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Abstract: The integer Constant Division (ICD) is the type of integer division in which the divisor is known in advance, enabling
pre-computing operations to be included. Therefore, it can be more efficient regarding computing resources and time. However,
most ICD techniques are restricted by a few values or narrow boundaries for the divisor. On the other hand, the main approaches
of the division algorithms, where the divisor is variable, are digit-by-digit and convergence methods. The first techniques are
simple and have less sophisticated conversion logic for the quotient but also have the problem of taking significantly long latency.
On the contrary, the convergence techniques rely on multiplication rather than subtraction. They estimate the quotient of division
providing the quotient with minimal latency at the expense of precision. This article suggests a precise, generic, and novel
integer division algorithm based on sequential recursion with fewer iterations. The suggested methodology relies on extracting
the division results for non-powers-of-two divisors from those for the closest power-of-two divisors, which are obtained simply
using the right bit shifting. To the authors’ best knowledge of the state-of-the-art, the number of iterations in the recurrent
variable division is half the divisor bit size, and the Sweeney, Robertson, and Tocher (SRT) division, which is named after its
developers, involves log2(n) iterations. The suggested algorithm has an [(m/(n-1))-1] number of recursive iterations, where m
and n are the number of bits of the dividend and the divisor, respectively. The design is simulated in the Vivado tool for validation
and implemented with a Zynq UltraScale FPGA. The technique performance depends on the number of nested divisions and the
size of a LUT. The two factors change according to the value of the divisor. Nevertheless, the size of the LUT is proportional to
the range and the number of bits of the divisor. Furthermore, the equation that controls the number of nested blocks is illustrated
in the manuscript. The proposed technique applies to both constant and variable divisors with a compact hardware area in the
case of constant division. The hardware implementation of constant division has unlimited values for dividends and divisors with
a compact hardware area in the case of large divisors. However, using the design in the hardware implementation of variable
division is up to 64-bit dividend and 12-bit divisor. The result analysis demonstrates that this algorithm is more efficient for
constant division for large numbers.
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1. Introduction
Recently, the division process has been manipulated and

required for many operations that are needed for significant
applications such as the normalization known as Batch-Norm,
which is frequently used in deep neural network training.
This normalization technique is a crucial component of neural
network architectures and can increase both convergence and
generalization in most applications [1]. In addition, it supports

the current trend of building artificial neural networks directly
in hardware, which enables significant advances in network
size scaling and gets beyond the Von-Neuman bottleneck
constraint [2]. Other examples of the applications that
are being emphasised are the digital signature algorithm
(DSA), which uses division in both the signing and signature
verification algorithms [3], the ElGamal cryptosystem that
utilises a specific prime of 21279 only as a divider in the
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decryption process [4], and the Rivest-Shamir-Adleman (RSA)
cryptosystem, in which the secret key is generated by dividing
by the public key [5].

A high-performance implementation of the integer division
operation is the most challenging of the four basic arithmetic
operations (i.e., addition, subtraction, multiplication, and
division). As it is generally slower than the other three
basic arithmetic operations if performed using general-purpose
computer architecture [6], and most costly that takes up more
space in the case of Very Large Scale Integration (VLSI)
circuitry [7]. On the other side, it is used extensively in
various applications that necessitate the creation of a dedicated
operator in embedded systems design defined as a ”divider by a
constant”[8]. Moreover, the performance of many applications
such as Digital Signal Processing (DSP) applications [9],
cryptography [10], and deep learning [2] are highly affected by
the quality of the used division algorithm. Particularly, when
VLSI implements more advanced DSP algorithms, the divider
becomes an essential component for digital architecture [11].
Simply because calculating the ratio of two values is necessary
for many signal-processing methods.

Initially, the division algorithms can be classified according
to whether the divider is a predetermined constant [7] or a
variable [12–15]. Specifically, the Integer Constant Division
(ICD) is the type of integer division in which the divisor is
known in advance, enabling pre-computing operations to be
included. The core trick behind all ICDs methods is that
every operation with the constant argument(s) can be made
more efficient in terms of computing resources and/or time,
when comparing an ICD circuit implementation with variable
parameters one [16]. However, most of the proposed ICD
techniques in literature are restricted by a few examples or very
narrow boundaries [6].

