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Abstract: Hospital is indispensable and necessary welfare of society. Through it, we can manage our illnesses by treatment 

and prevention interventions. With the rise incidences of chronic diseases and illnesses, there has been an increased demand for 

health care services round the world. This demand has subsequently caused a serious pressure resulting to serious episodes of 

congestion and overcrowding in hospitals. Hospital overcrowding and congestion, has always been a problem to patients, 

hospital administration and to the general health workers. Hospitals are struggling to alleviate congestion and overcrowding. In 

this study, we developed an objective patient flow estimation using Markov chain models. Weekly data from Kapsabet County 

Referral Hospital facility was used to assess the flow. Markov chains’ transition probability matrices were constructed for each 

day in a week. Markov chain’s four-state model used was; High, Medium, Low and Very Low. The future n step transition 

probabilities matrices were computed, giving rise to steady state for each day of the week. It was examined that the patient 

flow had some pattern through the Markov chains’ steady states. The steady state probability of the flow is high on Mondays 

with highest probability of 0.57. Medium on Tuesdays through to Thursdays with steady state probabilities ranging from 0.36 

and 0.3 respectively. On Fridays the probabilities decrease from 0.22 to 0.12 on Sunday. Through this study, we can witness 

some pattern from steady state of transition matrices. This way, the patient’s population flow throughout the week at this 

facility is identified. Generally, through this study, the patient flow is understood and hence the patient flow congestion can be 

easily attenuated. 
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1. Introduction 

Hospital is an essential welfare of society. Hospital 

provides management of illnesses through treatment and 

prevention interventions. This is done by medical and 

health professionals to the general public [1]. Patient flow 

constitutes the prowess of health care to serve the patients 

quickly and efficiently as they move through the stages of 

care without any hiccup. Globally, there has been a 

continuous increase in chronic diseases and illnesses which 

has caused increased demand for health care services in 

hospitals [2]. Because of this, episodes of congestion and 

overcrowding tend to happen. This problem amounts to 

wide scope of ramifying consequences such as long queues, 

long waiting times, lowering attention from practitioners 

and crowded facilities [3]. Furthermore, hospital congestion 

and overcrowding may compromise the quality of care. 

Hospital overcrowding is a real problem to patients, 

hospital administrators and to the general health workers at 

large. It has continually persisted despite the awareness of 

the problem. Besides, it being has been a concern through 

the years. To maintain the quality of the services offered to 

the patients at the hospital, there is need to evaluate ‘flow’. 

One of the ways of doing this is by analyzing the patient 

flow data. This paper purposes to analyze patient flow data 

at Kapsabet County Referral Hospital using Markov chain 

models. 
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1.1. Patient Flow 

Patient flow can be defined as a study of investigating on ways 

in which patients are transferred inside the health care system [4]. 

Patient flow is also ensuring that the patients receive the care 

quickly and efficiently as they pass through the stages of care 

when they need it without minimal delay. A well-organized patient 

flow can reduce delay of health care services [5]. Patient flow 

analysis is a quality improvement tool that helps the healthcare 

facilities identify inefficiencies in patient flow and provide a 

suggestion on how to improve the patient flow process [6, 7]. The 

most important step is to identify the patient flow through a 

certain process [8]. 

1.2. Basic Concepts 

This section presents the concepts and theories 

underpinning the study. This study was anchored on the 

theory of Markov Chains. A Markov chain is a special type of 

stochastic process. The concepts of stochastic process, 

Markov Chain, transition matrix, Properties of Markov 

Chains and Classification of States are presented in sub 

sections as outlined below. 

1.2.1. Stochastic Process 

A stochastic process is a random process, that is, a 

change in the state of some system over time whose course 

chance and for which the probability of a particular course 

is defined. It is basically a family of random variables, ����; � ∈ � defined on a given probability space, indexed by 

the time variable �, where � varies over an index set �. A 

stochastic process may be continuous or discrete. A 

stochastic process is said to be a discrete time process if set � is finite or countable that is, if � = 0,1,2,3, … , �resulting 

in the time process ��0�, ��1�, ��2�, ��3�, … , ����  is 

recorded at time 0,1,2,3, … , � respectively. On the other 

hand, stochastic processes ����; � ∈ �  considered a 

continuous time process if � is not finite or countable. That 

is, if � = �0,∞�	��	� = [0,∞�  for some value � . A state 

space � is the set of states that a stochastic process can be 

in. The states can be finite or countable hence the state 

space �  is discrete, that is � = 0,1,2, . . , � . Otherwise, the 

space � is continuous. 

