solution with the 

exact solution and Numerical solution method, we see that it 

gives a good approximate solution and it enclosed to the 

results obtained from using Theorem 3. 
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