On the other hand, the main approaches used to depict
division algorithms, where the divisor is variable, are the digit-
by-digit [12] and convergence methods [13]. The digit-by-
digit techniques are similar to the simple division technique
used with paper and pencil, where the results are computed
digit by digit, with the most significant digit first [17]. They
have the feature of being simple and have less sophisticated
conversion logic for the quotient but also have the problem
of taking significantly long latency [18, 19]. On the contrary,
the convergence techniques rely on multiplication rather than
subtraction. They estimate the quotient of division. It
computes more than one digit of the quotient in a single
iteration to minimize the number of iterations. It provides
the quotient with minimal latency at the expense of precision.
Therefore, additional iterations are needed to update the
approximated result to a more correct one. Originally, four
prime algorithms followed this concept which are Newton-
Raphson Algorithm (NRA) [20, 21], Gold-Schmidt Algorithm
(GSA)[7], Series Expansion Algorithm (SEA) [22], and the
Taylor Series Expansion Algorithm (TSEA) [23].

Basically, many algorithms were presented for the general-
purpose computer architecture, as a result, the optimization
of division by a compile-time constant integer is well
documented [24, 25]. Besides, analog and digital circuits

have been used to implement these techniques without using
a general-purpose Central Processing Unit (CPU) architecture.
According to some research, the division techniques are
meant to be used as co-processors in an application-specific
instruction processor (ASIP) [26], as part of a System On
Chip (SoC) [23], or as an Application-Specific Integrated
Circuit (ASIC) [27]. The criticality of the application,
such as whether it is time-critical or space-critical, generally
determines the selection of the optimal divider option and the
optimal implementation scheme. On the basis of this, one must
choose the ideal substitute for the divider circuit or the block
being implemented.

Generally, all techniques try to carry out the division in
different ways targeting the mathematical accuracy, maximum
operating frequency, and minimum number of clock cycles.
Marching towards these targets, a generic algorithm for
constant division is suggested in this paper. This manuscript
is organized in the following manner: A literature review of
recent hardware integer division is presented in Section 2. The
algorithm is explained in detail in Section 3. Furthermore, the
algorithm performance and hardware implementation quality
are measured and compared with state-of-the-art in Section 4.
Finally, concluding remarks are given in Section 5.

2. Hardware Implementation of Integer
Division in Literature

Three general techniques are the main for hardware
implementation of m-bit dividend by n-bit divider, a/b
operation. Firstly, the binary long-division technique, adopting
the Euclidean division approach, has (m − n) number of
successive multiplications. It starts by comparing the n most
significant bits (MSBs) of the dividend with the divisor, and
then at each cycle, the dividend is shifted one bit. It provides
one quotient digit per iteration, which results in a large rise
in computation steps and, in some cases, imposes severe
performance constraints on the system [17]. Ugurdag et al.
in 2017 [17] addressed the problem of finding the quotient and
remainder of the Euclidean division of an unsigned integer by a
small constant integer such as 3 or 10. The suggested solutions
in this research work well with an FPGA’s hardware resources
as they use compact LUT. The authors stated that while
the temporal overhead is quite minor compared to the area
overhead, both are independent of the divisor. Furthermore,
the article investigates whether using two sequential dividers
or a single atomic divider is preferable when performing
division by the product of two constants. It demonstrated that
the composite dividers are smaller and consistently faster on
FPGAs. The authors explained this result because the critical
path of the composite architecture includes fewer lookup
tables. They also consider the case that only the quotient or
remainder is required.

Secondly, another well-known method is the addition-
subtraction or add-shift method. It is performed using
successive additions of the divisor till it reaches the dividend
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or successive subtraction of the divisor from the dividend.
The number of successive addition/subtraction operations is
equal to the output quotient, so it can be said that the number
of successive addition/subtraction operations needed is up to
(2m−n − 1). Yassin et al. in 2015 [16] presented a hardware
implementation for the constant division using the add-shift
technique and set the condition of add-shift schemes that had
been modified from Warren algorithm [28] to eliminate the
integer multiplication and to round the unsigned result to the
nearest integer. However, his technique is bounded to specific
numerator bit width and limited to certain constant dividers. In
more detail, it is applicable only for numerator bit width up to
13 bit for 5, 6, 7, and 9 dividers while 16 bit in case of divider
equals 3, and has limited divider values. In the same context,
many published methods are limited to specific dividers values
[16]. On the whole, both aforementioned methods require a lot
of power and considerable delay.

