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Abstract: The objective of this study is to model seasonal variations in claim intensities and to evaluate the dependency of 

covariates on claim rates. The data for this study are obtained from claimants registered during September 2009 to August 2011, 

both inclusive at the Ethiopian Insurance Corporation in Hawassa. We present a procedure for consistent estimation of the claim 

frequency for motor vehicles in the Ethiopian Insurance Corporation, Hawassa District. The seasonal variation is modeled with a 

non-homogeneous Poisson process with a time varying intensity function. Covariates of the policy holders, like gender and age, 

is corrected for in the average claim rate by Poisson regression in a GLM setting. An approximate maximum likelihood criterion 

is used when estimating the model parameters. Numerical simulations are carried out applying the numerical software Matlab. 

These simulations show the reliability of the estimator. The seasonal parameters are found to be ±25% and to be statistically 

significant. February has highest while August has lowest claim rate. Only age group 36 - 45 has significantly lower claim rate 

than age group 20 - 25. The rate is about one third. Lastly female is not found to have significantly lower claim rates than males, 

however, there are indications that might be slightly so. 

Keywords: Non-Homogeneous Poisson Process, Claim Intensity, Seasonal Model, Maximum Likelihood Estimation 

 

1. Introduction 

An insurance company has a portfolio of customers. Some 

of them will never make a claim, while others might make 

one or multiple claims. Insurance companies are constantly 

looking for ways to better predict claims [4]. Overall, 

insurance involves the sum of a large number of individual 

risks of which very few will result in insurance claims being 

made. It is argued that insurance companies need to treat risk 

management as a series of related factors and events. 

Therefore, an insurance company has to find ways to predict 

claims and appropriately charge a premium to cover risks. 

Ethiopia's insurance industry which was established on 1976 

is relatively undeveloped and is exemplified by the sectors low 

penetration levels. There are indications that the insurance 

companies in Ethiopia are characterized by high claim 

frequency and cost [12]. According to Sisay Wuyu and Patrick 

Cerna [12], there is a well-known problem in the Ethiopian 

Insurance Corporation concerning the proper pricing of an 

insurance policy. Kanbiro and Ayneshet [13] studied on Factors 

Affecting Financial Performance of Insurance Companies 

Operating in Hawassa City Administration, Ethiopia. They 

concluded that financial performance of insurance companies 

operating in Hawassa was best explained by the explanatory 

variables, risks included in their model. 

One of the most widely used and accepted models for 

claim count processes is the Poisson process model. Over the 

years, numerous variants of the classical Poisson model have 

been proposed in hopes of improving its adequacy and validity 

in a broader range of contexts. These variants allow the 

Poisson process model to be utilized for non-homogeneous 

Poisson Model (NHPM), seasonal data. Nelder, J. and R [9] 

and Antonio, K. and Beirlant, J [1-3] proposed application of 

Generalized Linear Models and Log-normal mixed models for 

claim reserving respectively. Claims have long been estimated 

using a pure algorithmic technique or a simple stochastic 
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technique [11]. These methods result in poor estimations. 

Huang, Zhao and Tang [10] consider a risk model in which the 

claim number process is treated as a Poisson model and the 

individual claim size is assumed to be a fuzzy random variable. 

Jørgensen and Souza [7] suggested a Poisson sum of Gamma 

random variables called Tweedie to estimate insurance risk. 

According to Smyth and Jørgensen [5], there is also another 

problem in that the proposed Tweedie model does not permit 

the separate estimation of probability and claim size. Claro, P, 

Caetano, L., Artes, R [6] used to estimate insurance claims 

from an auto dataset using the Tweedie and zero-adjusted 

inverse Gaussian (ZAIG) methods. 

Some recent papers have also studied on the factors 

influencing profitability of insurance companies [15, 16] and 

on the performance of insurance companies in Ethiopia [14]. 

The motivation behind these proposed models is to better 

reflect a real-world system without sacrificing the tractability 

of the classical Poisson process model. In examining the 

nature of the risk associated with a portfolio, it is often of 

interest to assess the frequency of claims on each month. One 

approach concerns the use of seasonal variation. This quantity, 

referred to as insurers risk, varies in time. None of the studies 

seem to discuss the seasonal variation of the Claim intensities, 

and how models can be constructed from the historical data, 

apart from general statements such as suggesting that the 

insurance industries in Ethiopia need to treat risk management 

to better predict claims. 

The focus of this study is to model claim frequency and to 

see the trend of seasonal variations in Ethiopian non-life 

Insurance Corporation. Specific objectives are: Formulation 

of stochastic model for claim intensity, to develop a scheme 

for how parameters are identified, to evaluate the dependency 

of covariates using Poisson regression on claim rates and to 

model seasonal variations in claim intensities which require 

non homogeneous Poisson model. 

