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Abstract: Our aim in this article is to establish the principles results of a fixed point theorems for multivalued mappings
of Krasnoselskii type setting in general classes Mönch’s type. We seek to do that, we introduce and recall some theorems to
aid our study. The beginning of this work has been introduced some properties of the measure of weak noncompactness under
the weak topology and the definitions of countably condensing operators. We have shown that the operator H(S) is relatively
weakly compact by using some properties of weak topology. We investigate that all hypotheses guarantee that the operator
(B + H)(S) is relatively weakly compact and than simply to apply Himmelberg’s theorem in Banach spaces. We extended
two fixed point theorems for weakly sequentially upper semicontinuous mappings subjected the perturbation map satisfies the
Mönch’s type and we obtain our results in the second theorem with a less restrictive hypothesis. Using abstract measures of weak
noncompactness, these results are applied to derive some fixed point theorems for a weakly sequentially upper semicontinuous
countably µ-condensing multivalued mappins.
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1. Introduction
In the last years, fixed point theory for single and

multivalued mappings, under the weak topology, has
known many developement. In particular, under various
conditions, several works were dedicated to derive theorems
of Schauder’s type (Himmelberg’s theorem [12]), Sadovskii’s
type, Krasnosel’skii’s type (see, for example, [1–5, 7, 8, 10–
18, 20, 21] and the references therein).

Our objectif in this work is to establish some fixed point
results of multivalued version of the Himmelberg’s theorem in
Banach spaces for weakly sequentially continuous maps. This
work is motivated by some results obtained in [2] essentially,
Theorem 2.2.

2. Preliminaries

Let X be a Banach space. we denote by
K(X) = {S ⊂ X : S is nonempty},

Kbd(X) = {S ⊂ X : S is nonempty and bounded},
Kcv(X) = {S ⊂ X : S is nonempty and convex},
Kcl,cv(X) = {S ⊂ X : S is nonempty, convex and closed}

and
W(X) = {S ⊂ X : S is nonempty weakly compact}.
We introduce the notions in Banach space for the measure

of weak noncompactness.
Definition 2.1. Let µ : Kbd(X) → [0,+∞[ be said the

measure of weak noncompactness on X if µ satisfies the
following assertions:

(1) The family kerµ :=
{
S ∈ Kbd(X) : µ(S) = 0

}
is non-

empty and elso kerµ is contained in all set of relatively
weakly compact subsets of X , ß

(2) The monotonicIty: S1 ⊂ S2 ⇒ µ(S1) ≤ µ(S2),
(3) Invariance for the closed convex hull: µ(co(S)) = µ(S)

where co denotes the closed convex hull of S,
(4) The homogeneity: µ(λS) = λµ(S) ∀λ ∈ R+.
The family kerµ is given on first assertion and it is called

the kernel of the measure µ. It should be noticed that the
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inclusions S ⊆ Sw ⊆ co(S) together with the item (3) of
Definition 2.1 imply

(5) µ(Sw) = µ(S).
Note that if µ(·) is the full measure of weak noncompactness

to having the maximum property, then it is non-singular, that
is:

(6) µ(S ∪ {x}) = µ(S), for all S ∈ Kbd(X) and x ∈ X .
Before going further we recall the following definitions.
Definition 2.2 Let (X, d) and (Y, d) be two metric spaces

and let G : X → Kcl,cv(Y ) be a multivalued map. ß
• G is called weakly upper semicontinuous (w.u.s.c. for
short) if G is upper semi-continuous with respect to the weak
topologies of X and Y .ß • F is called weakly sequentially
upper semicontinuous (w.s.u.s.c. for short) if for each weakly
closed set F of Y, G−1(F ) is weakly sequentially closed. 2

Definition 2.3 Let µ(·) a measure of weak noncompactness
onX andB : S → K(X) a multivalued map and S is a closed,
convex, nonempty subset of a Hausdorff locally convex linear
topological spaceX . We say thatB is condensing with respect
to the measure µ(·) if

(a) B(M) is bounded, ß
(b) µ(B(J)) < µ(J), for all bounded subset J of S

with µ(S) > 0. 2

Now, we recall the following results.
Theorem 2.1 [16] Let S be a weakly compact subset on

Banach space X . If B : Ω → Kcl,cv(S) is w.s.u.s.c.

multivalued map, then B is w.u.s.c. multivalued map.
Theorem 2.2 [2] Let S be a convex nonempty, closed subset

on Banach space X . Let B : S → Kcl,cv(S) be a w.s.u.s.c.
multivalued map andB(S) is relatively weakly compact. Then
there exists z ∈ S such that z ∈ B(z).