Thirdly, from the literature, many approaches attempted to
decrease the complexity of the integer division by generating
an approximate value of (1/b) and then multiplying it by
a. Nigel Jones, in 2009 [29], pre-calculated (1/B) using a
software calculator. Then he calculates the quotient using one
of the following two equations where A and M are of 32-bit

Q = ((A ∗M) >> 16) >> S (1)

Q = (((A ∗M) >> 16) +A) >> 1 >> S (2)

Alternatively, replacing the division of a by b with the
division of c∗a or (c∗a+c) by m for convenient integers c and
m chosen so that they approximate the reciprocal: c/m to 1/b.
These methods are extremely beneficial when m is chosen as
a power of two and b is a constant so that c and m can be pre-
calculated. Meanwhile, the literature contains several bounds
on the distance between c/m and the divisor b. Some of these
bounds are tight, while others are not [25].

Regarding the hardware implementation of the
multiplication by reciprocal division strategy, Deshpande et
al., in 2021, [30] provides two parameterizable FPGA-based
hardware designs for computing the multiplicative inverse
using the previously published fast constant-time Greatest
Common Divisor (GCD) algorithm [31] to accelerate the
ElGamal cryptosystem [4]. The two design architectures, a
full-width design, and a sequential design, target different
applications. Since the first design offers a quick version that
requires more resources so it does not fit many tested FPGA
chips. While the second design offers a somewhat slower
version that is more space-efficient and has a superior time-
area product. Although the constant-time feature of these
designs protects against timing-based attacks, the authors
proposed a modular inverse targeting a specific prime of 21279
only as a divider, which is required for ElGamal decryption,
and they assumed that the multiplications and divisions are
by powers of 2. The hardware is implemented in VHDL with
Xilinx Vivado 2019.2 for Zynq UltraScale +XCZU7EG.

The suggested methodology in this paper is not based on

the convergence method as it satisfies an accurate result.
Although our algorithm belongs to the sequential recurrences,
which usually have (m − n) number of iterations, the
suggested algorithm has around m/n number of iterations,
as demonstrated in the next section. This strategy is not
restricted to a small positive constant. It is valid for a wide
range of operands. However, other methods designed for
hardware implementation generally do not scale to integers
with thousands or millions of decimal digits. These frequently
occur in embedded systems applications, for example, in
modular reductions in cryptography [32]. Thus, a generic
solution is offered and compared to the current state of the art.

3. Methodology
The suggested methodology relies on extracting the division

results for non-powers-of-two divisors from those for the
closest power-of-two divisors, which are obtained simply
using the right bit shifting. This technique generates an integer
quotient and a non-negative integer remainder as outputs of the
division procedure. In the binary number system, each bit has
a weight that equals a product of two multiplied by the weight
of its right-hand side counterpart, so shift-right (SR) a binary
number by 1-bit corresponds to division by two. For more
bit-shifting, shift-right by 2-bit, 3-bit, and k-bit corresponds to
division by 4, 8, and 2k, respectively. And for numbers with
non-zero least significant bits (LSBs), shift right outputs the
quotient, Q, and the shifted LSBs are the remainder, R.

3.1. Generic Algorithm for Integer Division

The idea of the suggested algorithm is based on the
simplicity of dividing by multiples of two. When the divisor is
multiple of two, 2k, the division operation is just right-shifting
by k-bits. The divisors that can be represented as multiples of
two, 2k, will be called in this paper key numbers. For integer
divisors between key numbers, the division is computed reliant
on the division by the nearest smaller key to the divisor. For
example, for the divisors in the range [5-7], [9-15], and [17-
31], the key is 4, 8, and 16, respectively, and the same for any
other divisor. For m-bit dividend A and n-bit divisor B, The
division operation can be written as

