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Abstract: The main purpose of this work is to describe all the zero-centered solutions of the second order linear singular 

differential equation with Dirac delta function (or it derivatives of some order) in the second right hand side in the space K’. 

All the coefficients and the exponents of the polynomials under the unknown function and it derivatives up to second order 

respectively, are real and natural numbers in the considered equation. We conduct investigations for both the euler case and left 

euler case situations of this equation, when it is fulfilled some particular conditions in the relationships between the parameters 

A, B, C, m, n and r. In each of these cases, we look for the zero-centered solutions and substitute the form of the particular 

solution into the equation. We then after, determinate the unknown coefficients and formulate the related theorems to describe 

all the solutions depending of the cases to be investigated. 
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1. Introduction 

The importance of differential equations is well known as 

these equations describe many physical phenomena in our 

daily life. One also understand and know that it is not easy, in 

some specific cases, to solve certain kind of differential 

equations even those of the first order. Solving differential 

equations in the spaces of generalized functions such as K’ 

and 	�S��� ' is always challenging, and various scientific 

researches were devoted to such topic. 

We recall that the theory of distributions was established by 

the imminent french mathematician Laurent Schwartz in 1945 

posing the ideas which already in germ in the works of the great 

russian mathematician Sobolev in the 1930s. It is also well 

known that physics extended in space by functions of several 

variables and the expression of the laws of physics in terms of 

partial differential equations have been a great advance in the 

study of these phenomena. Talking to some specific notions, we 

know that sometimes even the concept of weak derivatives is 

not sufficient, and the need arises to define derivatives that are 

not functions, but are more general objects. Some measures and 

derivatives of measures will enter. We underline the fact that, for 

the purpose of setting up the rules for a general theory of 

differention where classical differentiability fails, Schwartz 

brought forward around 1950 the concept of distributions: a 

class of objects containing the locally integrable functions and 

allowing differentiations of any order. 

In many scientific works it is mentioned that the 

distributional solutions, specifically as a series of Dirac delta 

function and its derivatives, have been used in several areas 

of applied mathematics such as the theory of partial 

differential equations, operational calculus, and functional 

analysis; in Physics such as quantum electrodynamics. We 

advice readers to see for more details the papers [15–16]. 

In our previous works, we have already used the Fourier 

Transform and its inverse applied to singular linear 

differential equation of some forms to describe and obtain all 

the generalized-function solutions of the considered equation, 

see [6, 11, 13]. In the same direction, we can quote among 

many others, for the generalized solutions, Nonlaopon et al. 

[17] used the Laplace transform technique to study some 

differential equations satisfying the differential equation. 

�	��	���� 
 ���	�
���� 
 ����� � 0, 
where �, � ∈ �, ����	� � 2, ���	� ∈ � . Opio et al. [18] 

studied those of the differential equation with polynomial 

coefficients of the form. 
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�	��	���� 
 ��−1���	�
���� 
 ����� � 0, 

where �, �, � ∈ ℕ, � ≥ 2, ���	� ∈ ℝ. 
Here we consider the following singular linear differential 

equation. 

A"#�′′(") + %"	�′(") + &"'�(") = (())("),      (1) 

where *, %, & ∈ ℝ, �, � ∈ ℕ, +, , ∈ ℕ ⋃.0/, ���	�(") is the 

unknown generalized function, in the space of generalized 

functions 0′. 
We focus our investigations in the situations called Euler 

case and left Euler case when it is realized respectively the 

conditions m=r+2, n=r+1 for the nonhomogenous equation 

and m=n+1, r>n-1 for the homogenous equation. 

This is the first step we undertake to see in which way, we 

can generalize step by step, the results of researches obtained 

in the previous case studied for a linear singular differential 

equation of first order. See [6]. 

We structure this paper as follow: in section 2, we recall 

some fundamental well known concepts of distributions 

(generalized functions). Section 3 presenting the main results 

of the paper is firstly discribing, the Euler case and, secondly 

is devoted properly to the investigation of the solvability 

(existence of zero-centered solutions) of the considered 

homogenous equation in the situation called the left Euler 

case. We conclude our paper in section 4. 

2. Preliminaries 

Before we proceed to our main results, the following 

definitions and concepts well known from the theory of 

generalized functions are required. We also recall the notions 

of Fourier Transform and it inverse applied when looking for 

solutions of differential equations in our previous researches,  

for more details see [6]. 