2. Data Sets and Methods 

2.1. Data Sets 

This study is based on secondary data obtained from a 

motor portfolio in Ethiopian Insurance Corporation at 

Hawassa district, Ethiopia. It is collected during a period of 

36 months starting September 2017 and ending August 2019, 

both inclusive. Several covariates representing the drivers 

have been used. The data set contains only claims on a single 

coverage of the comprehensive part of the motor insurance. 

The following variables are considered in this study. 

Independent categorical variables: 

Age of driver: categorized as: 

20 25− . 

26 35−  

36 45−  

46 +  

Sex of driver: 

Male, Female 

Continuous independent variable 

Exposure time: length of the exposure measured in year. 

Dependent variables 

Number of claims: Mostly equals 0, but sometimes 1 or 

more. 

Accident month of claims 

The data is an extract of three years of totally 1553n =  

policies, for which the number of claims is 157 with total 

exposure 1 ... 844nT T+ + =  portfolio years. Among the 

1553  polices with 1501  customers 10.5%  are involved in 

claims, see Table 1. 

In order to compare the impact of each variable on the 

number of claims, the mean number of claims with respect to 

the levels of each variable was calculated, see Tables 2 and 3. 

Note that males in age-class 26 35−  is dominating the 

claim numbers, and that few females produce claims, see 

Table 2. Moreover, most claims are reported in the dry warm 

season January and February, see Table 3. 

Table 1. Existence of claims. 

 Frequency Percent 

No claim 1344 89.5 

One or more claim 157 10.5 

Total 1501 100.0 

Table 2. Number of claims in age/sex classes. 

Age classes 

Sex 20-25 26-35 36-45 46+ Total 

Male 10 71 41 25 147 

Female 0 6 4 0 10 

Total 10 77 45 25 157 

The data are stored on the following form: 

1

2

11 1 1 1 11 1

21 2 2 2 21 2

1 1

covariates claims exposure time acc.month

n

m n

m n

n nm n n n nn

x x n T t t

x x n T t t

x x n T t t

… …

… …

… …
⋮ ⋮ ⋮ ⋮

 

On row j  we have the values of the explanatory 

variables 1, ,j jmx x… , the number of claims jn , the 

exposure time to risk jT  as proportion of year and the 

months of the jn  accidents 1, ,
jj jnt t… . This is known as 

the data matrix. 

Table 3. Number of claims for covariates. 

Variables Covariates 
Number of 

claims 
Percent 

Sex of driver 

Male 147 93.6 

Female 10 6.4 

Total 157 100.0 

Age of driver 

20-25 10 6.8 

26-35 77 49.0 

36-45 45 27.2 

46+ 25 17.0 

Total 157 100.0 
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Variables Covariates 
Number of 

claims 
Percent 

Accident month 

January 28 18.1 

February 18 11.6 

March 12 7.7 

April 10 6.5 

May 14 8.4 

June 9 5.8 

July 18 11.0 

August 8 4.8 

September 9 6.1 

October 12 8.2 

November 10 6.8 

December 9 6.1 

Total 157 100.0 

2.2. Methods 

The variables relevant for our study are: 

Number of claims in a year - N , 

Occurrence of claims - ( )1,..., Nt t , 

Exposure time of a customer in a year - T , 0 1T< < , 

Covariates: driver age and gender - x . 

2.2.1. The Poisson Process 

In this section we consider the most common claim 

number process, the Poisson process. Recall that an 

integer-valued random variable N  is said to have a Poisson 

distribution with parameter 0λ > , ( )~ Pois( )N λ if it has 

distribution 

( ) , 0,1,
!

k

p N k e k
k

λλ −= = = …           (1) 

A stochastic process 0( ( ))tN N t ≥=  is said to be a Poisson 

process if the following conditions hold: 

The process starts at zero 

(0) 0N =  

The process has independent increments: for any it , 

1, , ,i n= …  such that 10 nt t≤ < … < , the increments 

1 1( , ) ( ) ( ), 1,...,i i i iN t t N t N t i n− −= − =  are mutually 

independent. 

There exists ( )tµ , (0) 0µ =  such that the increments 

( , ]N s t  have a Poisson distribution ( )Pois [ , ]s tµ with

( , ) ( ) ( )s t t sµ µ µ= − . We call ( )tµ  the mean value function 

of N . 

The mean value function ( )tµ  can be considered as an 

inner clock or operational time of the counting process N. 

Depending on the magnitude of ( )tµ  in the interval ( , ]s t , it 

determines the model for the random increment ( , )N s t . 