A/B = Q+R/B (3)

with a maximum value of R being (B − 1). The suggested
algorithm’s concept is based on utilizing nested division
operations that divide by the key number of the divisor. The
block has two inputs, dividend and divisor, and two outputs,
quotient, and remainder. Figure 1 shows the basic block
diagram of the suggested nested division methodology. The
dividend A is divided by the key, the nearest smaller number
to the divisor that can be divided by 2. The dividend A is bit-
shifted to produce the quotient Qsh and remainder Rsh. Then,
Qsh is divided by the divisor B, which produces quotient QC

and remainder RC . The subscript letter sh is the abbreviation
of shifting, while the subscript letter C is for computation.
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The values of Qc and Rc get from nested division blocks by
recursive. They are calculated backward, from the last block
to the first one. This operation depends on the fact that the
last block has Qish less than or equal to the divisor B, so
its Qic and Ric are known. The i symbol in Qish, Qic, and
Ric subscripts refers to the order of the nested block. Then
the final outputs of the block are calculated from Qsh, Rsh,
QC , and RC inside the Result computation sub-block. The
design of the resultcomputation sub-block will be discussed
later, though it has one multiplication, two addition/subtraction
operations, a comparator, and access to a lookup table.

Figure 1. The basic block diagram for the suggested nested division methodology.

The Qsh/B sub-block is considered as a new division by
the same divisor B, so the same divisor design is used for
it. The same for all nested Qish/B sub-blocks till Qish is
smaller or equal to the divisor. Also, i in the subscript of the
Qish/B sub-block refers to the order of the nested division.
Nevertheless, the LUT is generated for one time in the case of
one constant divisor or set of divisors, and all nested operations
use it. The structure of the suggested algorithm consists of N
nested divisors, where N = [m/(n− 1)]− 1. Figure 2 shows
the block diagram of the divider with two nested divisions for
m/(n-1) = 3. In other words, the number of dividend bits is
around three times the number of bits of the divisor, m=3(n-
1).

Figure 2. block diagram of the divider with two nested divisions.

For more clarification, Figure 3 shows the generic block
diagram for the division methodology from the linked-list
viewpoint.

Figure 3. Generic block diagram for the divider nested blocks.

3.2. Algorithm Proof

Given an m-bit dividend A = am−1......a1a0 and an n-bit
divisor B = bn−1......b1b0. The quotient has (m-n+1) bits,
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Q = qm−n......q1q0, and the remainder has n bits at its most
extreme, R = rn−1......r1r0, where the maximum value of R
is B − 1. The target is the values of Q, and R. Eq. 3 can be
represented as

A = Q ∗B +R (4)

Moreover, when A is divided by 2(n−1), which is named
key, the quotient Qsh and the remainder R1sh are produced,
where

A = Qsh ∗ key +Rsh (5)

And the value B − key will be defined as x

B − key = x (6)

The values of key, Qsh, and R1sh are simply obtained. The
key has the most significant bit equal to ’1’, and all other bits
have a ’0’ value. By scanning the divisor from its MSB to
LSB, the position of the first bit with a value equal to ’1’ is the
position of the key bit with a ’1’ value. The Qsh, and R1sh
are parts from the dividend A. As all the parameters of Eq. 5
are available, we try to reach Eq. 4 from Eq. 5 to get Q and R.

A = Qsh ∗ key +Rsh

= Qsh ∗ (B − x) +Rsh

= Qsh ∗B −Qsh ∗ x+Rsh

= (Qsh −
Qsh ∗ x

B
) ∗B +Rsh

(7)

As assumed before, when dividing, Qsh, by the divisor B,
the result quotient and remainder are Qc and Rc respectively.
The values of Qc and Rc are known from the nested division.
Thus

∵ Qsh = Qc ∗B +Rc ∴
Qsh

B
= Qc +

Rc

B
(8)

So,

A = (Qsh −Qc ∗ x−
Rc

B
∗ x) ∗B +Rsh

= (Qsh −Qc ∗ x) ∗B −Rc ∗ x+Rsh

(9)

We will split the value of Q into two parts Qa and Qb, as
shown in Eq. 10

A = (Qa −Qb) ∗B +R (10)

Comparing Eq. 9 with Eq. 10, and defining Qa as in Eq. 11

Qa = Qsh −Qc ∗ x (11)

∴ −Qb ∗B +R = −Rc ∗ x+Rsh (12)

Now, the value of Qa is calculated from the obtained Qsh,
Qc, and x. While the values of Qb, and R are got using a LUT
that solves Eq. 12. In Eq. 12, the values of Rsh, Rc, and

x are known, while the values of R, and Qb are unknowns.
Fortunately, Rsh, Rc, and x have relatively small values as
x is smaller than the divisor and remainders. The size of LUT
depends on the number of bits of the divisor and is independent
on the dividend size so that we can use the same LUT for high
dividend values. Nonetheless, high dividend values affect the
number of nested operations N , not the size of the LUT.