1.2.2. Markov Chains 

Markov chains are a type of stochastic process with 

special property that probabilities involving how the 

process will evolve in the future depend only on the present 

state of the process, and so are independent of events in the 

past. A stochastic process is said to have the Markovian 

property if; ������ = �/� = � , �� = ��, … , ���� = ����, �� = !� 
In other words, this Markovian property says that the 

conditional probability of any future “event”, given any past 

“event” and the present state �� = !, is dependent of the past 

“event” and depends only upon the present state. The 

conditional probabilities ���"�� = �/��#$� = 	�$%  is the 

transition probability matrix. 

1.2.3. Transition Probability Matrix 

The conditional probabilities ���"�� = �/��#$� = 	�$%  are 

called transition probabilities and can be arranged in the form 

of a � × � matrix known as the transition probability matrix 

such that it is given by; 

� = 	'(��()� (�)()) (�*()* ⋯ (�,(),⋮ ⋱ ⋮(,� (,) (,* ⋯ (,,/ 

The transition matrix has the following properties, 

1) �$% > 0 for all ! and �. 
2) For all ! and �, (i.e.) sum of the element in each row is 

equal to 1. This is true because the sum represents total 

probability of transition from state !  to itself or any 

other state. 

3) The diagonal element represents transition from one 

state to same state. 

1.3. Properties of Markov Chains and Classification of 

States 

1.3.1. Reducibility 

A state �	is said to be accessible from a state !  (written ! → �) if a system started in state ! has a non-zero probability 

of transitioning into state � at some point. Formally, state � is 

accessible from state ! if there exists an integer �$% ≥ 0 such 

that; ����, = �	/� = !� = �$%,34� > 0 

This integer is allowed to be different for each pair of 

states, hence the subscripts in �$% . Allowing �  to be zero 

means that every state is defined to be accessible from itself. 

A state !  said to communicate with state �  (written !  and ! ↔ ��. A set of states’ 6  is a communicating class pair of 

states in 6 communicates with each other, and no state in 6 

communicates with any state not in 6. It can be shown that 

communication in this sense is an equivalence relation and 

thus that communicating classes are the equivalence classes 

of this relation. A communicating class is closed of leaving 

the class is zero, namely that if ! is in then � is not accessible 

from !. A Markov chain is said to be irreducible if its state 

space is a single communicating class; in other words, if it is 

possible to get to any state from any state. 

1.3.2. Periodicity 

A state ! has period � if any return to state ! must occur in 

the multiples of � time steps. A Markov chain is a periodic if 

every state is a periodic. An irreducible Markov chain only 

needs one a periodic state to imply all states are a periodic. 

1.3.3. Recurrence 

A state !	is said to be transient if, given that we start in 

state ! , there is a non-zero probability that we will never 

return to !. Formally, let the random variable �$  to be the first 

return time to the state ! (the “hitting time”); T8 = inf	�n > 1:	x> = i/x = i� 
so that the number ?$$, = Pr	��$ = �� is the probability that 
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we return to state !  after the n	 steps. Therefore, state !  is 

transient if: 

����$ < ∞� = C?$$, 	< 1D
,#�  

State ! is recurrent (or persistent) if it is not transient. 

Recurrent states are guaranteed to have a finite hitting 

time. 

1.3.4. Ergodicity 

A state ! is said to be ergodic if it is a periodic and positive 

recurrent. In other words, a state ! is ergodic if it is recurrent, 

has a period of E and it has finite mean recurrence time. If all 

states in an irreducible Markov chain are ergodic, then the 

chain is said to be ergodic. It can be shown that a finite state 

irreducible Markov chain is ergodic if it has a periodic state. 

