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Abstract: Let G be a simple graph without multiple edges and any loops. At first, the extended adjacency matrix of a graph
was first proposed by Yang et al in 1994, which is explored from the perspective of chemical molecular graph. Later, the
spectral radius of graph and graph energy under the extended adjacency matrix was proposed. At the same time, for a simple
graph G, the extended adjacency index EA(G) is also defined by some researchers. All of them play important roles in
mathematics and chemistry. In this work, we show the extended adjacency indices for several types of graph operations such as
tensor product, disjunction and strong product. In addition, we also give some examples of different combinations of special
graphs, such as complete graphs and cycle graphs, and the classical graph, Cayley graph. By combining the special structure of
the graph, it will pave the way for the calculation of some chemical or biological classical molecular structure. We can find that
it plays a meaningful role in calculating the structure of complex chemical molecules through the graph operation of EA index
on the any simple combined graphs, and it can also play a role in biology, physics, medicine and so on. Finally, we put forward
some other related problems that can be further studied in the future.
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1. Introduction

In mathematical chemistry, many topological indices have
been proposed by researchers, such as Randic index [15, 17],
Zagreb index [6, 14], Forgotten index [9], Wiener index [7, 8,
22] and Estrada index [2, 12, 16]. Indeed, degree-based
topological molecular descriptors have played a significant
role in chemical, biological and physical researches in recent
years. Especially, they have been found many applications in
QSPR/QSAR researches.

As a class of degree-based topological molecular descriptor,
the extended adjacency index of a connected graph was
proposed by Yang [21] in 1994, and defined as

1 dg(u)

dg(v)
EA(G) = ZquE(G)E(dg(v) e ),

dg(w)

where dg(u) and dg(v) are the degrees of vertices u and v,

respectively.

Recently, some new applications [10, 11, 21] and
properties of the EA indices [4, 20] are found. In particular,
some extremal graphs and equienergetic graphs are
characterized [1, 4]. In this work, we show the extended
adjacency indices for several types of graph operations such as
tensor product, disjunction and strong product.

The definitions below will be used.

Definition 1 [21] The extended adjacency index of a
connected graph G is defined as

1.dcw)
EA(G) = Bweso); Gl

dG(V))
dgw)”’

where d;(u) is the degree of vertex u in G.
Definition 2 [6] The first Zagreb index defined as,
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M;(G) = Yueve) dW? = Xumesldw) + d()].

Definition 3 [18] The tensor product of two graphs G,
and G, is the graph G; @ G,with the vertex set V(G;) X
V(G,), and the two vertices (a,b) and (c,d) are adjacent
if and only if ac € E(G;,) and bd € E(G,). The degree of a
vertex (e, f) in G; ® G, is given by dg g, (e f) =
dg, (e)dg,(f).

Definition 4 [5] The disjunction of two graphs G; and G,
is the graph G; A G, with the vertex set V(G;) X V(G,), and
the two vertices (a,b) and (c,d) are adjacent either
ac € E(G,) or bd € E(G,). The degree of a vertex (e, f) in
G1 A G, is given by dg ag, (€, f) = nydg,(f) + npdg, (e) —
dg, (e)dg, (f)-

Definition 5 [19] The Strong product of two graphs G; and
G, is the graph G; X G, with the vertex set V(G1) X V(G,),
and the two vertices (a,b) and (c,d) are adjacent whether
[a = c € V(G,) and bd € E(G,)] or [b=dEe
V(G,) and aceE (G,)] or[ac € E(G;) and bd € E(G,)]. The
degree of a vertex (e, f) in G; X G, is given by

d(6;x6,) (e ) = dg, (€) + dg,(f) + dg, (e)dg, (f).

For other undefined notations and terminologies, refer to
[3]. Examples of graph operations are as follows, see Figures
1-3.

Figure 1. K; Q P,.
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Corollary 2.2 Let C,, and C,, be two cycles with orders n
and m, respectively. Then EA(G; Q G,) = 2nm.

Corollary 2.3 Let K,, and K, be two complete graphs with

orders n and m, respectively. Then EA(G; ® G,) =
nm(n-1)(m-1)

30,

=2mym,

2
Corollary 2.4 Let G, and G, be two cayley graphs of
nilpotent matrix group of length one. Then EA(G; ® G,) =
8n?, where n > 7.
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Figure 2. K;\P,.

Figure 3. K; X P,.

2. Main Results

In this section, we calculate the EA indices for the graph
operations above.

Theorem 2.1 Let Gy(ny,m;) and G,(nym,) be two
connected graphs. Suppose |E(Gy)| =my, |E(G,)| = m,
and |V(G,)| = ny,|V(G,)| = n,. Then

414,

EA(G, ® Gy) < 2mym, 5.5,

where A;(6,) and A,(8,) are the maximum (minimum)
degrees of G; and G,, respectively. Equality holds if and
only if G;(ny,m;) and G,(n,, m,) are all regular.