3.3. Pseudo Code for m-bit Dividend and n-bit Divisor

PROCEDURE DIV(A, B) RETURN Q,R
Qsh← SHIFTRIGHT(A,n)
Rsh← A[0 : n− 1]
IF Qsh ≤ B THEN

IF Qsh ≤ B THEN
Qc← 0
Rc← Qsh

ELSE
Qc← 1
Rc← 0

END IF
ELSE

Qc, Rc = DIV(Qsh,B)
END IF
Qa← Qsh−Qc× (B − 2(n−1))

LUT : input:B,Rc output:e, g
IF g +Rsh ≤ B THEN

Q← Qa− e
R← g +Rsh

ELSE
Q← Qa− e+ 1
R← g +Rsh−B

END IF
RETURN Q,R

END PROCEDURE

3.4. Algorithm Procedure Steps for Each Nested Division

The division operation is rewritten as

A = (Qa −Qb) ∗B +R, (13)

assuming that the values of Qsh, Rsh, Qc, and Rc are known
for each nested division. Then the procedure is required to
calculate the values of Qa, Qb, and R. Hence, three operations
are used:

Operation 1: Multiply-Add operation
According to Eq.9, we will get Qsh − Qc ∗ x and name it

Qa. So Eq. 9 can be written as

Qa = Qsh −Qc ∗ x (14)

Operation 2: Look-Up Table
To reduce the complexity of the LUT, we introduce two

more variables, e and g, and rewrite Eq. 12 as

Rc ∗ (B − key) = Qb ∗B +Rsh −R

= e ∗B − g
(15)
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The LUT is designed according to the value of the divisor,
with all the corresponding possible Rc values, where Rc is
always less than the divisor. An example of the LUT for a
constant divisor of 13 is shown in Table 1.

Operation 3: Correction and Final Result
We can calculate Q and R from the following equations,

Qb = e, Q = Qa − e, (16)

R = g +Rsh (17)

A correction step is needed when the value of g + Rsh is
greater than the divisor, B. Then

Qb = e− 1, Q = Qa − e+ 1, (18)

R = g +Rsh −B (19)

Table 1. The LUT for divisor = 13.

Inputs Outputs

B Rc e g

13 12 5 5

13 11 5 10

13 10 4 2

13 9 4 7

13 8 4 12

13 7 3 4

13 6 3 9

13 5 2 1

13 4 2 6

13 3 2 11

13 2 1 3

13 1 1 8

13 0 0 0

3.5. An Illustrative Example of the Algorithm

A

B
=

65500

192

As 128 < B < 256, key = 128. For every nested
division, the values that are assigned as unknowns will be post-
calculated during the backward steps.

