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Abstract: Forecasting mean temperature and rainfall is an important for planning and formulating agricultural strategies. 
Thus, this paper, try to analyze and forecast monthly mean temperature and rainfall in Ambo area on the data from January 
2012 to March 2019. From graphical analysis on time plot and ACF, the series seems to have a seasonal component. For that 
purpose, a Seasonal Autoregressive Integrated Moving Average (SARIMA) models were used to estimate and forecast the 
average monthly temperature and rainfall in the Ambo area, Ethiopia. Among the competitive tentative model, SARIMA (2, 0, 
1) (2, 0, 1) 12 and SARIMA (1, 0, 1) (1, 0, 1) 12 model are the best time series model for fitting and forecasting mean 
temperature and rainfall, respectively. Moreover, the model diagnostic test on the residuals of SARIMA (2, 0, 1) (2, 0, 1) 12 
and SARIMA (1, 0, 1) (1, 0, 1) 12 on mean temperature and rainfall satisfies the randomness, independency, normality and 
constant variance (homoscedasticity) assumptions. Finally, SARIMA (2, 0, 1) (2, 0, 1) 12 and SARIMA (1, 0, 1) (1, 0, 1) 12 
were used to forecast mean of monthly temperature and rainfall from the period April 2019 to March 2023. 
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1. Introduction 

Climate change has become a critical issue for policy 
makers, climate researchers, politicians and the public around 
the world. Climate variability is regarded as the deviation of 
seasonal and annual climate parameters (i.e., rainfall, 
temperature, humidity, precipitation etc.) from the long-term 
observations mean. The long-term continuous temporal 
change and/or trends in annual, seasonal, and monthly 
climate parameters are regarded as indicators of potential 
climate change impacts [1]. 

Climate variability and change are among the major 
environmental challenges of the 21st century. Successive 
reports of the Intergovernmental Panel on Climate Change [2] 
and various other studies [3, 4] show that climate change is 
having versatile effects on development particularly on 
agriculture. 

The consequences of climate variability and climate change 
are potentially more significant for the poor in developing 

countries than for those living in nations that are more 
prosperous. Africa is one of the most vulnerable continents to 
climate change and variability. It has more climate sensitive 
economies than any other continent with 50% of its population 
living in dry land areas that are drought-prone. In addition, its 
agricultural sector contributes an average 21% of GDP in 
many countries, ranging from 10% to 70% [5]. 

Ethiopia is heavily dependent on rain-fed agriculture, and 
its geographical location and topography in combination with 
low adaptive capacity entail a high vulnerability to adverse 
impacts of climate change. Regional projections of climate 
models indicate a substantial rise in mean temperatures in 
Ethiopia over the 21st century and an increase in rainfall 
variability, with a rising frequency of both extreme flooding 
and droughts due to global warming. Given its large role in 
income and employment, agriculture also acts as a 
transmission chain of climate shocks towards other sectors of 
the economy. Ethiopia is historically prone to extreme 
weather events. Rainfall in Ethiopia is highly erratic, and 
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most rain falls in convective storms, with very high rainfall 
intensity and extreme spatial and temporal variability [6]. 

In this regard, several studies have been conducted to the 
analysis the pattern and trend of climate variation in various 
regions of the world using different time series methods. 
Among the common models are an autoregressive-integrated-
moving average (ARIMA) and seasonal Autoregressive 
Integrated Moving Average (SARIMA) models [7]. 

Therefore, this paper addresses the shortcomings in 
analytical literature about climate change using seasonal 
ARIMA model to analyze the pattern and trend, to fit an 
appropriate model, and forecast the future value of of climate 
data (mean temperature and rainfall) in Ambo area, Ethiopia. 

2. Literature Review 

George Box and Gwilym Jenkins popularized 
Autoregressive Integrated Moving Average models (ARIMA 
models) in the early 1970s. ARIMA models are a class of 
linear models that is capable of representing stationary as 
well as non-stationary time series. The models rely heavily 
on autocorrelation patterns in the data. ARIMA methodology 
of forecasting is different from most methods because it does 
not assume any particular pattern in the historical data of the 
series to be forecast, rather it uses an interactive approach of 
identifying a possible model from a general class of models. 
in this regard, there are several researches that have done on 
weather variability using an ARIMA type models. Among the 
common researches, few are discussed below. 