3. Main Results
The goal of the following results is to improve some

fixed point results of Krasnosel’skii theorems for a w.s.u.s.c.
multivalued map subjected the perturbation H satisfies the
Mönch’s type.

Theorem 3.1 Suppose that B : S → Kcl,cv(S) and H : S →
Kcl,cv(S) be two w.s.u.s.c. multivalued maps. Assume that

(a) B(S) is relatively weakly compact;
(b) There exists z0 ∈ S satisfies

M ⊆ S, Mw ⊆ co
(
{z0} ∪H(M

w
)
)

so, there exists
a countable subset F of M with M

w
= F

w

=⇒M
w

is weakly compact;

(c) H maps weakly compact sets into itself;
(d) For all z ∈ S, B(z) ∩H(z) 6= ∅,
(e) H(S) +B(S) ⊂ S .
Thus, there exists x ∈ S such that x ∈ H(z) +B(z). Proof

Let Pm be defined by

P0 = {z0}, Pm = co
(
{z0} ∪H(Pm−1)

)
form = 1, 2, · · · , and P =

∞⋃
m=0

Pm.

Assume that Pn be a relatively weakly compact for each
n ∈ {1, 2, · · · }. We note that according to the Theorem 2.1,
B : Pw

n → Kcl,cv(S) is weakly semicontinuous, and so [6,
p.464] ensures that B

(
Pw
n

)
is weakly compact. Theorem of

Krein-Smulian [9, p.82] ensures that Pn+1 is relatively weakly
compact. by (b) there exists a sequence of countable sets
{Mn}∞0 with Cw

m = Pw
m for m = 0, 1, · · · . Let

P =

∞⋃
m=0

Pm and M =

∞⋃
m=0

Mm.

Thus, P is also convex, since Pm−1 ⊆ Pm for m =
1, 2, · · · . We deduce that

P = co
(
{z0} ∪H(P )

)
. (1)

Thus, [19, p.66] and hypothesis (b) guarantee that

P (= Pw) = co
(
{z0} ∪H(P )

)
and Pw = Mw (2)

Then, Eqs. (1) and (2) guarantees that

Mw = Pw = co
(
{z0} ∪H(P )

)
⊆ co

(
{z0} ∪H(Pw)

)
= co

(
{z0} ∪H(Mw)

)
.

Now, hypothesis (b) satisfying that M
w

(and so P
w

) is also
weakly compact. This yields that H(P

w
) ⊂ Pw

and therefore
H(P

w
) is relatively weakly compact.

Next, set R = F (M) ∩ B(Dw). It is clear that R
is nonempty set (using hypothesis (d)). Since H(Pw) is
relatively weakly compact, we deduce that R is relatively
weakly compact.

On the other hand, becauseR ⊂ S, we have B(R) ⊂ B(S)
and by using hypothesis (a) shows B(R) is relatively weakly
compact.

According to the steps in the above, (B + H)(R) is
also relatively weakly compact. Applying Theorem 2.2, we

conclude there exists x ∈ R (and x ∈ S) such that x ∈
(B +H)(x) which concludes the proof of Theorem.

Let S be a subset of the space X and let H : S → Kcl,cv(S)
be a w.s.u.s.c. multivalued map, in the following theorem, we
replace the hypothesis (b) of Theorem 3.1 with a less restrictive
hypothesis; a countable set M ⊆ Q, there exist z0 ∈ S such
thatM

w
= co

(
{z0}∪H(M)

)
implies thatM is also relatively

weakly compact.
Theorem 3.2 Suppose that B : S → Kcl,cv(S) and H :

M → Kcl,cv(S) be two w.s.u.s.c. multivalued maps satisfying
the conditions (a), (c), (d) and (e) of Theorem 3.1. In addition
assume that.
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(A) There exists z0 ∈ S such that{
M ⊆ S is countable and also M

w
= co

(
{z0} ∪H(M)

)
satisfying M is relatively weakly compact,

(B) H(Fw) ⊆ H(F )w for each subset F of S are satisfied. Then there exists x ∈ S such that

x ∈ H(x) +B(x).