block1

A = 65500 Q = unknown

B = 192 R = unknown

Q1sh = 511 Q1c = unknown

R1sh = 92 R1c = unknown

Q1sh > B

block2

Q1sh = 511 Q1c = unknown

B = 192 R1c = unknown

Q2sh = 3 Q2c = 0

R2sh = 127 R2c = 3

Q2sh < B → ∴ Q2c = 0, R2c = Q2sh = 3

Result computation2
Inputs:
Q2sh = 3, R2sh = 127, Q2c = 0, R2c = 3

Step1 : Qa = Q2sh −Q2c ∗ x = 3

Step2 : LUT : ∵ B = 192, R2c = 3 ∴ e, g = 1, 0

Step3 : Qb = 1, R = g +R2sh = 127 < B

∴ Q1c = Qa −Qb = 2, R1c = 127

block2

Q1sh = 511 Q1c = 2

B = 192 R1c = 127

Q2sh = 3 Q2c = 0

R2sh = 127 R2c = 3

Q2sh < B → ∴ Q2c = 0, R2c = Q2sh

block1

A = 65500 Q = unknown

B = 192 R = unknown

Q1sh = 511 Q1c = 2

R1sh = 92 R1c = 127

Q1sh > B

Result computation1
Inputs:
Q1sh = 511, R1sh = 92, Q1c = 2, R1c = 127

Step1 : Qa = Q1sh −Q1c ∗ x = 383

Step2 : LUT : ∵ B = 192, R1c = 127 ∴ e, g = 43, 128

Step3 : Qb = 43, R = g +R1sh = 220 > B

Correction : Qb = 42, R = g +R1sh −B = 28

∴ Q = Qa −Qb = 341, R = 28

block1

A = 65500 Q = 341

B = 192 R = 28
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4. Results

4.1. Algorithm Performance

The suggested algorithm is designed for integer dividends
and divisors. Its performance depends on two main factors, the
number of nested divisions, and the size of the LUT. These two
factors affect the design’s area, delay, and power consumption.
The two factors change according to the value of the divisor.
Nevertheless, the size of the LUT is proportional to the range
and the number of bits of the divisor. Table 2, Table 3, Table
4, and Table 5 show the range of divisors for each number of
nested blocks for 8-bit, 16-bit, 32-bit, and 64-bit dividends,
respectively. The equation that controls the number of nested
blocks is

N =
m

n− 1
− 1 (20)

Table 2. Number of nested blocks, N , and its feasible divisor values for 8-bit dividend.
m=8, nmax = 8, and divisor maximum value = 28 − 1 = 255.

N n Divisor values

1 ≥ 5 ≥ 16

2 ≥ 4 ≥ 8

3 ≥ 3 ≥ 4

7 ≥ 2 ≥ 2

Table 3. Number of nested blocks, N , and its feasible divisor values for 16-bit dividend.
m=16, nmax = 16, and divisor maximum value = 216 − 1 = 65535.

N n Divisor values

1 ≥ 9 ≥ 256

2 ≥ 7 ≥ 64

3 ≥ 5 ≥ 16

5 ≥ 4 ≥ 8

7 ≥ 3 ≥ 4

15 ≥ 2 ≥ 2

Table 4. Number of nested blocks, N , and its feasible divisor values for 32-bit dividend.
m=32, nmax = 32, and divisor maximum value = 232 − 1 = 4294967295.

N n Divisor values

1 ≥ 17 ≥ 65,536

2 ≥ 12 ≥ 2,048

3 ≥ 9 ≥ 256

4 ≥ 8 ≥ 128

5 ≥ 7 ≥ 64

6 ≥ 6 ≥ 32

7 ≥ 5 ≥ 16

10 ≥ 4 ≥ 8

15 ≥ 3 ≥ 4

31 ≥ 2 ≥ 2

Table 5. Number of nested blocks, N , and its feasible divisor values for 64-bit dividend.
m=64, nmax = 64, and divisor maximum value = 264 − 1.

N n Divisor values

1 ≥ 33 ≥ 4,294,967,296

2 ≥ 23 ≥ 4,194,304

3 ≥ 17 ≥ 65,536

4 ≥ 14 ≥ 8,192

5 ≥ 12 ≥ 2,048

6 ≥ 11 ≥ 1,024

7 ≥ 9 ≥ 256

9 ≥ 8 ≥ 128

10 ≥ 7 ≥ 64

12 ≥ 6 ≥ 32

15 ≥ 5 ≥ 16

21 ≥ 4 ≥ 8

31 ≥ 3 ≥ 4

63 ≥ 2 ≥ 2

As proved in Section 3.4, the size of the LUT depends
only on the divisor B and is independent on the dividend.
The address of the LUT relies on B, and Rc, while the data
contained in this LUT is the values of e, and g as shown in
Table 1. Where the number of bits of e, and g are (n− 1)-bit,
and n-bit, respectively. For constant divisor B, the address of
the LUT is the value of Rc, so the number of rows of the LUT
equals to B, and the row size is 2n− 1. On the other hand, in
the case of a variable divisor, for the range of divisors with n
bits, the number of rows of the LUT differs according to n, but
the size of the data inside it remains 2n − 1. Table 6 presents
the number of LUT rows according to the size of the divisor.
For more explanation, each divisor value takes 2n rows in the
LUT, so the number of LUT rows, LUTrows, is the summation
of all numbers from 1 to 2n excluding the key numbers.