By the way, we briefly review this important notions of 

Fourier transform, its properties, and generalized function 

centered at a given point (for a detailled study, we refer to [2, 

6, 9, 14]). We recall that K is denoted the space of test 

functions, of finite infinitely differentiable on R functions and 

K’ the space of generalized functions on K. 

For the function 1(�) ∈ 0, through	81 = 1	9  we noted the 

Fourier transform defined by the formula. 

(81)(") = 1	9 (") = : 1(�);<=>��?@�@ ,	            (2) 

We define the Fourier transform of the generalized 

function A ∈ 0′ by the rule (Parseval equality) 

(A,B 1	9 ) = 2C(A, 1).	                           (3) 

For the Fourier transform of generalized function, many 

properties are conserved as those taking place for Fourier 

transform for test functions, and particularly formulas of 

relationships between differentiability and decreasement. 

From them in particular it follows that 

8D(())(�)E = (−�")), + ∈ ℕ⋃.0/.                (4) 

Next, we need the following assertions which can be found 

with their proofs in the books for theory of generalized 

functions, for example see [2, 3, 9]. 

Theorem 2.1 If A, F	 ∈ 0′	���	A′ = F′	�ℎ;�	A − F = &. 
Theorem 2.2 Let *(") ∈ &@(ℝ
).  The differential 

equation �′ = *(")�  in the space K’ does not admit other 

solutions which are not classical solutions. 

Definition 2.1 Generalized function A ∈ 0 ' is called 

centered function at the point "G or "G-centered function, if (A, 1(")) = 0 for all 1(") ∈ 0 such "G ∈H 	IJ��1. 

Theorem 2.3 let A ∈ 0′ zero-centered generalized function. 

Then there exist � ∈ ℕ⋃.0/ such that 

A(") = ∑ &L((L)("),#LMG                           (5) 

where &L are some constants. 

Lemma 2.1. Let N(") ∈ &@(ℝ
). Then it takes place the 

following formula. 

N(")((O)(") = ∑ (−1)L&OLN(0)L((O�L)(")OLMG          (6) 

As consequence from lemma 2.1 when N(") = "P , we 

obtain the following assertion. 

Lemma 2.2. Let k, s ∈ ℕ ⋃.0/. Then it is holding place. 

"P((")()) = S 0, + < U;
(�
)W	)!
()�P)! 	((")()�P) , + ≥ U.	            (7) 

The proof of this lemma can be found in some special 

mathematical books related to the theory of distributions, see 

also [2, 3, 9]. 

Sometime we used in our investigations the following very 

important expression	Y(Z)(=)	
=[  which we are understanding in 

the sens of the following definition. 

Definition 2.2 The quotient (the division) of an sth-order 

derivative of the Dirac delta function (())(")  by an nth-

power of "	�. ;	"		 noted 
Y(Z)(=)	

=[  is called a generalized 

function �(") ∈ 0′ that satisfies in the space 0′ the equality. 

"	�(") = (())(")	                               (8) 

i.e 

\"	�("), 1(")] = ^(())("), 1(")_ , 1(") ∈ 0        (9) 

From lemma 2.2 and definition 2.2, we deduce the following 

formula for the computation of the generalized function 
Y(Z)(=)	

=[ . 

Lemma 2.3 Let n ∈ ℕ, + ∈ ℕ ⋃.0/. Then it is holding place 

the following formula. 

Y(Z)(=)	
=[ = (�
)[)!

()?	)! (()?	)(") + ∑ &P((P�
)(")	PM
 	          (10) 

where &P, U = 1, . . . . . . � are arbitrary constants. 

For the proof of this lemma it is sufficient to apply the 

definition 2.2, the Fourier transform to both members of the 

equation (8) and, next applying the inverse Fourier transform, 

we reach to the needed result. 
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3. Mains Results 

A. The Euler case. 

In this section we consider the following second order 

linear singular differential equation: 

A"#	�′′�"� 
 %"		�′�"� 
 &"'	��"� � (�)��"� 

where *, %, & ∈ ℝ, �, � ∈ ℕ, +, , ∈ ℕ ⋃.0/, �(") − the 

unknown generalized function from K’. 