Since (0) 0N =  and (0) 0µ = , 

( ) ( ) (0)

Pois( (0, ))

Pois( ( ))

N t N t N

t

t

µ
µ

= −

=
∼                  (2) 

In summary, the claim numbers, N  for policies is Poisson 

distributed for the time interval (0, ]T  see (1). The 

parameters being linear in time provide ( )T Tµ λ= . 

Recall that the number of claims n  observed in a time 

interval (0, ]T , is distributed as: 

( )
( ) .

!

n
TT

Pr N n e
n

λλ −= =  

If there are observations 1 1[( , ), , ( , )]n nO n T n T= … , then the 

likelihood estimation will be: 

1 1

1

1

( )
( ; )

!

. . ,
!

 
i

i

n n

ii i

i i

n n
Ti

ii

n nn T
i

ii

T
L O e

n

T
e

n

λ

λ

λλ

λ = =

−

=

−

=

=

=
∑ ∑

∏

∏
 

with log-likelihood given by: 

1 1

1

( ; ) log

log

 

!

i

n n

i i

i i

n n
i

ii

L O T n

T

n

λ λ λ
= =

=

= − +

 
+  

 
 

∑ ∑

∑
 

and optimized by: 

1 1

1
log ( ; ) 0

n n

i i

i i

L O T nλ
λ λ= =

∂ = − + =
∂ ∑ ∑  

This implies that: 

1

1

ˆ

n

i

i

n

i

i

n

T

λ =

=

=
∑

∑
                (3) 

Note that: 

1 1

1 1

ˆ

n n

i i

i i

n n

i i

i i

E N T

E

T T

λ
λ λ= =

= =

  
  = = =
 

∑ ∑

∑ ∑
       (4) 

which is unbiased, and 

( )
1 1

2 2

1
1 1

Var

ˆ .

n n

i i

i i

n
n n

i
i i

i
i i

N T

Var

TT T

λ
λλ = =

== =

  = = =
 

   
   
   
   

∑ ∑

∑∑ ∑
     (5) 
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2.2.2. The Poisson Regression Model 

Insurance companies want to solve the problem of linking 

risk to explanatory variables (or covariates). This helps them 

to understand which customers are profitable and which are 

not and to charge differently in different customer segments of 

the corporation [8]. 

The method used in practice is Poisson regression where the 

claim intensity 
xµ  is ‘explained’ by a set of observable 

variables 1,..., mx x  through a relationship of the form: 

( ) 0 1 1log ...x
m mx xµ β β β= + + +           (6) 

with 0 ,..., mβ β  being coefficients and the link between µ  

and the explanatory variables 1( ,..., )mx x  allows us to 

discriminate customers according to the risk they represent. 

Poisson regression is a special case of Generalized Linear 

Models (GLM). Therefore, we can setup GLM model to 

estimate the mean vector µ (our expectation to the response). 

In doing so we have to estimate the parameters 

0( , , )mβ β β= … . This is done by maximum likelihood 

estimation and often requires numerical optimization such as 

the Newton-Raphson method. The likelihood function of n  

independent identically, distributed observations is, 

1

1

( , , | , ) ( | , )

n

n j j

j

L y y X f y Xβ β
=

… = ∏        (7) 

where f  is the probability density function of the response 

distribution. The values of 0( , , )mβ β β= …  that maximizes 

L  is called the maximum likelihood estimates. 

To simplify optimization, one usually takes the logarithm of 

L  to get the log likelihood, 

1 1

1

( , , | , ) log ( , , | , )

log ( | , )

n n

n

j j

j

l y y X L y y X

f y X

β β

β
=

… = …

=∑
 

As the logarithm is a monotonously increasing function the 

values of β  that maximizes L  are identical to those which 

maximize l . Methods for optimizing the log likelihood on an 

automated basis are implemented in most statistical software 

packages. The output from the GLM analysis is 

� �
0( ,..., )mβ β β= . 

2.2.3. The Non-Homogeneous Poisson Regression Model 

Consider the non-homogeneous Poisson process which is 

defined by the mean value function ( )tµ : 

 

with ,s t<  then the non-homogeneous Poisson process with 

covariates 1( ,..., )t
mx x x=  is: 

( , ] ( ) ,
t

x x

s
s t u du s tµ µ= <∫ . 

Assume separability entailing that all covariate classes have 

a common seasonal component, then: 

0 0( ) ( ) and ( , ] ( )
t

x x x x

s
t t s t u duµ λ τ µ λ τ= = ∫ . 

Poisson regression makes use of relationships of the form: 

( ) 0 1 1log ...x
m mx xλ β β β= + + + .          (8) 

The coefficients 0 ,..., mβ β  are usually determined by 

likelihood estimation. 