Tektaş, M. tries to forecast the weather of Göztepe, 
İstanbul, Turkey using a data from 2000-2008 comprising 
daily average temperature (dry-wet), air pressure, and wind-
speed using Auto Regressive Moving Average (ARIMA) 
models. The paper explains briefly how neuro-fuzzy models 
can be formulated using different learning methods and then 
analyzes whether they can provide the required level of 
performance for a reliable model for practical weather 
forecasting. The results the most suitable model and network 
structure are determined according to prediction performance, 
reliability and efficiency. The performance comparisons of 
the models are evaluated using RMSE (Root-Mean-Square 
error) criteria [8]. 

similarly, Ademola, A. et al. investigate statistical 
modeling of monthly rainfall in selected stations in forest and 
savannah Eco-climatic regions of Nigeria using 
Autoregressive Integrated Moving Average (ARIMA) and 
Seasonal Autoregressive Integrated Moving Average 
(SARIMA) models were used. The results showed that the 
model fitted into the data well and the stochastic seasonal 
fluctuation was successfully modeled. They concluded that 
Seasonal Autoregressive Integrated Moving Average 
(SARIMA) model was a proper method for modeling and 
predicting the monthly rainfall. The results are useful for 
forecasting the pattern of rainfall in the study area and 
provide information that would be helpful for decision 
makers in formulating policies to mitigate the problems of 
water resources management, soil erosion, flooding, and 

drought [9]. 
Following similar literature like discussed above, we try to 

apply Seasonal Autoregressive Integrated Moving Average 
(SARIMA) model to analyze and forecast the mean 
temperature and rainfall in Ambo area. However, this study is 
differ from the previous studies in that it is considered the 
first study applied in analyzing and forecasting of weather 
data in Ambo area using an SARIMA model. 

3. Data and Methodology 

3.1. Study Area and Data 

The study was conducted in the Ambo area, West Shoa 
Zone of Oromia regional state, Ethiopia. West Shewa Zone is 
located in the western direction of Addis Ababa the capital 
city of Ethiopia. Ambo is the capital city of west shoa zone 
which is 114 km away from Addis Ababa lying between 80 
47’ – 90 21’ North latitude and 37 32’ – 38 3’ East longitude. 
The Zone has a unimodal rainfall patter having one 
significant rainy season and one peak rainfall. The main rainy 
season is from June to September and the short rainy season 
is from the end February to the beginning of May. In this 
study, monthly average temperature and rainfall were used. 
The data on temperature and rainfall were collected from 
Ambo University metrological station of Ethiopia. The 
dataset consists of (87) monthly observations from January 
2012 to March 2019 on global near surface mean temperature 
and rainfall. Temperature is measured in degrees Celsius, 
while data on monthly rainfall is measured in milliliter (mm). 

3.2. Stationary Test 

The foundation of time series analysis is stationary. 
Stationary series are characterized by a kind of statistical 
equilibrium around a constant mean level as well as a 
constant dispersion around that mean level [10]. The series 
could be non-stationary because of random walk, drift, or 
trend. 

Several statistical tests may be conducted to determine 
whether a series is nonstationary (unit root). Dickey-Fuller 
unit root test which used to test an AR (1) process is among 
the common unit root. However, if the series is correlated at 
higher order lags, the assumption of white noise disturbances 
is violated. Thus, the Augmented Dickey–Fuller Test (ADF 
test were used since it controls higher-order correlation by 
adding lagged difference terms of the dependent variable to 
the right-hand side of the regression. However, the two 
common problems in performing the ADF test are specify the 
number of lagged first difference terms and the choice of 
including a constant, a constant and a linear time trend, or 
neither in the test regression. 

A specification of ADF test with drift (constant) in the test 
regression: 

∇�� = � + ���	
 + ∑ ∅�
�
��� ∇��	� +  ��            (1) 

A specification of ADF test with drift (constant) and trend 
in the test regression: 
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∇�� = � + ���	
 + ∑ ∅�
�
��� ∇��	� + �� +  ��       (2) 

While if the series seems to be fluctuating around a zero 
mean, we should include neither a constant nor a trend in the 
test regression. 

∇�� = ���	
 + ∑ ∅�
�
��� ∇��	� +  ��                 (3) 

3.3. Model Specifications 

One of the most popular and frequently used stochastic 
time series models is the Autoregressive Integrated Moving 
Average (ARIMA) developed by Box, G. Jenkins model in 
(1970). The basic assumption made to implement this model 
is that the considered time series is linear and follows a 
particular known statistical distribution, such as the normal 
distribution. 

ARIMA model has several components, such as the 
Autoregressive (AR), Moving Average (MA), Autoregressive 
Moving Average (ARMA) and Autoregressive Integrated 
Moving Average (ARIMA models. For seasonal time series 
forecasting, Box and Jenkins had proposed a quite successful 
variation of ARIMA model, viz. the Seasonal ARIMA 
(SARIMA). 