Proof Let V(G))= {el, ez,...enl} and V(G,) =
{fl, far--. fnz} be the vertex sets of G; and G,successively. By
the above definition 3,d¢, g ¢, (e, f) = dg, (€)dg, (f). Then

dGIDGZ (ei,fj) + dGlle2 (ek,f[)‘|

(€S e VEEG DG, ey ) (e i) [ dg,06, (€ /1) dgna, (€ ;)

(€,¢)EE(G) (f;./)EE(G) |:
1 LS.

dGI (e )dG2 (fj) + dGl (ex )dG2 )
dg (e )dg, () dg (e)dg, (f;)

Proof: For n =7, we know that, |V (G,)| = |V(G,)| =
n, |E(G)| =1E(G)| =2n, and dg (u) =dg,(v) =4,
where u € V(G;),v € V(G,) [13]. O

Theorem 2.5 Let G,(n,,m;) and G,(n,,m,) be two
connected graphs. Set |E(G;)| = my,|E(G,)| =m, and
[V (G| = ny, [V(G2)| = n,. Then

N141+n342,-616;
n151+n262—4142’

EA(G, A Gy) < (n2my + n¥my)
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where A,(8;) and A,(8,) are the maximum (minimum)  partitioned into two subsets as follows.

degrees of G, and G,, respectively. Equality holds if and _

only if G;(n;,m;) and G,(n,, m,) are all regular. Q1(Gy A Gy) = {ecey € E(GL,
Proof Let V(G,)={eje,...e,} and V(qz) = Q.(G, AGy) = {f;f; € E(G)}.

{fl,fz,...fnz} be the vertex sets of G; and G, successively.

By the above definition 4, we get dg, a6, (e,f) = n,dg, (e) + Then

nydg, (H) — dg, (e)dg,(f) , and the edges of Gy AG, are

=L +0)

d e,f) d e,
FA(G, DGZ)Zl 6,06, (€ f])+ 6,06, (€ fl)] !

(€S e SREG DGy e f))E(ey . ;) { d6.06,(@f)) - deug, (@ ;)

where,

0, =7 dginco(eiff) | dayng, (erfD) =y ¥ D dGinGy(€uf)) | dginc,(elfl)
1 ((ei,f]-),(ek,fl))EE(GlAGZ),iik dginco(ef)  dginc,(eif)) fj€V(Gz) ~N1€V(G2) ~(epe)€E(Gr) dginco@1f)  deincy(eifj) ]

0,=% dgiaGy(eiff) | deinc,(erf) -y 5 5 dgincy(if)) | dGinc, (e fl)
2 ((ei'fj)r(ek-fl))EE(G1/\Gz).j¢l dginGy€rfD)  deinc,(eif)) ei€V(Gr) kel (G) S(GIEE©2) [ag 6o (end) | doyncy ik ]

According to the definition of disjunction for two graphs, we can easily get

dg o6, (€5 1) N dg i, (€ /1) _ mdg, (f;)+nmdg (¢)=dg (¢)dg, (f;) . mdg, (f;) +mydg (e)—dg (e )dg, (f;)
dgu6, (€ J1)  dgug, (e, f;)  mde, ()t mdg (e)=dg (e)dg, (f;)  mdg, (f;)+nmdg (¢)—dg (e)dg, (f;)
< {”1A2 +mh — 99, + by +mh, —99, }

mo, +my 0 —0D,  md, +md —AD,
— By T, -99,
mo, + 0 —AA,

Therefore,

m\, +n,\, —9,0, ml\ +n,, =50,
e P T e P S o B 42))

mo, +ny0, —AA, mo, +ny0, — A,

mlb +ny, -0,

mo, +ny0, —AA,

EA(G, 0G,) < %(ngml 2
O

_,2 2
= (nymy +nimy)

Corollary 2.6 Let C,, and C,, be two cycles with orders n and m, respectively. Then EA(G; A G,) = mn(m + n).
nm(2nm-n-m)
2

Corollary 2.8 Let G, and G, be two cayley graphs of nilpotent matrix group of length one. Then EA(G, A G,) = 4n3.
Theorem 2.9 Let G;(n,,my) and G,(n,,m,) be two connected graphs. Suppose |E(G,)| =m4,|E(G,)| =m, and

|V(Gl)| = nll |V(Gz)| = le. Then

Corollary 2.7 Let K,, and K, betwo complete graphs with orders n and m, respectively. Then EA(G, A G,) =

EAGRGy) < L2 QBOm gy 2Bomm B Gy gy S B2 T BBy
2°0+6,+90, 9 +0,+99, 0 +0,+90, G +9d,+90, 9 +0,+99,

where A,(8;) and A,(J,) are the maximum (minimum) degrees of G; and G,, respectively. Equality holds if and only if
G,(ny,m;) and G,(n,, m,) are all regular.