Consider a homogeneous model with ( ) 1,tτ =  it is then 

assumed that jn  is Poisson with parameter x
j jTµ λ=  

where xλ  are tied to covariates 1,...,j jmx x . The density 

function of jn  is then: 

( )
( ; ) ( )

!

jnx
j x

j j j
j

T
f n T exp T

n

λ
λ= − , 

or 

log ( , ) log( ) log( )

log( !) ,

x
j j j j j

x
j j

f n T n n T

n T

λ

λ

= +

− −
 

which is to be added over all j  for the likelihood function 

0( ,..., )mL β β . We may drop the two middle terms j jn T  and 

log( !)jn  since they are not dependent on xλ . The likelihood 

criterion then becomes: 

0

1

( ,..., ) log( )

n
x x

m j j

j

L n Tβ β λ λ
=

 = − ∑  

Where: 

0 1 1log( ) ...
x

j m jmx xλ β β β= + + + . 

This correspond to GLM Poisson regression and 

0( ,..., )mβ β β=  can be estimated by maximum likelihood 

estimation. The optimization is usually done by 

Expectation-Maximization (EM) algorithm. 

2.2.4. The Seasonal Intensity Model 

Claim intensities do not necessarily remain constant over 

time. They serve as an example of a seasonal variation that is 

present in many parts of the world due to changing weather 

conditions [8]. The time variation can be handled through a 

time-varying intensity function ( )tµ µ= . 

Consider now a non-homogeneous model and assume that 

we parametrize the seasonal model ( )tτ  by 

( , ] ( ) ;
t

s
s t u duµ µ= ∫
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0 0 0 0( ; , ) 1 sin(2 ( ))t tτ α τ α π τ= + −           (9) 

where 0 1t< <  represent time of normalized year. For the 

non-homogeneous Poisson process, consider the random 

variable 

1[ , , , | ( , )];0 1s e s e
N iN T T t t t t T t… ∆ = ≤ < < ≤ , 1, ,i N= … , 

where N  is the number of claims observed in the registration 

interval ( , )s et t  and 1,..., NT T  are the occurrence times. 

Note that both N  and 1,..., NT T  are random variables. From 

the model with intensity ( )tµ  parametrized as 

0 0 0( ; , )tλ τ α τ : 

{ }

1 0 0 0

0
0 0 0 0 0

1

Prob , ,... | ( , ), ( ) ( ; , )

( ; , ) ( ; , )
!

s e
n

nn

i I

i

n t t t t t t t

t exp t
n

µ λ τ α τ

λ τ α τ λ τ α τ
=

 ∆ = = 

 = − ∆ ∏
 

for 0,1,n = …  and [ , ]; 1, , ,s e
it t t i n∈ = …  with 

( ) ( )0 0 0 0; , ; ,

e

s

t

I
t

t t dtτ α τ τ α τ∆ = ∫ . 

Consider now the set of observations: 

1, , , | ( , )
j

s e
j j jn j j jO n t t t t t = … ∆ =

 
; 1, ,j m= … , 

the likelihood for O is: 

( ) { }

1

0
0 0 0 0 0 0 0 0

1 1

0
0 0 0 0 0

1 1

1

, , | ( ; , ) exp ( ; , )
!

( ; , ) exp ( ; , )

!

jj

m

j
jj

nnm

ij I j
jj i

n
nm m

ji I jm
jj i

j

j

L O t t
n

t t

n

λ
λ α τ τ α τ λ τ α τ

λ
τ α τ λ τ α τ

=

= =

= =

=

= × − ∆

  = × − ∆ 
  

∑

∏ ∏

∑∏∏
∏

 

with corresponding Log-Likelihood model: 

( )

( ) ( )

0 0 0 0

1 1

0 0 0

, , | log log !

log 1 sin 2 ( ) .

m m

j j

j j

m n m

ij j

j i j

L O n n

t t

λ α τ λ

α π τ λ

= =

≈ −

 + + − − ∆
 

∑ ∑

∑∑ ∑
 

Note that for ( )0 0 0 0( ; , ) 1 sin 2 ( )t tτ α τ α π τ= + − , we 

obtain: 

( ) ( )( )

( ) ( )

0 0 0 0

0 0

; , 1 si 2 ( )

sin

n

2 ( ) .

e

s

e

s

t

I
t

t
e s

t

t t dt

t t t dt

τ α τ α π τ

α π τ

∆ = + −

= − + −

∫

∫

 

Since we do not have ( , )s et t  available, only ,
s e

t t−  we 

approximate the last term to 0. Hence, 

( )0 0; , .e s
I t t t tτ α τ∆ ≈ − = ∆  

The approximate log-likelihood for O  is then: 

( )

( )

( )

0 0 0

0

1 1

0 0

0

, , |

log log !

log 1 sin 2 ( )

.

