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Abstract: Neutron stars (NSs) are rapidly rotating entities, spinning at approximately 104 Hz, and possess extremely strong
magnetic fields, ranging from 1013 to 1014 Gauss. These compact objects, characterized by a radius of about 10 kilometers and
a density of 1013−14, gcm−3 are formed as a result of supernova explosions that mark the end of the life cycles of massive stars.
Observations of electromagnetic emissions associated with curvature radiation from well-known pulsars, such as the Crab and
Vela pulsars, provide compelling evidence that the magnetic field configuration near the surfaces of these neutron stars deviates
significantly from the traditionally anticipated pure dipole structure. Researchers now propose that the inclusion of non-dipolar
components in the magnetic field may address this longstanding discrepancy. Furthermore, the arrangement of magnetic field
lines plays a crucial role in determining the characteristics and geometry of accretion discs surrounding neutron stars in binary
systems. This study has focused on elucidating the geometry of the combined dipole and quadrupole magnetic field lines.
In idealized scenarios, the magnetic field lines in proximity to these compact objects are typically closed; however, they may
become open at greater distances due to interactions with external magnetic fields or the stress energy generated by other sources,
including the accretion discs.
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1. Introduction

Neutron stars (NSs) are one of the possible ends for stars.
They result from massive stars that have mass greater than
4 to 8 times that of our Sun. After these stars have finished
burning their nuclear fuel, they undergo a supernova explosion
[2, 18]. This explosion blows off the outer layers of a star into
a beautiful supernova remnant. The central region of the star
collapses under gravity. It collapses so much that protons and
electrons combine to form neutrons according to the reaction

e− + p→ n+ νe

The pressure of cold degenerate neutrons supports NS,
almost all electrons and protons having been converted into

neutrons through the reaction of the neutrinos escaping from
the star. The most important correction at higher densities is
due to the inverse β-decay. The condition for the inverse β-
decay (e− + p → n + νe) is that the kinetic energy of the
electrons is larger than or equal to 1.36Mev. The β-decay of
a neutron (n→ e−+p+νe) is blocked when the density is so
large that all the electron levels in the Fermi sea are filled up to
the energy of the emitted electron. Hence the name “Neutron
Star” [25]. An NS is about 20 km in diameter and has a mass
of about 1.4 solar mass. This means that an NS is so dense
that on Earth, one teaspoonful would weigh a billion tons!.
Because of its small size and high density, an NS possesses a
surface gravitational field about 2 × 1011 times that of Earth
[18, 25]. NSs can also have magnetic fields a million times
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stronger than the strongest magnetic fields produced on Earth.
NSs may appear in supernova remnants, as isolated objects, or
in binary systems.

When a NS is in a binary system, astronomers are able to
measure its mass [18, 28]. If a neutron star is rotating rapidly,
as most young NSs are, the strong magnetic fields combined
with rapid rotation create an awesome generator that can
produce electric potential differences of quadrillions of volts
[20, 25]. Such voltages, which are 30 million times greater
than those of lightning bolts [27], create deadly blizzards of
high energy particles [6]. The neutron star currently “nearest
to Earth” is a radio pulsar called J0108-1431. It is within about
100 parsecs away from our planet.

Our universe consists of elementary particles (electron,
proton, neutron, positron, neutrino, and photon, etc.) and
massive bodies (stars, galaxies, and so on). Stars are formed
in molecular clouds in the interstellar medium, which consist
mostly of molecular hydrogen (primordial elements made a
few minutes after the beginning of the universe) and dust.
The dust originates from the cool surfaces of supergiants,
massive stars in a late stage of stellar evolution.This dust is
an irregularly shaped grains of carbon or silicate measuring a
fraction of a micron across which is found between the stars
[1]. The night sky contains myriads of stars including those
in the Milky Way, which is a side view of our Galaxy looking
along the plane of the disc. Our Galaxy includes about 1011

stars. Beyond our galaxy are billions of other Galaxies. The
nearest star is Proxima Centauri it is about 4 light years away
and the nearest large Galaxy is Andromeda is about 2 million
light year away. Our Galactic disc has a diameter of about
100,000 light years [24].