Table 6. LUT size for variable divisor, nmin=1, and row size is (2n− 1) bits.

n Number of LUT rows Number of address bits

≤ 3 21 5

≤ 4 105 7

≤ 5 465 9

≤ 6 2k 11

≤ 7 8k 13

≤ 8 32k 15

≤ 9 128k 17

≤ 10 512k 19

≤ 11 2M 21

≤ 12 8M 23

≤ 13 32M 25

≤ 14 128M 27

≤ 15 512M 29

≤ 16 2G 31

≤ 17 8G 33

≤ 18 32G 35

≤ 19 128G 37

≤ 20 512G 39
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The following equation represents the number of rows of the
LUT for the division by n-bit divisor:

For Variable Divisor LUTrows =

2n−1∑
i=1

i−
n−1∑
j=0

2j (21)

As shown from the table, the size of the LUT is huge for
large divisors. So, this algorithm is more efficient for constant
division for large numbers. For example, the division by
a 14-bit constant value needs a LUT size of 16k × 27 =
2n × (2n − 1). However, the general division by any 14-bit
value needs around 3G LUT size, 128M × 27. Also, as B is
constant, the address is Rc. Table 7 illustrates the maximum
number of rows of the LUT for constant division by an n-bit
divisor. The number of LUT’s rows for constant divisor B
follows the following equation:

For Constant Divisor LUTrows = B (22)

Table 7. LUT size for constant divisor where the data size is (2n− 1) bits.

n B number of LUT rows address bits

3 7 7 3

4 15 15 4

5 31 31 5

6 63 63 6

7 127 127 7

8 255 255 8

9 511 511 9

10 1023 1k 10

11 2047 2k 11

12 4095 4k 12

13 8,191 8k 13

14 16,383 16k 14

15 32,767 32k 15

16 65,535 64k 16

18 262,143 256k 18

20 1,048,575 1M 20

24 16,777,215 16M 24

28 268,435,455 256M 28

32 4,294,967,295 4G 32

4.2. Hardware Implementation Results

The suggested algorithm is implemented in Zynq UltraScale
xczu7ev-ffvc1156-2-e FPGA and simulated in Xilinx Vivado
ML version 2022.2 to evaluate its performance. Table
8 demonstrates the utilized resources for the implemented
variable and constant division on FPGA. It shows the number
of configurable logic blocks (CLB) LUT as Logic, CLB
Registers as Flip Flops, Block RAM (RAMB36E2), and DSPs
(DSP48E2). After synthesis, the latency of one operation,
T, is calculated by multiplying the minimum clock cycle by
the number of cycles per division operation. The number of
clock cycles per operation equals N + 1. It can be noted
that the routing adds a considerable part of the total latency.

Also, BRAM expresses Block RAM, and N is the number of
iterations. The results of dividing a 16-bit dividend by both
7-bit and 8-bit divisors need a ROM size of 32K x 15-bit.
Furthermore, the constant numbers are chosen randomly in
Table 8 as the algorithm works with any value within bits equal
to n with LUT’s rows equal to B as illustrated in Table 7.

Table 8. Performance of the suggested design on Zynq FPGA.

Divisor Variable division Constant Division

64 < B < 255 225 1279 4095

m 16 16 16 32

n 7≤ n≤ 8 8 11 12

N 2 2 1 2

FPGA Utilization

LUT 335 147 68 152

BRAM 30 0.5 1.5 3

Register 52 40 43 76

DSPs 1 1 1 2

Carry8 11 9 9 19

Latency Logic: 3.19 3.49 1.66 4.66

(ns) Route: 4.69 2.23 1.04 1.68

Total: 7.88 5.72 2.7 6.34

Freq. (MHz) 126 174 370 157

T (ns) 23.64 17.16 5.4 19.02

5. Comparison and Discussion

This section discusses the implementation of the state-of-
the-art. Table 9 compares the different procedures according
to method complexity and rigidity. The software/hardware
pre-processing, algorithm mathematical operations (adders
and multipliers), and LUTs measure the complexity. The
maximum number of bits for the dividend, divisor, and
accuracy express the rigidity. In the Table, the (Sug.)
abbreviates the suggested algorithm, the (Pre-) is the
abbreviation of pre-processing, the (Acc./App.) is the
abbreviation of accurate/approximate algorithm, and the LUTs
size is expressed by the number of row × number of columns.
Also, the values of m and n are the maximum value.