m m

j j

j j

m n

ij

j i

m

j

j

L O

n n

t

t

λ α τ

λ

α π τ

λ

= =

≈

−

 + + −
 

− ∆

∑ ∑

∑∑

∑

 

Note that the approximate log-likelihood is separable with 

respect to 0λ  and 0 0( , ) :α τ  

( ) �

( )
0 0 0

0
0

log , , |
0, so that: ,

m

j

j

m

j

j

n
L O

t

λ α τ
λ

λ
∂

= =
∂

∆

∑

∑
 

which is independent of 0 0( , )α τ  and identical to the 

classical unbiased estimator in (6), and recall that: 

�( ) �( )
( )

0
0 0 0

1

Vaand r .
m

j

j

E

t

λλ λ λ

=

= =
∆∑

 

The approximate MLE estimator for 0 0( , )α τ  is: 

� �( ) ( )
0 0

0 0 0 0
,

, arg max log 1 sin 2 ( ) ,

jnm

ji

j i

t
α τ

α τ α π τ
   = + −  
  
∑∑  (10) 

which must be determined by numerical optimization. Note 
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however that 0 0( , )α τ  is constrained by 0 00 , 1α τ< < , hence 

a brute force grid search on a [ ]f.ex 100 100× , grid can be 

used in the optimization. The MLE estimators � �0 0( , )α τ  are 

most likely not unbiased, but still we assume that the variance 

can be approximated by: 

�

�

� �( ) 1
0

0 0

0

,,Va Ir
α

α τ
τ

−
 ≈

 
 
   
 

 

where the 2 2×  matrix: 

� �( ) ( ) ( ) � �
0 0

2

0 0 0 0 ,
0 0

, log , | |
,

d
I L O

d α τα τ α τ
α τ

= −  

is the Fisher information matrix. This matrix must be 

determined numerically. 

3. Simulation Results and Discussions 

The claim data is presented in Section 2. It contains 

observations as follows: 

1

2

11 1 1 1 11 1

21 2 2 2 21 2

1 1

covariates claims exposure time acc.month

.
n

m n

m n

n nm n n n nn

x x n T t t

x x n T t t

x x n T t t

… …

… …

… …
⋮ ⋮ ⋮ ⋮

 

The claim process is modeled as a non-homogeneous 

Poisson process with time varying intensity dependent on the 

covariates: 

( )0 0 0( ) ;x xt tµ λ τ α τ= ×  

where 

( )0 0 1 1log ...x
m mx xλ β β β= + + +  

and 

( )0 0 0 0

0.5
; , 1 sin 2

12

t
tτ α τ α π τ − = + × × −  

  
. 

The factor 0
xλ  is an average intensity which is dependent 

on the covariate 1( ,..., )mx x x=  while the seasonal factor 

( )0 0; ,tτ α τ  capture varying intensities during the year. 

The parameter 0
xλ  is dependent on the parameters 

( )0 1, , , mβ β β β= …  which are regression parameters in 

Poisson regression, see (8). The factor ( )0 0; ,tτ α τ is 

dependent on the parameters 0 0( , )α τ  where 0α  is the 

amplitude of the seasonal variations and 0τ  is a phase shift 

parameter. 

Note that t  represent month number, and that the shift -

0.5  is introduced to center the observations in the actual 

month. The challenge is to estimate the model parameters β , 

and 0 0( , )α τ  from the claim observations. In Section 2 a 

maximum approximate likelihood estimator is developed for

β  and ( )0 0,α τ . The estimators are separable in the sense 

that β  and ( )0 0,α τ  can be estimated separately. We will 

first discuss the estimation of the seasonal component 

( )0 0; ,tτ α τ , hence the model parameters 0 0,α τ , thereafter 

we will discuss estimation of 0
xλ  hence ( )0 1, , , mβ β β β= …  

3.1. Estimation of Seasonal Component 

The MLE estimator for ( )0 0,α τ  is developed in (10): 

� �

0 0

0 0 0
, 01 1

0.5
( , ) arg max log 1 sin 2

jnm
ij

j i

t

α τ
α τ α π

τ= =

   −  
 = +            

∑∑  

The covariance matrix for � �0 0( , )α τ  can be approximated 

by the inverse Fisher information matrix. Both the estimate 

and associated covariance matrix must be determined 

numerically. 

In order to explore the reliability of the estimator we will 

first conduct a small simulation study. Thereafter we will 

estimate ( )0 0,α τ  based on our data. We use a MATLAB 

computer code for both the simulation study and the real data. 

3.1.1. Test Study 

The simulation study is designed as follows: 

Define model by assigning 0 0( , )α τ  defining: 

( )0 0 0( ) 1 sin 2 ( ) ;t tµ λ α π τ = × + × × −  0 1.t≤ ≤  

Note that the study is invariant to average intensity, we use 

0 10λ = . The following parameter values are used. 