A model has the ergodic property if there's a finite number F 

such that any state can be reached from any other state in 

exactly F steps. In case of a fully connected transition matrix 

where all transitions have a non- zero probability, this 

condition is fulfilled with F = 1. That is, a Markov chain is 

ergodic if there exist some finite k steps such that; �����G =�/�� = !� = 0 for all !	H�I	�. 
1.3.5. Absorbing States 

A state ! is called absorbing if it is impossible to leave this 

state. Therefore, the state ! is absorbing if and only if; �$$ = 1 

and �$% = 0 for ! ≠ �. 
If every state can reach an absorbing state, then the 

Markov chain is an absorbing Markov chain. In an absorbing 

Markov chain, a state that is not absorbing is called transient. 

1.3.6. Homogeneity and Steady State 

A Markov chain is homogeneous if its transition 

probabilities do not change over time. That is the probability 

of going from !  to state �  at time � = 1  is equal to the 

probability of going from state !  to state �  in some future 

period. Let the limiting distribution be v. We require the 

Markov kernel to be primitive. A Markov kernel is primitive 

if there exist an n such that �$% > 0, for all values of !	H�I	�. 
If �  has a primitive Markov kernel on finite space with 

limiting distribution K, then uniformly for all distribution of 

V is given by; E!L,→D M($%, = K 

V is also known as stationary distribution or a steady state. 

1.4. Measure for Existence of Steady State 

The Chapman-Kolmogorov equations enables one to 

compute the �$%,�N  transition probabilities. These equations 

should be interpreted as computing the probability of starting 

in state !  and ending in state �  in exactly � + L  transitions 

through a path which takes into state k at the nth transition. 

The equation is: 

�$%,�N =C�$%, �G%N	?��	�,L ≥ 0	∀	!, � 

We use the Chapman-Kolmogorov equations in order to 

test the limiting probabilities of Markov chains. We compute 

the �,  transition probabilities for ! = �  and � = 0 . We 

assume that the time periods are indifferent. 

1.5. Canonical Form of the Transition Matrix 

Based on the classifications of the states, the probability 

transition matrix � can be partitioned into its canonical form. 

Let an absorbing Markov chain with transition matrix P have 

transient states and r absorbing states. Then 

� = QR S0 T U 

Where; QW×W Matrix, S�×X Matrix, 0X×� Zero Matrix, and TX×X Identity matrix. 

Thus, R  describes the probability of transitioning from 

some transient state to another while S  describes the 

probability of transitioning from some transient state to some 

absorbing state. 

1.6. Fundamental Matrix 

A basic property about an absorbing Markov chain is 

expected number of visits to a transient state � starting from a 

transient state ! (before being absorbed). The probability of 

transitioning from ! to � in exactly Y steps is the �!, �� entry 

of the RZ . Summing this for all Y(from 0 to ∞) yields the 

desire matrix, called the fundamental matrix and denoted by F. It is easy to prove that 

F = CRZ = �T� − R�\�D
Z#  

Where, T�  is the � × �  identity matrix. The !, �  entry of a 

matrix F is the expected number of times the chain is in state �, given that the chain started in state !. 
Markov Chain models are useful in studying the evolution 

of systems over repeated trials. The repeated trials are often 

successive time periods where the state of the system in any 

particular period cannot be determined with certainty. Rather, 

transition probabilities are used to describe the manner in 

which the system makes transitions from one state to the next 

like from low, medium to high. It helps us to determine the 

probability of the system (patient flow) being in a particular 

state at a given period of time. 

1.7. Literature Review 

Markov chain models has been employed in real world 

problems health care problems included. An extensive 

literature has been done on Markov chain models to describe 

the stochastic dynamics nature of patient flow in health care; 

First and foremost, Markov chain models has been applied in 

continuous time period to analyze length of stay for older 

patients who were transported between their home and 

nurses’ location [9]. Different version of Markov chain 
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models was developed with discrete time period for ward 