Basic factors in the formation of stellar objects are gravity,
dust, gas pressure, rotation, magnetic fields, winds and
radiation from nearby young stars and radiative shock waves.
Building a comprehensive physical picture of stellar structure
and evolution is one of the greatest triumphs of 20th century
Astrophysics. However, many important aspects of the
life cycle of stars are still not completely understood [26].
They include: the origin and evolution of stellar magnetic
fields, including the large-scale fields, the sun-spot cycle, the
evolution of the stellar rotation, the origin and character of
differential rotation, high-energy coronal activity, mass loss
in massive stars and various aspects of binary evolution [2].
Even more critical questions remain open regarding the end of
the life of stars and their afterlife as

Compact objects [4, 22]. These include the mechanisms
of core-collapse supernovae (SNe) and gamma-ray bursts
(GRBs), the origin of magnetars,the workings of radio
pulsar and pulsar-wind nebulae, some aspects of accretion
disks and jets in binary systems [9]. All these questions
are at the forefront of modern Astrophysics. Importantly,
many of them unavoidably involve magnetic fields interacting
with the plasma. Therefore, they belong to the realm
of Plasma Astrophysics. A common theme in plasma
astrophysics is the life cycle of magnetic fields: How are
they produced (dynamo)? How do they interact with the
plasma? Magnetohydrodynamic (MHD) instabilities such

as Magnetic resonance imaging (MRI)? And how are they
destroyed (reconnection) [14]?

In this paper the complex magnetic fields of a compact
star called neutron star has been considered. Observations
and theory suggest that complex multipolar magnetic fields
prevail near the surface of neutron stars and play an important
role in the physics of rotation powered pulsars [2, 24].
This work focus on driving field line equation for magnetic
dipole-quadrupole combination of neutron star, modeling
(simulating) the geometry of this interaction field lines in
2-dimension using matlab and finding (showing) the neutral
point for this interaction field lines graphically.

2. Theoretical Background

2.1. Magnetic Field Generation of Neutron Star

Magnetized neutron stars serve as the foundational elements
for various classes of compact objects, including pulsars,
magnetars, isolated neutron stars, and X-ray binaries, among
others. [19]. The origin of strong magnetic fields in neutron
stars is still a matter of controversy [9, 11]. The present
understandings are:

1. The configuration of the magnetic field in the vicinity
of neutron stars represents a fundamental inquiry within
the realm of pulsar magnetospheric physics. [19].
The standard theory simply related to the magnetic
fields of the progenitor main sequence stars frozen
during collapse or flux conservation [7]. This model
does not deliver the mechanism for the generation of
magnetic multipoles. It can not generate field strength
of magnitude about 1016 G often observed in GRB
activities such very strong magnetic fields are required
force for supernova bounce since the energy of the
shock blast normally gets dissipated half way through
the infalling iron core.

2. Naturally if they are generated through a dynamo
mechanism driven by turbulent motions. This opposes
by several theorems such as Cowley’s theorem.

3. The generation of neutron star magnetic fields by
thermomagnetic effects. This is a model which requires
along time (∼ 103years) to generate a surface magnetic
field of (∼ 1012G) provided that there is an original
field of (∼ 108G) which could come from flux
conservation.This is why too slow and too weak to
describe such violent processes as GRBs, etc.

4. By the spinning of separated charges. This model
is able to generate field strengths up to ∼ 1018 G
enough to meet all requirements of current experimental
findings. Most importantly it very clearly indicates
that NS surface fields have infinite multipoles. The
powerful magnetic fields, when coupled with swift
rotational motion, form an extraordinary generator
capable of generating electric potential differences
reaching quadrillions of volts. Rapidly rotating,
distorted neutron stars represent significant prospects for
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the generation of continuous gravitational waves (CWs)
[21].