I. Autoregressive (AR) Models 
Autoregressive (AR) refers to when the value of a series at 

a current time period is a function of its immediately 
previous value plus some error. 

A general pth -order autoregressive or AR (p) process 
would be written as follows: 

�� = �� + ∑ ��
�
��
 ��	� +  �� = �
��	
 + ����	� +

⋯ … . . +����	��
 +   ��                       (4) 

where ��  is the actual value of the series at time period 
t,  ��

,� are coefficients, p is a non-negative integer that 
indicates the lag length and �� is assumed to be a white noise 
error term. 

II. Moving-Average (MA) Models 
An Moving-Average process refers to random error, 

innovation, or shock, ��, at a previous period plus a shock at 
current time, t, drives the series to yield an output value of �� 
at time t. 

A more general qth-order moving average or MA (q) 
process would be written as: 

�� = �� + ∑ ��
 
��
 ��	� + �� = �� + �
��	
 + ����	� + ⋯ +

� ��	 + ��                                  (5) 

where q is a non-negative integer refers to the order of the 
model, �� 

! � are coefficients with �� the constant term, and {��} 
is assumed to be a white noise with mean zero and constant 
variance "#

� error term or shock. 
III. The Autoregressive Moving Average (ARMA) Models 
An autoregressive moving average, ARMA (p, q) model is 

a combination of autoregressive AR (p) and moving average 
MA (q) models and is suitable for modeling a univariate 
stochastic time series. 

Autoregressive Moving average model, ARMA (P, Q) 

process is given by: 

�� = $ + ∑ ����	�
�
��
 + �� ∑ ��	�

 
��
 + ��               (6) 

where the model orders p, q refer to p autoregressive and q 

moving average terms. While �� is zero mean white noise. 
IV. Autoregressive Integrated Moving Average (ARIMA) 

Models 
The ARMA models, described above can only be used for 

stationary time series data. However, in practice many time 
series show non-stationary behavior. Because the Box–
Jenkins method is an analysis in the time domain applied to 
stationary series data, it is necessary to consider the basis of 
non-stationarity, with a view toward transforming series into 
stationarity. When a non-stationary series is characterized by 
a random walk, each subsequent observation of the series 
randomly wanders from the previous one. The random walk 
model can be stationary after differencing and called 
integrating order d. Thus, the basic processes of the Box–
Jenkins ARIMA (p, d, q) model include the autoregressive 
process, the integrated process, and the moving average 
process. 

Mathematically, the ARIMA (p, d, q) model using lag 
polynomials is given by: 

%1 − ∑ ��(��
��
 )(1 − (),�� = %1 + ∑ ��

 
��
 (�)��      (7) 

where the three parameters are: - =number of difference 
required for Stationarity, .=order of the AR component and 
/=order of the MA component. 

V. Seasonal Autoregressive Integrated Moving Average 
(SARIMA) Models 

Seasonality usually causes the series to be non-stationary 
because the average values at some particular times within 
the seasonal span (for example, month) may be different 
from the average values at other times. Box and Jenkins 
(1970) have generalized ARIMA model into Seasonal 
ARIMA (SARIMA) model to deal with seasonality. 

012341(., -, /) ×  (6, 7, 8)9  Model in terms of lag 
polynomials is given by: 

��((9)��(()(1 − (),(1 − (9):�� = � ((9)� (()��     (8) 

where p=non-seasonal AR order, d=non-seasonal 
differencing, q=non-seasonal MA order, P=seasonal AR 
order, D=seasonal differencing, Q=seasonal MA order, and 
S=time span of repeating seasonal pattern. 

3.4. Lag Length Selection 

ACF and PACF 

Autocorrelation (AC) and partial autocorrelation (PAC) 
function are a type of graphs that contain correlations of 
different time lags. They can be used to determine whether 
the series are stationary or not, have seasonal pattern and to 
identify the number of components (lags or parameters) in a 
SARIMA model. The number of significant spikes in the 
ACF indicates the number of MA parameters in the model, 
while the number of significant spikes in PACF indicates the 
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number of AR parameters in the model. 
Portmanteau Test 

Time series applications often require testing jointly that 
several autocorrelations of the series are zero. Box and Pierce 
(1970) propose the Portmanteau statistic given by: 

8(;)
∗ = = ∑ >?@

�;
��
                              (9) 

where T=sample size and m=lag length 
A modify the 8(;)

∗ ) statistic by [11] to increase the power 
of the test in finite samples is given: 

8(A) = =(= + 2) ∑ CDE
F

G	@
;
@�
                    (10) 

The decision rule is to reject Ho if 8(A)  >  I2J �⁄ , where 
I2J �⁄  denotes the 100 (1−α) the percentile of a chi-squared 
distribution with m degrees of freedom. 