Lemire et al. in 2021 [25] use a complicated pre-
processing software algorithm that estimates (1/B). Then they
calculate the quotient using the multiply-add operation and
the remainder using two successive multiplication operations.
They present a software algorithm that accelerates the division
operation. Their results are accurate only if the inverse of
B can be represented by (c/M) where M is a power-of-2
number, and c equals M/B. Their technique is valid for
certain relations between c/M and 1/B; this relation is called
the bound, so the authors optimize and generalize the bounds
previously proposed for this technique in the literature. A
similar idea is provided by Nigel Jones in his blog entry [29]
as he pre-calculated (1/B) using a software calculator. Also, a
required parameter labeled as S is computed using successive
shift, increment, then compare operations. Even though his
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method uses only one 32-bit× 32-bit multiplication operation,
for a 16-bit dividend, it is approximate and has a maximum
dividend value of 16-bit.

Constant division using the add-shift methodology is
hardware implemented in 2015 by Yassin et al. [16]. It is
for specific divisors 3, 5, 6, 7, and 9, with 13-bit dividends; for
divisor 3, the dividend is up to 16. They use five successive

16-bit additions to generate the quotient and remainder. Their
simulation results take seven clock cycles for the division
operation. Furthermore, Ugurdag et al. [17], in 2017,
implemented the division by small constant integer. They
depend on LUT, and have (m − n) LUT access. its LUT size
is (m+ n) × (m+ n).

Table 9. Comparison between different division procedures (A/B).

m ‖ n Pre- Acc. ‖ App. LUT size Mathematical operations

[25] N/A c/M = 1/B App. - S/W algorithm

[29]* 16‖16 (1/n) App. n× 32 & n× 16 32-bit multiplier

[17] 128‖6 - Acc. (m + n)× (m + n) -

[16] 13 ‖ 4 - Acc. - 5-successive 16-bit adders

Sug. no ** limits - Acc. 2n× (2n-1) ≈ m
n multipliers (m-2n)-bit

*pre-processing and LUTs are alternatives.

**Area, delay, and LUT size are proportional to m/n as stated in Tables 3 to 6.

6. Conclusions

The suggested approach calculates an accurate quotient and
remainder while decreasing the complexity of the division
operation. This technique depends on recursive division. It
can be applied to a wide range of operands. It is convenient
for software-based applications, hardware-based applications,
and embedded systems. For hardware implementation, its
area is relatively large in some cases related to the difference
between the number of bits of the dividend and the divisor,
and the divisor’s size. That is because it uses a LUT size
proportional to the size of the divisor for constant division
and proportional to the number of variable divisors for variable
division. However, The algorithm proves high performance for
large divisors when the difference between the dividend and
the divisor size is relatively small. Also, as future work, the
utilization of the LUT can be replaced by an arithmetic circuit
that calculates the variables stored in the LUT. Hence, lower
hardware requirements are put forward at the same time.

Abbreviations

ASIC Application-Specific Integrated Circuit
ASIP Application-Specific Instruction Processor
CLB Configurable Logic Blocks
CPU Central Processing Unit
DSA Digital Signature Algorithm
DSP Digital Signal Processing
FPGA Field Programmable Gate Arrays
GCD Greatest Common Divisor
GSA Gold-Schmidt Algorithm
ICD Integer Constant Division

LSB least significant bit
LUT Look-Up Table
MSB Most Significant Bit
NRA Newton-Raphson Algorithm
SEA Series Expansion Algorithm
RSA
cryptosystem

Rivest-Shamir-Adleman cryptosystem

SoC System On Chip
SR Shift-Right
SRT division Sweeney, Robertson, and Tocher division
TSEA Taylor Series Expansion Algorithm
VLSI Very Large Scale Integration
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