Proof Let Pm defines as the same steps in Theorem 3.1, we have that Pm is relatively weakly compact for all m = 0, 1, · · · .
Assume that Mm, P and M be as the last theorem, we obtain

P (= Pw) = co
(
{z0} ∪H(P )

)
and Pw = Mw. (3)

Now, condition (B) implies that

{z0} ∪H(P ) ⊆ {z0} ∪H(Pw) ⊆ {z0} ∪H(P )w ⊆ co
(
{z0} ∪H(P )

)
.

thus,

co
(
{z0} ∪H(P )

)
= co

(
{z0} ∪H(Pw)

)
. (4)

Then, Eqs. (3) and (4) imply that

Mw = Pw = co
(
{z0} ∪H(P )

)
= co

(
{z0} ∪H(Pw)

)
= co

(
{z0} ∪H(Mw)

)
= co

(
{z0} ∪H(M)

)
.

Now, hypothesis (A) implies that M
w

(P
w

) is weakly
compact. This yields thatH(M

w
) ⊂Mw

and furtherH(M
w

)
is relatively weakly compact.

Next, put R = B(S) ∩ H(M
w

). Note that, applying
hypothesis (d), we get R is nonempty and (B + H)(R) is
relatively weakly compact. Now arguing the same steps in the
end of the proof of Theorem 3.1, we deduce that there exists
x ∈ R (and so x ∈ S) such that x ∈ (B + H)(x) which
conclude the proof.

Remark 3.1 The conditions (b), (A) and (B) in Theorems 3.1
and 3.2 introduced by Donal O’Regan [16], to prove a fixed set
results for w.s.u.s.c. multivalued maps, our objective of this
work , we use these conditions to show that the perturbation
B(M) is also relatively weakly compact in Banach space X
with S ⊂ X .

Let S be a subset of the space X and let µ be the measure of
weak noncompactness on X . Assume that B : S → Kcl,cv(S)
is a w.s.u.s.c. multivalued map. F is said to be countably µ-
condensing if µ

(
B(S)

)
< ∞ and µ(B(M)) < µ(M) for all

countable bounded subset M of S with µ(M) > 0.
Definition 3.1 Assume S be a subset convex ofX and letB :

S → K(X) be a given map. We say that F ⊂ S is a Mönch-set
for B if there exists z0 ∈ S such that Fw = co

(
{z0} ∪B(F )

)

and there exists a countable set Mw ⊂ Fw with Fw = Mw.
Corollary 3.1 Assume hat S is a closed convex, nonempty

subset of X , z0 ∈ S and B : S → Kcl,cv(S). Let H : S →
Kcl,cv(S) be two w.s.u.s.c. multivalued maps satisfying the
assumptions of Theorem 3.2. If H is countably µ-condensing,
then there exists z ∈ S such that z ∈ H(z) +B(z).

Proof We start to prove that H satisfies assumption (A)
of Theorem 3.2. We fix y0 in S and we assume that Mw

be a Mönch-set for the map H contained also in S, that is,
Mw = co

(
{y0} ∪H(M)

)
, we have

Mw = Fw (5)

where Fw is also a countable subset of Mw. Since Fw ⊂
co({y0} ∪ H(M)), for each point of Fw, we can be
written as a finite combination of points belonging to the M
is relatively weakly compact, we set {z0} ∪ H(M). Further,
there exists a countable set O ⊂Mw such that

Fw ⊂ co({z0} ∪H(O)). (6)

We claim that the measure of F is equal zero, that is
µ(Fw) = 0. in fact, the use of (6), H is countably µ-
condensing and also the properties of µ, we have

µ(Fw) ≤ µ(co({z0} ∪H(O))) = µ({z0} ∪H(O)) = µ(H(O)) < µ(O). (7)

If µ(O) = 0, then the proof of the corollary is finished. Otherwise, combining (5) and (7) we get

µ(Fw) < µ(O) ≤ µ(Mw) = µ(Mw) = µ(Fw) = µ(Fw) (8)
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which is a contradiction. Thus, µ(Fw) = 0 which gives the
prove of our claim.

Consequently, the use of (5) improve that Mw is weakly
compact. Keeping in mind that Mw = co({z0} ∪ H(M)),
we infer that H(Mw) ⊂ Mw and further H(Mw) is also
relatively weakly compact.

Put R = B(S) ∩H(Mw). By the assumption (d), we have
that R is nonempty and so (B + H)(R) is relatively weakly
compact. Now arguing as the same steps in the end of the proof
of Theorem 3.1, we deduce that there exists z ∈ R (and also
then z ∈ S) such that z ∈ (B +H)(z).

4. Conclusion
We conclude that we have in this paper some contrubtion

for the new results of fixed points theory setting in general
classes Mönch’s type for multivalued mappings by using
the generation of Himmelberg theorem that is given in [2]
and we develop these results by using the measure of weak
noncompactness on X when the perturbation is countably µ-
condensing.
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