0 0.8,α =  0 0.2τ =  

0 0.5,α =  0 0.5τ =  

Simulate synthetic observation - n  series: the algorithm 

for simulation from a non-homogeneous Poisson process is 

based on rejection sampling, 

( )1,...; ; 1,..., .,
jj j jnn t t j n=  

Estimate 0 0( , )α τ  based on synthetic observation with 

20n =  and 100n =  by using the MLE estimator given 

above. 

Estimate the Fisher information matrix and compute the 

covariance matrix of � �0 0( , ).α τ  

Simulation 1 
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Initial parameters ( ) ( )0 0, 0.8,0.2α τ = , and we consider 

two cases, one with 100n =  and one 20n = . The two cases 

demonstrate the dependence of the covariance matrix on the 

number of observations. 

Figure 1 display realizations from the non-homogeneous 

Poisson model with 100n = . Recall that 0 10λ = , hence the 

expected number of claims in a year is 10, moreover the 

parameter 0 0.2τ =  entails that the highest intensity is at 

0( 0.25) 0.45τ + = . These features can be observed, the 

estimates of the parameters are: 

� �( ) ( )0 0, 0.81,0.21α τ =  

with covariance matrix 

2

2

0.010 0.000
.

0.000 0.033

 
 
 
 

 

The estimates with joint 0.95  confidence region is 

displayed in Figure 3, left display. Figure 2 display 

realizations from the non-homogeneous Poisson model with 

20.n =  The figure is similar to Figure 1, but the total number 

of observations is smaller. The estimates of the parameters are: 

� �( ) ( )0 0, 0.84,0.22α τ =  

with covariance matrix 

2

2

0.020 0.000
.

0.000 0.080

 
 
 
 

 

The estimates with joint 0.95  confidence region is 

displayed in Figure 3, right display. 

The joint 0.95  confidence regions for 0 0( , )α τ  are 

displayed in Figure 3. Note that the region is smaller for 

100n =  than for 20n =  of course. Note that the true values 

are 0 0( , ) (0.8,0.2),α τ =  which fall just on the border of the 

0.95  confidence region 

Simulation 2 

Initial parameters ( )0 0( , ) 0.5,0.5α τ = and two cases with 

100n =  and 20.n =  Figure 4 display observations for 

100n =  in a similar format as Figure 1, for other parameter 

values. In this case the maximum intensity is at 

( )0 0.25 0.75τ + =  and there is less difference between 

max/min intensity than in Figure 1 since 0α  is smaller. 

The estimates are: 

� �( ) ( )0 0, 0.54,0.50α τ =  

with covariance matrix 

2

2

0.014 0.000
.

0.000 0.040

 
 
 
 

 

The joint 0.95  confidence region is presented in Figure 6, 

left display. Figure 5 display results for 20n =  and 

correspond to Figure 4. 

The estimates are: 

� �( ) ( )0 0, 0.54,0.50α τ =  

with covariance matrix 

2

2

0.030 0.000
.

0.000 0.090

 
 
 
 

 

The 0.95  confidence region is larger than for 100,n =  

see Figure 6, right display. The joint 0.95  confidence region 

for 0 0( , )α τ  are displayed in Figure 6 and we observe that the 

true values 0 0( , ) (0.50,0.50)α τ =  falls well within the region 

for 20,n =  but not for 100n =  where 0α  falls outside the 

region [0.512,0.568] . This may happen for one random 

sample. 

3.1.2. Case Study: Ethiopian Claims Observation 

The observations are presented in Section 2, and the 

monthly variations are displayed in Figure 7. There appears to 

be higher claim intensities during January-February and lower 

during August-September. It is unclear whether these 

variations are statistically significant. 

The seasonal model for claim intensity is: 

0 0 0 0

0.5
( ; , ) 1 sin 2

12

t
tτ α τ α π τ − = + × −  

  
 

where 1 12t≤ ≤  is month number of claim, and the 

correction factor 0.5 /12  is used to center the observations in 

each month. The estimator for 0 0( , )α τ  is discussed in 

Section 2 and presented in (10). By introducing the real 

observations, we obtain: 

�

�

0

0

0.25

0.87

α

τ

   
  =      

 

and 

�

�

2 2
0

2 2
0

0.076 0.028
Var .

0.028 0.106

α

τ

   
  ≈  

  
  

 

The corresponding joint 0.95 confidence region for 

0 0( , )α τ  is displayed in Figure 8. Note that for the amplitude 

0α the approximate 0.95  confidence interval is [ ]0.10,0.40  

which does not include 0 0α = . Consequently, the hypothesis 

0 0α =  versus 0 0α ≠  will be rejected at a 0.05  

significance level. This entails that the seasonal variations are 

significant. The best estimate is �0 0.25α = , which entails that 

the claim intensity varies between 00.75 xλ  and 01.25 xλ  
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during the year, hence by 25%± . 