We have the most simple case of the equation (1) when the 

relationship between parameters �, �	���	, holds: 

� = , + 2, � = , + 1.                       (11) 

Here, we formulate the following theorem related to the 

equation (1) in the case called Euler case. 

Theorem 3.1: Let * ∙ % ∙ & ≠ 0, �, � ∈ ℕ, +, , ∈ ℕ ⋃.0/. 
For the existence of the zero-centered solution of equation 

(1) in the space of generalized functions K’, it is necessary 

and sufficient that 

(, − � + 1)b + (, − � + 2)b + (&(, + +)! − %(, + + + 1)! + *(, + + + 2)!)b	 ≠ 0 

Proof: The proof of this theorem is deduced as a particular case of the proof of similar Theorem studied in [6]. 

Now, let stipulate this following result. 

Theorem 3.2 Let* ∙ % ∙ & ≠ 0, �, � ∈ ℕ, +, , ∈ ℕ ⋃.0/ 	���	AJcA�cc;�	�ℎ;	de�����e� 

� = , + 2, � = , + 1, & − %(+ + , + 1) + *(+ + , + 2)(+ + , + 1) ≠ 0.                             (12) 

Then the general zero-centered solution of the equation (1) has the following form: 

�(") = (�
)f	)!
('?))!gh�i()?'?
)?j()?'?b)()?'?
)k (()?')(") + ∑ &L((L)(")'�
LMG                                   (13) 

in the case, when 

& − %(l + , + 1) + *(l + , + 2)(l + , + 1) ≠ 0	∀l ∈ ℤ?.                                        (14) 

If there exists at least one l∗
	, l∗b ∈ ℤ?/.+/ such, that ob(l∗<) = 0, � ≤ 2, �ℎ;�	�ℎ;	+ecJ��e�	ℎ�+	�ℎ;	Aecce���F	Ae,�: 

�(") = (�
)f	)!
('?))!gh�i()?'?
)?j()?'?b)()?'?
)k (()?')(") + ∑ &L((L)(") 	 + 	 ∑ &L∗q	?'(^L∗q	?'_(")	L∗q	∈rsO	tu(L) .'�
LMG         (15) 

The proof can be deduced analogously from Theorem 1.2 

of a more general case see g6k. 
Next, we consider a more complicated case when it is 

violated at least one of the two conditions (12). 

First of all let consider the case � = , + 2	���	� ≠ , + 1 

and, one of the situation to be investigated we call this case 

as following way. 

B. The left Euler case. 

In this section we consider the case � = � + 1, , > � −1  and call this situation of the equation (1) left Euler 

case. 

We pay attention to the possibility of the existence of the 

solutions of the homogeneous equation (1) different to the 

trivial �(")L = ((L)("), l = 0, 1, . . . . . . , � − 2. 
The general form of the zero-centered solutions of the 

homogeneous equation (1) is brought downstair in the 

following theorem: 

Theorem 3.3 Let 	* ∙ % ∙ & ≠ 0, cG - a number defined by 

(25), m, n	∈ ℕ, , ∈ ℕ ⋃.0/	��� fulfilled the condition. 

� = � + 1, , > � − 1,	                    (16) 

then the homogeneous equation (1) admit zero-centered 

solution of the following form: 

�(")L=∑ (−1)(	�'�
)O		&O 	 ∙ ∏ gy∗?<(	�
�')?'k!
gy∗?<(	�
�')?	k!(i�jgy∗?)(	�
�')?	?
k) ((y∗?(O?
)(	�
)�O')(") +O<M
 	((y∗?	�
)("),OzOM
      (17) 

Where {∗ is such that , − (� − 1) − {∗ ≤ 0	��� 

% − *({∗ + � + 1) = 0.	                                                                     (18) 

Proof. We look for the solution in the following way: 

�(") = ∑ |O((y∗?(O?
)(	�
)�O')(") + ((y∗?	�
)(")	OzOM
                                                 (19) 

with unknown coefficients |O for the moment, and cG- an interger number sufficiently large. 

For simplicity of calculations let note as follow. 

}� = A"	?
	�′′ + %"		�′ + &"'	� = 	0,                                                            (20) 

}
� = A"	?
	�′′ + %"		�′,                                                                     (21) 
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}b� � &"'�.	                                                                                      (22) 

Next, let us calculate immediatly. 