3.5. Model Selection 

A crucial step in an appropriate model selection is the 
determination of optimal model parameters. According to 
[12], among the common criteria of model selection in time 
series analysis is to use the Akaike Information Criterion 
(AIC) and Bayesian Information Criterion (BIC). 

The Akaike information criterion (AIC) [13] is defined 

13L = = ln(40O) + 2P                       (11) 

The Schwarz information criteria (1978) [14] is given by: 

Q3L(R) = = ln(40O) + PRS(=)                  (12) 

where T=number of observations, P =p+q+1 (for 
ARMA)=number of parameters, ln is natural logarithm, 
residual sum of squares ( 00O) = ∑ (��̂)�G

��
 , and 

4�US �/VUW� �WWXW(40O) = 


G	Y
(00O). 

The optimal model order is chosen by the number of 
model parameters, which minimizes the information criteria 

3.6. Model Estimations 

Maximum likelihood estimation is commonly used to 
estimate ARMA family models. Maximum likelihood 
estimation usually begins with a likelihood function to 
minimize or maximize. A likelihood function is a probability 
formula. When observations are independent of one another, 
the probability of the multiple successive occurrences is the 
product of their individual probabilities. 

The natural log of the likelihood function given the 
parameter vector (Z) is given by: 

(((Z, "#) = −SRS("#) −
∑ #[

F,(\)

�#[
F                (13) 

3.7. Model Diagnostic 

After estimation of the model, the Box–Jenkins model 
building strategy entails a diagnosis of the adequacy of the 
model. More specifically, it is necessary to ascertain in what 
way the model is adequate and in what way it is inadequate.  

Test of ARCH Effect 

It is a test for determining whether ‘ARCH-effects’ are 
present in the residuals of an estimated mean model. 

I. Engle Lagrange multiplier test of the ARCH effect 
The Lagrange multiplier test of Engle (1982) is equivalent to 

the usual F test [15]. Testing for the presence of ARCH errors of 
Engle (1982) Lagrange Multiplier test involves regressing the 
squared residuals from the best fitting ARIMA on a constant and 
the lagged residuals. If there are no ARCH effects present, the 
individual coefficient estimates should equal zero, and the joint 
effects should be slight or non-existent. 

II. The Lung-Box test applied to the ARCH effect 
The second test is to apply the usual Ljung–Box statistics 

8(A) to the (��
�). The null hypothesis is that the first m lags 

of ACF of the ��
� series are zero. 

To test the ARCH effect, we can apply the Ljung-Box test 
which were developed by Box and Pierce (1970) and 
modified by Ljung and Box (1978) and tests the joint 
significances of serial correlation (heteroscedasticity) in the 
standardized and squared standardized residuals for the first 
m lags instead of testing individual significance to squared 
residuals of the model. 

(Q = =(= + 2) ∑ ]D^

G	�
;
��
                         (14) 

where T denotes number of observations. _?�  is correlation 
coefficient for squared errors with its lag of order m. The 
computed test statistics has under the null `�(A) distribution. 
The null of no ARCH effect) is to be rejected if the computed 
value of the test statistics is greater than the appropriate 
critical value. 

3.8. Model Forecasting 

One of the primary objectives of time series analysis is to 
forecast future value of the series, especially forecasting in 
weather data is great importance. In this regard, a decision needs 
to be made at current time t and the optimal decision depends on 
expected future value of a random variable, ���a , the value 
being predicted or forecast. The number of time points forecast 
into the future forecast horizon is called the lead time, h. The 
value of the random variable for such a forecast is the value 
of���a. A forecaster would like to obtain a prediction as close as 
possible to the actual value of the variable in question at the 
concurrent or future temporal point of interest. 

4. Results and Discussions 

The monthly data used in this study covers from January 1, 
2012 to March 1, 2019, which were collected from Ambo 
University Meteorological Agency. 

4.1. Graphical Analysis 

Both Tables shows the existence of consistent pattern of 
short-term fluctuation for the data that indicate the existence 
of seasonality on both variables. The overall mean 
temperature and rainfall during the studied period January 
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2012 to March 2019 appears to exhibit a slight (almost no) 
trend. Thus, from both figure, we observe that the series are 
stationary at level. Therefore, the time plot gives us a clue for 
the property of the series, but not the end since we need to 
conduct a formal unit root test for testing stationarity 
condition of the series. 