admittance and capacity development in care system [10]. In 

their study, treatment was provided both in society (home 

care) and health centers. Markov chain models has been used 

in modelling patient transfer in an intensive care unit in 

hospitals in other countries like Columbia [11-13]. Besides, 

Markov chain models has also been used in order to give the 

length of stay at the cardiac surgery department of Dutch 

Hospital [14], in their study they considered different steps in 

the process and provide an approximation of likelihood that 

the event occurs in some order. Markov chain modeling has 

been implemented for patient flow in which three of the cares 

were considered as the states, i.e., severe, long stay, 

rehabilitative care [15]. A Discrete Time Markov chain 

(DTMC) has been applied to assess the re-admission 

probabilities of patients [16]. Further, (DTMC) was applied 

to predict the number of inpatients, demonstrating how their 

model attained superior predictability compared to other 

methods such as seasonal autoregressive integrated moving 

average (SARIMA) model [17]. Patient flow can be seen as 

Markov chain because it involves movement of patients of 

patients from one department to another. Markov chain 

models has been used to assess the care process of doctor’s 

consultation [13]. Their study included 5 states waiting, 

nurse care, examination, imaging, checkouts. In their study 

historical data were used to derive the transition probability 

among the states. Patient flow structure can be modeled as 

Markov chain process as it specifies the states and possible 

transitions between them [18]. 

Basically, from the above reviewed literature materials, 

their studies have not provided an analysis of wider scope of 

a hospital care process. In this paper, we use Markov chains 

to analyze patient flow through the entire hospital system. 

2. Materials and Methods 

This paper uses a case study design. The case study was 

Kapsabet County Referral Hospital. The hospital is a level 5 

government health facility located in Kapsabet town, Nandi 

County along the Eldoret - Kisumu Highway. The hospital 

was formerly known as the Kapsabet District Hospital. The 

facility manages the illness cases filtered from sub county 

and dispensaries in the entire county of Nandi. The data that 

was used in this study, was the patient flow population 

received at Kapsabet County Referral Hospital from January 

2018 to December 2019. The data of the patients included 

were the general medical patients. This is because this 

proportion make up the largest proportion of the patients 

received in this hospital an approximate of 89 percent of the 

total patients. Data for all the months were included except 

for March and April 2018, as this is when the medical 

practitioners at this hospital were on strike and there were no 

patients observed during this period. R software was used in 

analysis. 

2.1. Model Development 

We suggested to apply Markov chain model to show the 

patient flow behavior as our objective by constructing 

transition probability matrix from the patient population data 

system based on the days of the week. The transition 

matrices had the five states i.e., High, Medium, Low and 

Very Low depending on the population of the patients 

received weekly. The transition probability matrices were 

then used obtain steady state for the transition matrices. The 

steady states were the observed that it displayed a pattern of 

the patient flow. 

2.2. Establishment of the Four State Probability Transition 

Matrix 

The patient flow pattern was either high, medium, low or 

very low depending on the numbers of the patients received 

in the hospital on the days of the week. At times, we could 

have a flow being so high, then it transitions to either 

medium, low or very low. We used the flow pattern as the 

Markov states, we had this pattern put to a probability matrix 

using the following limit categories. The population was 

classified as either high, medium, low or very low using 

these categories: 

Very low (V.L) ]� ≥ ^ − _)`	[0 − 152b 
Low (L) ]^ − _) ≤ � ≤ ^ + *d e`	[152 − 236b 
Medium (M) ]^ − *d e ≥ � ≤ ^ + *d e`	[237 − 286b 
High (H) ]� > ^ + *) e`	[286 ≥ ∞b 
The probability transition matrix is structured in this 

manner; i 	j 	k 	K. k ijkK. k '
p��p)� p�)p)) p�*p)* ⋯ p�>p)>⋮ ⋱ ⋮p>� p>) p>* ⋯ p>>/ 

The transition matrix for this study involved four states. It 

showed how the patient flow transitioned on weekly basis, 

i.e., from high, medium low and very low and from any state 

to another. 

2.3. The n-Step Transition 

The absolute probabilities at any stage where n is greater 

that one, is determined by use of n step transition 

probabilities. This is the higher order transition probabilities �$%,. The n step matrix shows the behavior of the patient flow 

population in the n step later. The repeated transitions are 

used to evaluate whether the transition probabilities converge 

over time on repeated iterations i.e., lim,→D �$%,. 

This is the steady state probabilities which show the 

probability of the patient flow increasing decreasing or 

remaining constant over time. 

3. Results and Discussions 

Different probability transition matrices were used to 

represent the transitions of patient flow on different days of 
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the week. The probability matrices showed how the patient 

flow behave throughout the week on normal circumstances 

without an outburst of patient flow into the facility. The days 

of the week ware classified according to the received 

numbers of the patients i.e., either high, low, medium or very 

low. The numbers of the patient flow population were 

recorded per day, divided by the total number of patients in a 

week to have a probability of the flow being high low or 

medium. The same was done for all the states; medium, low 

and very low to have the following transition matrices. 