Proof Let V(G,) = {el,ez,...enl} and V(G,) = {fl,fz,...fnz} be the vertex sets of G; and G,successively. By the above
definition of 5, we get d(¢, g, (e ) = dg, () + dg, (f) + dg, (e)dg, (f), and the edges of G; X G, are partitioned into three
subsets S;, S, and S5 as follows.

51(G1 ® G,) = {e; = e, € V(Gy) and ff; € E(Gy)},
S2(GL K Gy) = {f] =f, € V(G;) and ejey € E(G1)},

S3(Gy K G,) = {e;e € E(Gy) and fif, € E(G,)}.
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Then
d (eia ) d (e s )
EA(GIXGz)zl 6,86, (€ f; ;. Yoo, (% fi
(1o /e SINTE(GIRGy ey £ 2 (e, /) dG1®GZ (ee» f7) dGIEIGZ (e afj)
= (5, +5,45)
2
where,
s, = dGlﬁGz (eiafj) + dngz (e /1)
(e, /7)€ ))DE(G RGy), j#1 dGl®G2 (eiafl) dG,!ZIG2 (ewfj)
_ Z dg, (&) +dg, (f;)+dg (¢)dg, (f;) + dg (e)+dg, (f;)+dg (e)dg, (1)
OG-/ ey | 6 (@) ¥ dg, () +dg (e)dg, (/) dg (¢)+dg, (f;) +dg (e)dg, (f})
<n |:A1+dG2(f‘j)+A1dG2(fj)+A1+dG2(f[)+A1dG2(fl)
s
(f;»J)DE(Gy) 51+52+5152 51"'52*'452
=S (20, +(1+8)(e, (/) +d, ()]
1 2 122 (£, /)OE(Gy)
20,myn. 1+A)n
546,100 +5(+5 1)515 Mi(G)
 +O, 00, 0 +0,%00,
S = dmc, (f;-€) + de,wc, (fj-€)
)=
(1S (e /;)EE(G RIG, )ik dq@@ (f;-e) dGlleZ (fjsei)
_ Z dg,(f;) +dg (¢) +dg, (f;)dg () +dcz (f;)+dg (ep) tdg, (f;)dg (e;)
SV (Gy) (e1,6,)TE(Gy) dGz (f]) +dG1 (ek) + dGz (fj)dG] (ek) dGz (fj) + dGl (ei) + dGz (fj)dG] (ei)
<n {Az +dg (¢) +Dydg () . A, +dg (e)+Dydg (ek):|
sm
(e:,¢,)OE(G)) d +52 +452 d +52 +452
= (28, +(1+8,)(dg (e)) +dg; (e, )
9+0,+99, (er,e0)IE(G))
20, mn 1+A))n
- 271702 + ( 2) 2 M](Gl)
0+0,t90, o +9,+99,
S, = |:dG]®Gz(ei’fj)+dGI®GZ(ek’fl):|
L=
(el s SOEGEG e f (e f) L 686, (€ T daima, (65 1)
_ dg () +dg, (f;)*+dg (e)dg, (f;) . dg (e) +dg, (i) +dg (e)dg, (f))
(e )DE(G)) (f;,/)DE(Gy) dg, (e) +dg, (f)) +dg (e)dg, (f;)  dg (e)+dg, (f;)+dg (e)dg, (f})
= 2mym, A +D, +AL, A +A AN,
9+0,+40, 6+6,+90,
= 4m,m, A +A, +AA,
0 +0,+9,0,
Then
+ +A, +
EAGRGy) sttty UEBN_ )4 200m0 oy (2B, ) vy, D52 T 0
2°0+0,t90, 94 +0,+40, 0 +0,t90, 9 +0,+90, o t0,t99,
Corollary 2.10 Let C,, and C,, be two cycles with orders n Corollary 2.11 Let K, and K,, be two complete graphs

and m, respectively. Then EA(G; X G,) = 4mn. with orders n and m, respectively. Then
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((m+n)[(n 1)(m-1)]+m3 (m-1)2+n3(n-1)>? n

(n-1)+(m-1)+(n-1)(m-1)

mn(n —1(m - 1)).

EA(G, M Gy) =+

Corollary 2.12 Let G, and G, be two cayley graphs of
nilpotent matrix group of length one. Then EA(G, X G,) =
12n2.

3. Conclusion

In this work, we compute the EA indices for three graph

operations, and use the results to calculate some special graphs.

Except that, more other graph operations for EA index and
combinations of general graphs can be considered in further
researches. Furthermore, it is a meaningful and challenging
problem to generalize the EA index of ordinary graph to
hypergraph.
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