 

Source (AUMS, May 2019) 

Figure 1. Time series plot of Average monthly Temperature. 

 

Source (AUMS, May 2019) 

Figure 2. Time series plot of Average monthly Rainfall. 

4.2. Descriptive Statistics for Average Temperature and 

Rainfall Data 

From the Table 1, the mean value of maximum 
temperature is 23.44°C and the mean minimum temperature 
is 14.25°C with the grand mean 19.54 and mean standard 
deviations being 1.66. The mean value of rainfall is 2.35 mm 
with standard deviation of 2.37. 

Table 1. Summary statistics. 

Variables Obs Mean Std. Dev Min Max 

Temperature 87 19.54474 1.665812 14.35 23.44032 
Rainfall 87 2.357651 2.371098 0 8.951613 

Source: Author’s Computation. 

 

4.3. Stationarity Test 

From the Table 2, we observe that the series is stationary at 
level with trend and constant term 

Table 2. Unit root test 

Variables Model Test statistic 5% critical values 

Temperature 
With drift -3.940 -2.901 
With trend -4.918 -3.465 

Rainfall 
With drift -4.361 -1.664 
With drift -4.382 -3.465 

Source: Author’s Computation. 

4.4. Model Identification (Selection) Results 

The first step in Box-Jenkins methodology is to identify 
(select) the appropriate model. In this study, to identify the 
model (based on lag structure), the correlogram, 
autocorrelation and partial autocorrelation function were used. 

On Figure 5, the Auto correlation function (ACF) and 
Partial Auto correlation function (PACF) on average 
temperature and rainfall were tested up to 72-lag interval. 
From the AC function of both graph, we observe that there is 
a fast decaying in AC values of the which indicates the 
stationarity condition of rainfall and temperature. From the 
AC function, we should to use 1 upto 2 lag for MA model 
since we have two significnt spike, but nothing else beyond 
that. Moreover, we have very strong first lag in PACF of both 
graphs while everything is died off. That is we have two lag 
for AR model for rainfall and one lag for mean temperature. 

On Figure 5, the shadow line indicates the 95% confidence 
interval. Form theoretical view, there should be a fast decline 
in AC function for stationary AR model. Moreover, there are 
only positive autocorrelation coefficients since the first lag of 
the AC and PAC function is upward. 

The ACF and PACF show that both temperature and 
rainfall have periodic in nature. These functions behave 
similarly in their period cycles involving seasonal variations. 
Thus, given time series is periodic and involve seasonal 
variations, we need to apply a model that captures the 
seasonal component of order 12. Therefore, a seasonal 
ARIMA models for the prediction of average temperature, 
and rainfall should be used. Following the Box–Jenkins 
technique, we depend on ACF or PACF plots to select the 
order of the seasonal model [16]. 

From the Figures 5a and 5b on average temperature data, 
we can choose our model based on the ACF and PACF spikes 
at low lags. To determine the nonseasonal AR terms, we look 
at the PACF, which shows clear spikes at lags 1, 2 and 3. 
Thus, the nonseasonal AR terms are determined to be of 
order 3. There is one spike at lags 1 in ACF, so we have one 
term for nonseasonal MA. Now for the seasonal part of the 
model, in this case, we look at lags 12, 24, 36, and 48 for 
both ACF and PACF. From the PACF we indicate that there 
are two significant spikes at lags 12 and 36; thus, the order of 
the seasonal AR is two. In the ACF, there are one spikes at 
lag 12, this means that the order of the seasonal MA is one. 
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Source: Author’s Computation 

Figure 3. Corrolegram for Average Temperature. 

 

Source: Author’s Computation 

Figure 4. Corrolegram for Average Rainfall. 
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By the same analogy, we can select a best model for rainfall 

based on AC and PAC function on figure 5c and 5d. From the 
PAC function of 5d, the nonseasonal component of MA term 
has 2 lags and the seasonal component of MA term has one lag. 
Moreover, from figure 5c, the nonseasonal AR term has one 
lag and the seasonal AR tem has 2 lags (lag 12 & 36). 

Therefore, based on identified lag length of ACF and 

PACF, we should select the best possible models 
(‘parsimonious’ models) to represent the original series given 
below. 

However, in order to select appropriate model among the 
tentative model, we have used the highest log-likelihood 
statistic, the lowest Akaike information criteria (AIC) and 
Shwarz information criteria (SIC). 

  

  

Source: Author’s Computation 

Figure 5. Autocorrelation and Partial autocorrelation function. 