3.1. Computed Probability Transition Matrices and Their 

Steady States 

Monday to Monday next week transition probability 

matrix 

� = o0.6120 0.3477 0.0327 0.00760.53260.42100.3908
0.39740.45890.4745

0.0549 0.01500.0920 0.02800.1021 0.0319r 

This probability transition matrix is a regular one and has a 

higher probability 0.612 for the state high, this probability 

estimates patient population flow observed on this day as 

being high. We then computed the future �  step of this 

transition probability matrix. In so doing, the probability 

transition matrix in future � days, is given by the following 

matrix; 

Steady state matrix 

The steady state is reached at future �s = �t = �� = �, 

steps. 

�, = ' 0.571 0.3723 0.04437 0.011530.57090.57090.5705
0.37230.37230.3721

0.044370.044370.0440
0.011530.011530.01153/ 

Tuesday to Tuesday next week transition probability matrix 

� = '0.4075 0.4660 0.1096 0.01690.36520.28050.1903
0.47880.49770.5026

0.1313 0.02480.1787 0.043100.2385 0.0685 / 

The probability transition matrix has a probability of 0.4 

for the high state, this probability gives us patient population 

flow observed on this day as being lower than those received 

on Mondays. We computed the future � step of this transition 

probability matrix. Its steady state matrix is reached at future �u = �v = �, steps, for this probability transition matrix. 

Steady state matrix; 

�, = '0.3651 0.4774 0.1324 0.02540.36510.36510.3651
0.47740.47740.4774

0.13420.13240.1324
0.02540.02540.0254/ 

It was observed that the flow in future �	step will be with 

probabilities for high is 0.36, medium is 0.47, low is 0.13 and 

very low at 0.02 for this perpendicular day. It is examined 

that from steady states of probability transition matrix, 

Tuesday’s flow probabilities are lower than on Monday’s 

where we had highest steady state probability obtained at 

0.57. The medium probabilities are rising on this day form 

0.34 on Monday to 0.47 on Tuesday’s. 

Wednesday to Wednesday next week probability transition 

matrix 

� = o0.4100 0.4626 0.1034 0.02410.36510.29920.2678
0.46550.45970.4557

0.1293 0.04010.1683 0.07280.1870 0.0895r 

This probability transition matrix has a high probability of 

0.41 for the state high, this probability indicate that the 

patient population flow observed on this day as being lower 

than those received on Tuesday. The future �  step of this 

transition probability matrix was computed. Its steady state 

transition matrix is reached at future �u = �s = �, step, it is 

given here; 

Steady state matrix 

�, = '0.3695 0.4635 0.1270 0.04030.36950.36950.3695
0.46350.46350.4634

0.12700.12700.1270
0.04030.04030.0403/ 

It is evident that in future � step, probability of the flow is 

high with probability 0.3695, medium is 0.483, low is 0.127 

and very low with 0.04 for this day. We see that the patient 

flow tends toward medium according to the limits we used. 

Thursday to Thursday transition probability matrix 

� = '0.3531 0.5223 0.1017 0.02290.30890.24200.1520
0.53190.53890.5353

0.5319 0.03310.5389 0.08130.5353 0.0806/ 

This probability transition matrix has a probability of 0.35 

for the sate high, this probability gives us patient population 

flow observed on this day as being slightly higher than those 

received on Wednesdays. The future � step of this transition 

probability matrix was computed. Its steady state transition 

matrix is reached at step �d = �v = �,  as shown here 

below; 

Steady state matrix 

�, = o0.308 0.529 0.127 0.0330.3080.3080.308
0.5290.5290.530

0.1270.1270.127
0.0330.0330.033r 

It is observed that in future � step the probability of flow 

being on this day is high with probability 0.30, medium at 

0.529, low at 0.12 and very low at 0.033. 