}(�y∗?	�
��"� � A"	?
(�y∗?	?
��"� 
 %"	(�y∗?	��"� 
 &"'	(�y∗?	�
��"� �
~�−1�	?
	* �y∗?	?
�!

y∗! 
 �−1�		% �y∗?	�!
y∗! � (�y∗��"�+�−1�'	& �y∗?	�
�!

�y∗?	�
�'�! (�y∗?	�
�'��"�=�−1�		 �y∗?	�!
y∗! g% − *�{∗ 
 � 


1�k(�y∗��"�+�−1�'	& �y∗?	�
�!
�y∗?	�
�'�! (�y∗?	�
�'��"�. 

Consequently, taking into account the condition (18) we obtain: 

}(�y∗?	�
��"� � �−1�'	& �y∗?	�
�!
�y∗?	�
�'�! (�y∗?	�
�'��"�,                                              (23) 

Now let calculate the following }(�y∗?�O?
��	�
��O'��"�. For the beginning let start: 

}
(�y∗?�O?
��	�
��O'��"�=~*�−1�	?
 	g�y∗?�O?
��	�
��O'?b�k!
gy∗?O�	�
�'�k! 
 %�−1�	 gy∗?�O?
��	�
��O'?
k!

gy∗?O�	�
�'�k! � (\y∗?O�	�
�'�]�"�.       (24) 

Now, let the most value of the number c � cG. Then for the accomplishement of (24) for all c � 1, . . . . . . , cG	 it is necessary the 

fulfillement of the relationship: 

{∗ + (cG + 1)(� − 1) − cG, + 2	 − (� + 1) ≥ 0 

or that is the same as 

{∗ + cG(� − 1 − ,) ≥ 0	 ⟹ cG ≤ y∗'�(	�
)  

cG + 1 > y∗'�(	�
). 
That means, the maximum value of 		cG = ~ y∗'�(	�
)�.                                                                                      (25) 

Next, when calculating }b�, verifiying the same assertion we may easily find that 

{∗ + (c + 1)(� − 1) − c, − , ≥ 0,                                                                      (26) 

so that we can define under which c it is true (3.16) which we can rewrite in another way as 

c+1≤ y∗'�(	�
)                                                                                       (27) 

From (27) it is clear that the relation is accomplished by virtue of (26) for c = 1, . . . . . . , cG − 1 and not accomplished, for c = cG, that means. 

"'	((y∗?(Oz?
)(	�
)�Oz')(") = 0,                                                                          (28) 

for that value of cG, and in the summation one term disappear. Therefore we have: 

}b((y∗?(O?
)(	�
)�O')(") = (−1)'	& gy∗?(O?
)(	�
)�O'k!
gy∗?(O?
)(	�
�')k! (\y∗?(O?
)(	�
�')](").  

Next by combining all the calculations we obtain: 

}� =∑ |O �*(−1)	?
 	gy∗?(O?
)(	�
)�O'?bk!
gy∗?O(	�
�')k! + %(−1)	 gy∗?(O?
)(	�
)�O'?
k!

gy∗?O(	�
�')k! 	�OzOM
 (\y∗?O(	�
�')](") +
∑ |O(−1)'	& gy∗?(O?
)(	�
)�O'k!

gy∗?(O?
)(	�
�')k! (\y∗?(O?
)(	�
�')](") + (−1)'	& (y∗?	�
)!
(y∗?	�
�')! ((y∗?	�
�')(").	Oz�
OM
   

Now performing in the second summation the changing of index by c + 1 ⟶ c, we find: 

}� =∑ |O(−1)		 gy∗?(O?
)(	�
)�O'?
k!
gy∗?O(	�
�')k! ∙ D% − *g{∗ + (c + 1)	(� − 1) 	 − c, + 2kE(\y∗?O(	�
�')](") +OzOM
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∑ |O�
�−1�'	& gy∗?O�	�
���O�
�'k!
gy∗?O�	�
�'�k! (\y∗?O�	�
�'�]�"� 
 �−1�'	& �y∗?	�
�!

	gy∗?�	�
�'�k!	 (�y∗?	�
�'��"�.	OzOMb 	             (29) 

The equality }� �0 by vritue of the linear independance of the delta distributions leads us to the recurrent algebraic system 

for the determination of the indertiminate coefficients |O. 