The results of Table 3 show that, out of the nine models, the 
maximum log likelihood estimates and the lowest AIC and 
SBIC values were obtained by SARIMA (2, 0, 1) (2, 0, 1) 12 
model. Thus, it can be concluded the best model among the 
nine for mean temperature is SARIMA (2, 0, 1) (2, 0, 1) 12. 

Table 3. Tentative model for mean temperature 

Model 
Log 

likelihood 
AIC SBIC 

SARIMA (0, 0, 1) (0, 0, 1) 12 -140.0562 288.1124 297.976 
SARIMA (1, 0, 0) (1, 0, 0) 12 -126.6262 261.2525 271.1161 
SARIMA (1, 0, 1) (1, 0, 1) 12 -114.4853 240.9705 255.766 
SARIMA (1, 0, 1) (2, 0, 1) 12 -114.3082 242.6165 259.8778 
SARIMA (2, 0, 1) (1, 0, 0) 12 -122.0155 256.0309 270.8264 
SARIMA (2, 0, 0) (1, 0, 1) 12 -125.5733 261.1466 273.4761 
SARIMA (2, 0, 1) (2, 0, 1) 12 -110.4433 234.8866 252.148 
SARIMA (1, 0, 2) (1, 0, 2) 12 -117.1864 248.3728 265.6342 
SARIMA (2, 0, 2) (2, 0, 2) 12 -112.2646 244.5292 269.1883 

Source: Author’s Computation. 

From Table 4, SARIMA (1, 0, 1) (1, 0, 1) 12 is the best 
model among the seven tentative model for estimating mean 
rainfall data in the study area. Thus, we can be concluded the 
best model among the seven model for mean rainfall is 
SARIMA (1, 0, 1) (1, 0, 1) 12. 

Table 4. Tentative model for rainfall 

Model 
Log 

likelihood 
AIC SBIC 

SARIMA (1, 0, 1) (1, 0, 1) 12 -159.4732 330.9465 345.7419 

SARIMA (1, 0, 2) (1, 0, 0) 12 -164.5333 339.0666 351.396 

SARIMA (1, 0, 1) (2, 0, 0) 12 -167.836 347.676 362.471 

SARIMA (1, 0, 2) (2, 0, 0) 12 -163.888 339.777 354.573 

SARIMA (1, 0, 0) (1, 0, 0) 12 -168.831 345.663 355.527 

SARIMA (0, 0, 2) (0, 0, 1) 12 -169.833 349.667 361.997 

SARIMA (0, 0, 1) (1, 0, 1) 12 -162.783 335.566 347.895 

Source: Author’s Computation. 
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4.5. Parameter Estimation 

The coefficients of autoregressive, moving average, 
seasonal autoregressive, and seasonal moving average were 
estimated using maximum likelihood estimation methods. 

Table 5. Parameter estimation of SARIMA (2, 0, 1) (2, 0, 1) 12 for Mean 

Temperature. 

Variables Coefficients Standard error z-statistic P-value 

C 19.45835 0307129 633.56 0.000 
AR (1) .312479 .0930896 3.35 0.001 
AR (2) -.4238803 .0780194 -5.43 0.000 
SAR (1) .7677952 .3117185 2.46 0.014 
SAR (1) .2050881 .2690375 0.76 0.446 
SMA (1) -.6677989 .3705386 -1.80 0.072 

Source: Author’s Computation. 

The coefficients of AR terms are less than one, which 
indicates Stationarity of the series. 

Table 6. Parameter estimation of SARIMA (1, 0, 1) (1, 0, 1) 12 for Mean 

Rainfall. 

Variables Coefficients Standard error z-statistic P-value 

C 2.404 0.082 29.24 0.000 
AR (1) 0.581 0.106 5.48 0.000 
MA (1) -0.068 5.37 -0.012 0.246 
SAR (1) 0.658 0.018 36.55 0.000 
SMA (1) -0.713 0.35 -2.03 0.048 

Source: Author’s Computation. 

From Tables (5 & 6), we observe that all coefficients are 
statistically significant as indicated by p-value, except 
seasonal autoregressive (SAR) in mean temperature model 
and non-seasonal moving average (MA) model in mean 
rainfall model. Therefore, the overall performance of the 
model is good in significance of coefficients. 

4.6. Model Diagnostics Test 

In time-series modeling, the selection of a best model fit to 
the data is related to whether the residual from the best fitted 
model is performed well. One of the basic assumptions of the 
SARIMA (seasonal ARIMA) model is that, for a good model, 
the residuals must follow a white noise process; that is, the 
residuals have zero mean, have constant variance 
(homoscedasticity), and are uncorrelated with past values. The 
special case of this process is the residuals should be normally 
distributed and follows a Gaussian white noise process. It is such 
a process that we test for here. Since the model diagnostics were 
performed through careful examination of SARIMA (2, 0, 1) (2, 
0, 1)12 model for mean temperature and SARIMA (0, 1, 2) (0, 1, 
1)12 model for mean of rainfall, we have used the residuals plot 
over time, periodogram, Portmanteau test, histogram and ARCH 
LM test on the residuals of the best fitted models. 