2.2. Vector Potential Expansion

Let us consider a charge Q uniformly distributed over the
surface of spherical neutron star of radius R∗. Assume

that a neutron star is spinning with a frequency of Ω about
its diameter [12, 13]. To calculate (drive equations) for
magnetic multipole fields generated by the spinning charge at
the external surface of the neutron star [5, 17]. The vector
potential can be written in general form as

~A(~r) =

∫ ~J(r′)

| ~r − ~r′ |
dv′ (1)

But it is known that
~J(~r′) = − | σ | V δ(r′ −R∗)êϕ (2)

Where

σ =
| Q |
4πR2

and V = Ω×R∗ (3)

Therefore

~J(~r′) = − | Q |
4πR2

∗
[Ω×R∗]δ(r′ −R∗)êϕ

= − | Q |
4πR∗

Ωsinθ′δ(r′ −R∗)êϕ

considering that ~J(r′) = ~J(r′)ϕ′ êϕ where

~J(~r′)ϕ′ = − | Q |
4πR∗

Ωsinθ′δ(r′ −R∗) (4)

substituting this in to the expression of ~A we find that

~A(~r) = êϕ

∫ ~J(~r′)ϕ′

| ~r − ~r′ |
dv′ (5)

Where R∗ is radius of the star.The current density ~J has only a component in the ϕ direction. The vectorial current density
can be written as

~J = − ~Jϕ sinϕ′î+ ~Jϕ cosϕ′ĵ (6)

Since the integration of equation (5) is symetric about ϕ = 0
the x component of the current does not contribute. This
leaves only the y-component which is ~Aϕ. The solution of
the laplace equation was decomposed in to a product of factors
for the three variables r,θ and ϕ. It is convenient to combine
the angular factors and construct orthonormal functions over
the unit sphere. The functions Qm(ϕ) = exp(imϕ) form

a complete set of orthogonal functions in the index m on
the interval 0 ≤ ϕ ≤ 2π. The functions Pl(cosθ) form
a similar set in the index l for each m value in the interval
−1 ≤ cosθ ≤ 1. Therefore their product QmPml will form a
complete orthogonal set on the surface of a unit sphere in the
two indices l,m. From the normalization condition it is clear
that the normalization function, denoted by Ylm(θ, ϕ), is

Ylm(θ, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cosθ)exp(imϕ) (7)
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Is spherical harmonics, spherical harmonics for l = 1 dipole,l = 2 quadrupole and l = 3 octupole are given as

Y10 =

√
3

4π
cosθ, Y11 = −

√
3

8π
sinθ exp(iϕ)

Y20 =
1

2

√
5

4π
(3cos2θ − 1), Y21 = −

√
15

8π
sinθ cosθ exp(iϕ)

Y30 =
1

2

√
7

4π
sin(5 cos3θ − 3 cosθ)

Y31 = −1

4

√
21

4π
sinθ(5cos2θ − 1) exp(iϕ) (8)

Where
Yl,−m(θ, ϕ) = (−1)mY ∗lm(θ, ϕ) (9)

Which gives a way of generating the unwritten negative m harmonics above. Also, remember, for a given l there are 2l + 1
different spherical harmonics: m = l, l − 1, ..., 0, ...,−l + 1,−l. Also note, that a spherical harmonic, with m = 0 is just the

normalization constant, multiplied by the Legendre polynomial: Yl0(θ, ϕ) =
√

2l+1
4π Pl(cosθ). The normalization and

orthogonality conditions are: ∫ 2π

0

dϕ

∫ π

0

sinθdθY ∗l′m′(θ, ϕ)Ylm(θ, ϕ) = δl′lδm′m (10)

the completeness relation, corresponding to
∑∞
n=1 U

∗
n(η)Un(η) = δ(η′ − η) is

∞∑
l=0

l∑
m=−l

Y ∗lm(θ′, ϕ′)Ylm(θ, ϕ) = δ(ϕ− ϕ′)δ(cosθ − cosθ′) (11)

considering two coordinate vectors ~x and ~x′, with spherical coordinates (r, θ, ϕ) and (r′, θ′, ϕ′) respectively and angle ζ between
them. From the addition theorem [10] for spherical harmonics as