��
�
�� |O�−1�		 gy∗?O�	�
�'�?	k!

gy∗?O�	�
�'�k! ∙ g% − *�{∗ 
 c�� − 1 − ,� 
 � 
 1�k �
�−1�'�
	&|O�
 gy∗?O�	�
�'�?'k!

gy∗?O�	�
�'�k! , c = 2, . . . . . . , cG,
|
(−1)		 gy∗?	�
�'?	k!

gy∗?	�
�'k! g% − *({∗ + � − 1 − , + � + 1)k = (−1)'�
& (y∗?	�
)!
(y∗?	�
�')! ..

  

Finally, rewrite these relationships following way: 

|O = (−1)	�'�
	& g{∗ + c(� − 1 − ,) + ,k!g{∗ + c(� − 1 − ,) + �k! ∙ 
� 


i�jgy∗?O(	�
�')?	?
k� |O�
,                                                                 (30) 

c = 2, . . . . . . , cG; 	��� 

|
 = (−1)	�'�
	& gy∗?	�
�'?'k!
gy∗?	�
�'?	k! ∙ 


gi�j(y∗?	�
�'?	?
)k,                                               (31) 

Immediatly note that the right hand side in (30) - (31) are 

similar and therefore from these recurrent relationships, it is 

easy to obtain the general form of the coefficients |O. That 

allows us writing the result defined by formula (17). 

The theorem is proved. �ℎ;e,;�	3.4.	Let * ∙ % ∙ & ≠ 0, �, � ∈ ℕ, , ∈ ℕ ⋃.0/ and 

fulfilled the condition (16)	then the homogeneous equation 

(1) admit zero-centered solution of the following form: 

�(") = ∑ &L((")(L)	�bLMG                         (32) 

�ℎ;�	��	�+	,;�c��;�	�ℎ;	de�����e�	% − *({∗ + � + 1) ≠ 0 

∀{∗ ∈ ℤ?;                                   (33) 

or 

�(") = ∑ &L((")(L)	�bLMG + &y∗?	�
((")(y∗?	�
),     (34) 

if ∃{∗ ∈ ℤ? such that, 

% − *({∗ + � + 1) = 0,                       (35) 

and more 	{∗ + � − 1 − , < 0; 
Or 

�(") = ∑ &L((")(L)	�bLMG + � ~((")(y∗?	�
) + ∑ (−1)(	�'�
)O		&OOzOM
 ∙ ∏ gy∗?<(	�
�')?'k!gy∗?<(	�
�')?	k!(i�jgy∗?)(	�
�')?	?
k) ((y∗?(O?
)(	�
)�O')(")O<M
 �,  
if {∗ ∈ ℤ?  such that it is realized (35), and more 	{∗ + � −1 − , ≥ 0 with α an arbitrary constant. 

The proof in the case c) is deduced from theorem 3.3, in 

the case b) from the fact that }((y∗?	�
)(") = 0 , by the 

realization (35) and 	{∗ + � − 1 − , < 0  and finally in the 

case a) it is obvious. 

4. Conclusion 

In this paper we have completly investigated the existence of 

the zero-centered solutions of the equation (1) in both cases 

called: Euler and left Euler cases.  

We have look for the wanted solutions by replacing 

initialy the particular solution expressed with unknown 

coefficients into the initial equation (1) and, therefore we 

obtain in theorem 3.1 the necessary and sufficient 

conditions for the existence of zero-centered solutions of 

the equation in the euler case. Next, it is described all the 

solutions in the previous case within theorem 3.2 in 

connexion of the two possibilities mentionned. 

Investigating left euler case, we bring out the existence of 

non-trivial solutions in the form of Dirac delta functions as 

well as it derivatives up to the order � − 2. The main results 

obtained and concerning this case, depending of the 

relationships between the parameters, are formulated in 

theorems 3.3 and 3.4.  

From the obtained results, it is clear that it is challenging to 

try to imagine how to generalize such investigations of similar 

type of differential equation up to the general cases call left 

Euler case or right Euler case when there are realized the 

conditions: 	∑ �<O<MG "Pq�(<)(") = (())(")  with U< = U<�
 +1; 	� = 1. . . . . . , c − 1	but	UO ≠ UO�
 + 1 i.e UO > UO�
 + 1 or UO < UO�
 +1. 
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