4.6.1. Model Diagnostic for the Fitted Model of Mean 

Temperature 

I. Randomness of the Residual from the fitted model 
The residual from the fitted model is almost stationary 

(white noise) since residual series have randomness and no 

any trending component. 

 

Source: Author’s Computation 

Figure 6. Mean temperature Residual over time for the fitted model. 

 

Source: Author’s Computation 

Figure 7. Correlogram of Residuals from The fitted model of Mean 

Temperature. 

From Table 7, we observe that the the p-value is almost 
more than 5%, which indicates, fail to reject the null of white 
noise residuals (no serial correlation, homoscedasticity and 
Stationarity). 

Portmanteau test 

Table 7. Portmanteau test for white noise. 

Portmanteau (Q) statistic 25.1610 
Prob > chi2 (40) 0.9677 

Source: Author’s Computation. 
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We cannot reject the null of white noise residuals since the 
p-value (0.9677) is greater than 0.05 (5%). Therefore, the 
residual is independently or randomly distributed which is a 
desirable assumption of SARIMA model. 

II. Stability Condition 
The graph produced by invers roots of ARMA polynomial 

displays the eigenvalues with the real components on the X-
axis and the imaginary components on the Y-axis. Since all 
the eigenvalues lie inside the unit circle, the AR parameters 
satisfy stability condition and the MA parameters satisfy 
invertibility condition. Thus, the MA process is invertible and 
can be represented as an infinite-order AR process. 

 

Source: Author’s Computation 

Figure 8. Eigenvalue stability condition. 

III. Normality of Residuals 
The histogram from residuals of the fitted model 

(SARIMA (2, 0, 1) (2, 0, 1) 12) of mean temperature have a 
standard normal distribution. 

 

Source: Author’s Computation 

Figure 9. Histogram of residuals. 

IV. Heteroscedasticity 
The ARCH LM test was conducted to test the existence of 

heteroscedasticity on the residuals of the fitted model. Since 
the p-value in both F-test and observed R-squared is greater 
than 5% we fail to reject the null of no ARCH effect (no 
heteroscedasticity) in the residual of the fitted model for 

mean temperature. Therefore, our model passes the basic 
assumption of constant variance error term. 

Table 8. Results of Residual ARCH LM Test for the Fitted Model of 

Temperature. 

Test statistic type Test statistic Value P-value 

F-statistic 0.825 0.732 
Obs*R-squared 0.67 0.534 

Source: Author’s Computation. 

4.6.2. Model Diagnostic for the Fitted Model of Mean 

Rainfall 

I. Randomness of the Residual from the fitted model 
From figure 10, we observe that the residual is randomly 

distributed and almost have a stable mean. 

 

Source: Author’s Computation 

Figure 10. Residual with time from the fitted model of rainfall. 

 

Source: Author’s Computation 

Figure 11. Corrolegram of the residuals from the fitted model of mean 

rainfall. 
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The ACF plot of the residuals of the fitted model (Figure 11) 
shows that the residuals are relatively small and not statistically 
significant. Therefore, it can be considered that the residual of 
the fitted model of mean rainfall is randomly distributed. 

Portmanteau test 
As we observe from Table 9, we cannot reject the null of 

white noise residuals since the p-value (0.1428) is greater 
than 0.05 (5%). Therefore, the residual is independently or 
randomly distributed which is satisfies the basic assumption 
of white noise residuals in SARIMA model. 

Table 9. Portmanteau test for white noise. 

Portmanteau (Q) statistic 49.5665 
Prob > chi2 (40) 0.1428 

Source: Author’s Computation. 

II. Stability Condition 
Eigenvalue stability condition 
Since all the eigenvalues lie inside the unit circle, AR 

parameters satisfy stability condition and MA parameters 
satisfy invertibility condition. 

 

Source: Author’s Computation 

Figure 12. Eigenvalue Stability condition. 

III. Normality of the residuals 
The Histogram plot of the residuals was carried out to 

check whether residuals are normal or not. 
Normality with histogram 

 

Source: Author’s Computation 

Figure 13. Histogram of the residuals from fitted rainfall. 