 

Figure 1. Parameters (0.8, 0.2) and n=100, Ten realizations (left); histogram of observations (right). 

 
Figure 2. Parameters (0.8, 0.2) and n=20, Ten realizations (left); histogram of observations (right). 

 
Figure 3. Joint 0 0( , )α τ − 0.95 confidence regions with 0 0( , ) (0.8,0.2),α τ = , n=100 (left); n=20 (right). 
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Figure 4. Parameters (0.5, 0.5) and n=100, Ten realizations (left); histogram of observation (right). 

 
Figure 5. Parameters (0.5, 0.5) and n=20, Ten realizations (left); histogram of observation (right). 

 
Figure 6. Joint 0 0( , ) 0.95,α τ =  confidence regions with 0 0( , ) (0.5,0.5),α τ = n=100 (left); n=20 (right). 

The phase shift 0τ  has approximate 0.95  confidence 

interval [ ]0.65,  1.09 . Note that 0τ  is periodic with period 

[ ]0,  1  due to the sinuosity, hence 0 0τ =  is inside the 

interval and the phase shift is not significant to the 0.95  level. 

The best estimate is however, �0 0.87τ = , which entails that 

maximum intensity occurs according to the model, 



 International Journal of Theoretical and Applied Mathematics 2021; 7(6): 92-103 101 

 

( )0.13 0.25   0.12− + =  into the year, that is in mid-February 

while minimum intensity occurs ( )0.12 0.50   0.62+ =  into 

the year, i.e. mid-August. 

These extremes can be compared with the display in Figure 

7, and they are believable. The high numbers of claims in 

January and July complicates the picture, however. 

To summarize the results for the seasonal variation: 

According to a sinuous yearly variational model, the 

maximum number of claims occurs in February, while the 

minimum occurs in August. The extremes vary 25%±  from 

the average intensity. Hence it appears as sunny, hot weather 

with many cars, baggage. bicycles, people and animals in the 

streets causes more accidents than rainy, cold weather with 

few Traficant. Hence, Traficant intensity seems to cause more 

accidents than bad driving conditions. 

 
Figure 7. Histogram of Ethiopian claims observation. 

 

Figure 8. 0.95 confidence region for 0 0( , )α τ  of Ethiopian claims 

observations. 

3.2. Estimation of Covariate Dependency 

The MLE estimator for ( )0 ,..., mβ β β=  is developed in 

Section 2. 

1

ˆ argmax log

n
x x

j j j j

j

n Tββ λ λ
=

   = −  
  
∑  

with 

0 1 1log( ) ... .
x
j j m jmx xλ β β β= + + +  

This constitutes a GLM Poisson regression model with 

observation specific intensity. The GLM package in R  can 

be used for solving this optimization problem. Poisson models 

are usually fitted empirically by means of data which are 

counts of claims 1,..., nn n  from n  policies that have been 

under exposure 1,..., nT T . The data are an extract of three 

years for which the number of claims is 157 with total 

exposure 1 ... nT T+ + =844 automobile years. This yields as 

average yearly claim intensity: 

1

1

157ˆ 0.186.
844

n

i

i

n

i

i

n

T

λ =

=

= = =
∑

∑
 

The estimate is unbiased with variance determined by: 

� 2

1

ˆ 0.186ˆVar( ) 0.014 .
844n

i

i

T

λλ

=

= = =

∑
 

This is known to be the most accurate estimator and even 

applies when the same policy holder appears under different 

jT . 

The driver’s age has four categories. Among these categories, 

drivers with in the age group 26 35−  are responsible for the 

largest number of claims 49% . Drivers with age 20 25−  

have the smallest share in all the four measurements, 6.8% . 

There are 93.6%  males and 6.4%  females. 

There are two explanatory variables, sex and age. The 

former is represented by 1x . The latter has four classes and is 

split into three variables ( )2 3 4, ,x x x . The most obvious way 

of feeding them into regression model is to write: 

0 1 1 2 2 3 3 4 4log( )
x
j j j j jx x x xλ β β β β β= + + + +  

with 

1 2

3 4

1 Female 1 Age 26-35
, ,

0 else 0 else

1 Age 36-45 1 Age 46+
and .

0 else 0 else

j j

j j

x x

x x

 
= = 
 

 
= = 
 
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Hence, Male/Age 20 25−  is defined as the reference class. 