Pl(cosζ) =

(
4π

2l + 1

) l∑
m=−l

Y ∗lm(θ′, ϕ′)Ylm(θ, ϕ) (12)

The expansion for 1

|~r−~r′|
is

1

|~r − ~r′|
=

∞∑
l=0

(
r′l

rl+1

)
Pl(cosζ) (13)

which is the potential at r due to a unit charge at r′. By substituting equation (12) in to (13) one can find the explicit form as

1

|~r − ~r′|
= 4π

∞∑
l=0

m=l∑
m=−l

(
1

2l + 1

)(
rl<
rl+1
>

)
Y ∗lm(θ′, ϕ′)Ylm(θ, ϕ) (14)

Inserting equation (14) in (1) yields

~A(l)
ϕ = êϕ4π

∞∑
l=0

(
1

2l + 1

)(
rl<
rl+1
>

)
(15)

∗
m=l∑
m=−l

Ylm(θ, ϕ)

∫
r′

∫
θ′

∫
ϕ′

~J(r′)ϕ′Y
∗
lm(θ′, φ′)r′2sinθ′dr′dφ′dθ′

The presence of exp(iϕ′) means that only m = +1 will contribute to the sum.

~A(l)
ϕ = êϕ4π

∞∑
l=0

(
1

2l + 1

)(
rl<
rl+1
>

)
(16)
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∗Yl1(θ, ϕ)

∫
r′

∫
θ′

∫
ϕ′

~J(r′)ϕ′Y
∗
l1(θ′, ϕ′)r′2sinθ′dr′cosϕ′dϕ′dθ′

using equation (4) instead of ~J(r′)ϕ′ = Jcosϕ′ follows

~A(l)
ϕ = êϕ

(
−|Q|ω

4πR

)
4π

∞∑
l=0

(
1

2l + 1

)(
rl<
rl+1
>

)
(17)

∗Yl1(θ, ϕ)

∫
r′

∫
θ′

∫
ϕ′
Y ∗l1(θ′, ϕ′)r′2sin2θ′dr′cosϕ′dϕ′dθ′δ(r′ −R)

Here, the calculation is interested to the exterior point, so r< = R, r′ → R and r> = r refers to the inner and outer region of
the neutron star respectively. as r′ → R

∫
dr′r′2δ(r′ −R) = R2

~A(l)
ϕ = êϕ

(
−|Q|Ω

4πR

)
4πR2

∞∑
l=0

(
1

2l + 1

)(
Rl

rl+1

)
(18)

∗Yl1
∫
θ′

∫
ϕ′
Y ∗l1 sin2 θ′cosϕ′dϕ′dθ′

Different poles are derived by assigning different values for l. By picking l = 1, l = 2, l = 3 for dipole,quadrupole and
octupole respectively.

~A(1)
ϕ = êϕ

(
− |Q|Ω

12πR

)(
4πR3

r2

)
Y11

∫
θ′

∫
ϕ′
Y ∗11 sin2 θ′cosϕ′dϕ′dθ′ (19)

Now, inserting the value of Y11 from above

~A(1)
ϕ = êϕ

(
−|Q|Ω

8π

)(
R2

r2

)
sinθ

∫ π

0

sin3θ′dθ′
∫ 2π

0

cosϕ′exp(iϕ′)dϕ′ (20)

~A(1)
ϕ = êϕ

(
−|Q|Ω

3

)(
R2

r2

)
sinθ (21)