IV. Heteroscedasticity 
From Table 10, the p-value of ARCH LM test on the 

results of the fitted model of mean rainfall is greater than 5%, 
which indicates that we fail to reject the null of constant 
variance (homoscedasticity). 

Table 10. Results of Residual Heteroscedasticity Test for the Fitted Model of 

Rainfall. 

ARCH Lm test 

F-statistic 0.649 P-value 0.571 
Obs*R-squared 0.584 P-value 0.426 

Source: Author’s Computation. 

Based on the above detailed analysis of residuals, it can be 
confirmed that the selected SARIMA (2, 0, 1) (2, 0, 1) 12 and 
SARIMA (1, 0, 1) (1, 0, 1) 12 model satisfies all the 
diagnostic tests for modeling and forecasting mean 
temperature and rainfall, respectively. Hence, the two models 
(SARIMA (2, 0, 1) (2, 0, 1) 12 & are SARIMA (1, 0, 1) (1, 0, 
1) 12 are considered as the best model for forecasting the 
upcoming monthly temperature and rainfall, respectively, in 
Ambo area in a given period of time. 

4.7. Forecasting Temperature Using the Best Fitted 

SARIMA Model 

We have used a data from January 2012 to March 2019 to 
estimate the model and data from April 2019 to March 2023 
for forecasting period as shown on Figures (14 & 15). It 
appears from Figures (14 & 15) that the best selected model is 
very well suited for forecasting the future value of the Ambo 
area mean temperature and rainfall since the forecasted value 
(blue line) have similar pattern with the actual vale (non-
colored line). From the figure, we observe that almost the 
series have a stable value on the forecast period and shows that 
the estimated forecast means temperature and rainfall were 
identical or very close to the actual real data. The pattern of 
mean temperatures and rainfall in Ambo area from April 2019 
to March 2023 were observed to be stationary (fluctuate 
around a constant mean), and hence does not follow any 
different pattern than the actual series. 

 

Source: Author’s Computation 

Figure 14. Time series plot of observed and forecasted value of Temperature. 
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Source: Author’s Computation 

Figure 15. Time series plot of observed and forecasted value of Rainfall. 

5. Conclusion and Recommendation 

5.1. Conclusion 

Time series analysis is an important technique in analyzing 
and forecasting weather variables like temperature and rainfall. 
In this study, a monthly temperature and rainfall data obtained 
from Ambo University metrological station on the period from 
January 2012 to March 2019 were used to analyze the series. 
The seasonal autoregressive integrated moving average 
(SARIMA) model was used to analyze and forecast monthly 
mean temperature and rainfall of the study area. 

The result of time plot, ACF and PACF shows that the 
series have a seasonal component, which confirms the 

appropriateness of seasonal autoregressive integrated moving 
average (SARIMA). The best fitting model among the 
competing model for monthly mean temperature and rainfall 
were SARIMA (2, 0, 1) (2, 0, 1) 12 and SARIMA (1, 0, 1) (1, 
0, 1) 12 model, respectively. 

The model diagnostics were performed through careful 
examination of the residuals from the best-fitted model, i.e. 
SARIMA (2, 0, 1) (2, 0, 1) 12 for monthly mean temperature 
and SARIMA (1, 0, 1) (1, 0, 1) 12 for monthly mean rainfall. 
The residuals were found to be following a white-noise process 
with a mean of zero and a constant variance, hence uncorrelated. 
Based on the best-fitted model, monthly mean temperature and 
rainfall for the next four years (from April 2019 to March 2023) 
were forecasted and seems to be slightly stable. 

5.2. Recommendation 

Based on the results of the study the following 
recommendations were forwarded to the concerned 
stakeholders. 

Since the SARIMA models fitted and forecasted weather 
variables (in our case, monthly mean temperature and rainfall) 
appropriately in Ambo area, Ethiopia, so any concerned 
bodies can use as an input (information). Moreover, the 
researcher recommends using such model for analysis of 
similar data in other area. However, uncertainties are in 
weather data, the result by itself might become indecisive. 
Therefore, further research based on other model is suggested 
for better results by the researcher. 

Acronyms and Abbreviations 

ACF Autocorrelation Function 
ADF Augmented Dickey–Fuller Test 
AIC Akaike Information Criterion 
ARCH Autoregressive Conditional heteroscedasticity 
AUMS Ambo University Metrological station 
GDP Gross Domestic Product 
IPCC Intergovernmental Panel on Climate Change 
LM Lagrange multiplier test 
PACF Partial autocorrelation function 
SARIMA Seasonal Autoregressive Integrated Moving Average 
SBIC Schwarz Bayesian Information Criterion 
UNFCCC United Nations Framework Convention on Climate Change 
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