Friday to Friday probability transition matrix 

� = '0.2625 0.5557 0.1434 0.03750.22840.18370.1459
0.54180.51080.4709

0.1784 0.05130.2317 0.07380.2858 0.0974/ 

This probability transition matrix has a probability of 0.26 

for the state high, this probability gives us patient population 

flow observed on this day as being lower than those received 
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on Thursday. The future � step of this transition probability 

matrix was computed. Its steady state is reached when the 

transition matrix is at future steps �t = �w = �,  as shown 

below; 

Steady state matrix 

�, = o0.222 0.534 0.186 0.0560.2220.2220.222
0.5340.5340.534

0.1860.1860.186
0.0560.0560.056r 

It is evident that the future �	 state probability of 

patient’s population flow on Fridays being high is with 

probability 0.22, medium with 0.53, low at 0.186 and very 

low at 0.05. 

Saturday to Saturday probability transition matrix 

� � '0.2101 0.5405 0.1794 0.07000.18370.15390.1282
0.51820.48040.4427

0.2012 0.09960.2281 0.13770.2521 0.1770/ 

This probability transition matrix has a probability of 0.21 

for state high, this probability gives us patient population 

flow observed on this day is slightly lower than those on 

Friday. The future � step of this transition probability matrix 

was computed. Its steady state matrix is reached when 

transition matrix is at ��) � ��* � �, future steps. 

Steady state matrix 

�, � o0.179 0.515 0.212 0.11290.1790.1790.179
0.5150.5150.515

0.2120.2120.212
0.11320.11290.1129r 

It is observed that the future �  step probability of 

population patient flow on Saturday is high with 0.17, 

medium at 0.51, low at 0.21 and at very low with 0.11. 

Sunday to Sunday probability transition matrix 

� � '0.1558 0.5454 0.2041 0.09490.13650.11940.0934
0.51760.48660.4349

0.2191 0.12680.2288 0.16520.2405 0.2313/ 

This probability transition matrix has a probability of 

0.15 for the high state, this probability gives us patient 

population flow observed on this day as being lower than 

those received on Saturday. Its steady state is reached when 

its transition matrix is at future �v � �s � �, The future � 

step of this transition probability matrix was computed. 

This is given by; 

Steady state matrix 

�, � o0.1289 0.503 0.222 0.14660.12890.12890.1289
0.5030.5030.503

0.2220.2220.222
0.14660.14660.1466r 

It is observed that in future �  steps the probability of 

population patient flow on Sunday will be high with 0.12, 

medium with 0.50, low with 0.22, and very low with 0.14. 

3.2. Steady State Probabilities Plot 

 

Figure 1. The above plot displays the weekly patterns of the patient flow 

populations using the steady states probabilities. The curves used are; black 

for high, red for medium, blue for low and green for very low staedy states. 

The above plot compares the weekly patterns of the patient 

flow populations using the steady states probabilities of 

probability matrices created from weekly data. It is evident 

that at Kapsabet County Refferal Hospital, the patient flow is 

higher on Mondays (the black curve indicates the flow is 

high on mondays). The flow is medium from Tuesdays to 

Thursdays as indicated by the red curve, increasing from 

Monday to thursday. (From our curve, the black and the red 

curves slopes slightly as the blue and green rises). The rise in 

blue and green curves, shows that the patient flow’s 

population decreases from Fridays to low and even into the 

weekends for the entire study period. This is the case even in 

future � steps times (weeks). 

4. Conclusion 

Congestion and overcrowding of patients in hospitals 

reduces the quality of care. Hospital administrators and their 

staff are always interested in alleviating congestion and 

overcrowding in hospitals. In this paper, we developed a 

patient flow assessment through an analysis of patient flow 

data. Transition matrices were constructed for each day in a 

week. This portrayed the weekly expected population of the 

patients received this hospital facility. Steady state transition 

matrices were also computed for each day of the week. This 

examined the flow for each day in a week. It was observed 

though the steady states, the patient flow had some pattern 

observed. The probability of patient flow in this facility tends 

to be higher on Mondays, medium on Tuesdays through up to 

Thursdays, on Fridays is when the steady states tend to 

decrease up to on Sundays. Through this study, some pattern 

can be identified, i.e., how the patient flow behaves in our 

hospitals. Once the pattern is identified, administrators can 

easily adjust and do the right planning of the staff personnel 

and resources in order mitigate congestion problem in our 

hospitals. This study validates that the Markov chains analysis 

is a good model to analyze the systems that change over time 

like patient flow. In conclusion, innovative ways are needed to 

explore overcrowding, the variables affecting patient flow 

and interventions necessary for future flow improvement. 
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