As an example of the Poisson regression model, suppose 

owners j  and i  are of the same age class, for example Age 

20 25− , the former being a Male and the other a Female, 

then: 

{ }
{ } { }0 1

1
0

exp
exp .

exp

x
i

x
j

β βλ β
βλ
+

= =  

Hence, the relative increase in intensity between Male and 

Female is { }1exp β . By using the Poisson regression, we can 

estimate the model parameters � �( )0 4
ˆ , ,β β β= … , see Table 4. 

Based on the results of R , the regression equation consisting 

of the variables in Table 4 is given by: 

1 2

3 4

log( ) 3.026 0.002 0.629

1.180 0.178 .

x
j j j

j j

x x

x x

λ = − − −

− −
 

Note that for the constant coefficient 0β  the approximate 

0.95 confidence interval is [ 3.649, 2.402]− −  which does not 

include 0 0β = . Consequently, the hypothesis 0 0β =  

versus 0 0β ≠  will be rejected at a 0.05  significance level. 

This entails that the constant coefficient is significantly 

different from zero. 

Table 4. Estimates of regression coefficients in Poisson regression. 

Nclaims Coef. [95% Conf. Interval] 

Sex -0.0022 -0.649 0. 654 

Age   

26-35 -0.629 -1.302 0. 0446 

36-45 -1.180 -1.903 -0. 4573 

46+ 0.1776 -0. 9125 0. 5574 

Intercept -3.026 -3.649 -2.403 

Female drivers seem to have lower claim rates than male 

drivers since �1 0.002β = − . The p-value of �1β  is much larger 

than 0.05 , hence the hypothesis 1 0β =  versus 1 0β <  

cannot be rejected, and the lower claim rate for female drivers 

is not significant on 0.95  level. 

The coefficient for Age 36 45− , 3β  has approximate 

0.95  confidence interval [ 1.903, 0.457],− −  which does not 

include 3 0β = . Consequently, the hypothesis 3 0β =  

versus 3 0β ≠  will be rejected at 0.05  significance level. 

This entails that, 3 1.180β = −  is significant and drivers in 

Age 36 45−  has lower claim intensity than drivers in Age 

20 25− . 

When we look at this analysis, we observe that only Age 

36 45−  has significantly different claim rate than Age 

20 25− , since the other age groups appear as insignificant at 

0.05  level. 

To summarize the influence of the covariates on the number 

of claims: Female and male drivers do not have significantly 

different claim rates. But the observations do indicate that the 

female rate is slightly lower. There is age-dependence in the 

claim rate, but only Age 36 45−  has significantly lower rate 

than Age 20 25− , the rate of the former is about one-third of 

the latter. 

3.3. Summary of Claim Intensity Model 

From the discussions above, including evaluation of 

significant effects, we obtain: 

{ }1 4 3( | ,..., ) exp 3.02 1.18

0.5
1 0.25sin 2 0.87

12

; [1,...,12]

t x x x

t

t

µ

π

= − − ×

  − + −   
    

∈

 

where t  is month number. This model appears as the best 

intensity model for a non-homogeneous Poisson process for 

claim occurrences for a customer with characteristics 

( )1 4,...x x . 

4. Conclusions and Recommendations 

Poisson process theory is used to analyze insurance claim 

data from the Ethiopian Insurance Corporation, Hawassa 

district. The seasonal variations are modeled through a 

non-homogeneous Poisson process, while customer covariates 

like gender and age are included through Poisson regression in 

a GLM setting. A factorial intensity model is used, which 

separate average claim intensity dependent on covariates, and 

seasonal variations parametrized as a sine-function. The 

approximate maximum likelihood criterion will also separate 

average claim intensity and seasonal components, hence 

simplify inference. 

Two covariates are used: gender and age, the latter is 

discretized into four age classes. Relative to claim intensity for 

Age 20-25 only intensity for age 36-45 deviates significantly, 

by being only about one third as large. Relative to male claim 

intensity, the female intensity is not significantly smaller. 

There are indications that it might be slightly smaller, however 

and this should be studied closer. 

There is a significant seasonal variation, 25%±  of the 

year-average claim intensity. The highest claim rate is in 

February, while minimum rate is observed in August. It 

appears as if heavy traffic causes more claims than poor 

driving conditions. 

It can be learnt from this study that in addition to the efforts 

being made to reduce the frequency of claims in general, 

special attention should be given to reduce the severity of 

accidents by taking the following into consideration: 

Strict control and management of vehicle movement is 

necessary especially in the dry season with many Traficant’s, 

for example, during festivals or other holidays. The same 

would be required for areas around schools and religious 

institutions. 

Further studies should be made on the collection of claim 

data by considering detail and accurate information on various 

variables. 

The insurance corporation would benefit greatly by storing 
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the statistics on digital form, such that statistical analysis is 

facilitated. 
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