Applying the same method and inserting the value of Y21 then

~A(2)
ϕ = êϕ

(
−|Q|Ω

4πR

)
4πR2

(
1

5

)(
R2

r3

)
Y21 ×

∫
θ′

∫
ϕ′
Y ∗21 sin2 θ′cosφ′dϕ′dθ′ (22)

~A(2)
ϕ =

3|Q|ΩR3

4r3
sinθcosθ (23)

~A(3)
ϕ = êϕ((|Q|Ω)

(
R4

7r4

)
Y31

∫
θ′

∫
ϕ′
Y ∗31 sin2 θ′cosϕ′dϕ′dθ′ (24)

Inserting the value of Y31
~A(3)
ϕ = êϕ(|Q|Ω)

(
7R4

20r4

)
sinθ(5cos2θ − 1) (25)

3. Magnetic Multipolar Fields of Neutron Star

Considering system of spherical coordinates (r, θ, ϕ) where r is measured from stellar center [8, 14], θ is the polar angle (in
radians) measured from the z axis and ϕ is azimuthal angle (in radians) measured from an arbitrary origin. The z-axis is directed
along the dipolar momentum of the star ~µ. It is known that magnetic field is the curl of vector potential i.e,

~B = ∇× ~A =
1

rsinθ

 r̂ rθ̂ rsinθϕ̂
∂r ∂θ ∂ϕ
Ar rAθ rsinθAϕ


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~B =
1

rsinθ

[
∂

∂θ
(sinθAϕ)− ∂

∂ϕ
(Aθ)

]
r̂ +

1

r

[
1

sinθ

∂

∂ϕ
(Ar)−

∂

∂r
(rAϕ)

]
θ̂ +

1

r

[
∂

∂r
(rAθ)−

∂

∂θ
(Ar)

]
ϕ̂ (26)

In general we can write multipolar fields as
~Blm(r, θ) = ∇× ~Almϕ (27)

In our case ~A has only an azimuthal component. Therefore, only ~Blmr (r, θ) and ~Blmθ (r, θ) survive, so that our equation will be

~Blmr (r, θ) =
êr

rsinθ

∂

∂θ

(
~Almφ (r, θ)sinθ

)
(28)

~Blmθ (r, θ) = − êθ
r

∂

∂r

(
r ~Almϕ (r, θ)

)
(29)

As usual using l = 1, l = 2 and l = 3 for the dipole,quadrupole and octupole field respectively. If m = 0 and l is arbitrary,
then one obtains axially symmetric and uniform multipolar components.

3.1. Magnetic Dipole Filed of Neutron Star

Based on the above relation between magnetic field and vector potential to find the dipole field components as shown below

B(1)(r, θ) = ∇× ~A(1)
ϕ (30)

B(1)(r, θ) =
êr

rsinθ

[
∂

∂θ
(sinθA1

ϕ)

]
− êθ

r

[
∂

∂r
(rA1

ϕ)

]

=
êr

rsinθ

|Q|Ω
3

(
R

r

)2 [
∂

∂θ
(sin2θ)

]
+
êθ
r

|Q|Ω
3

sinθR2

[
∂

∂r

(
1

r

)]

=
êr

rsinθ

|Q|Ω
3

(
R

r

)2

2sinθcosθ − êθ
r

−|Q|Ω
3

sinθ

(
R

r

)2

=
QΩR2

3r3
cosθêr +

QΩR2

3r3
sinθêθ (31)

The radial and polar components of the dipolar field is written as

B(1)
r =

2µd
3r3

cosθ êr , and (32)

B
(1)
θ =

µd
3r3

sinθ êθ (33)

Where ~µd = µdµ̂ = |Q|ΩR2
∗ is the dipole moment. A neutron star total magnetic field is given by: B∗ = Bd + Bq + Bo +...

Hence the dipole moment µd can be written as

µd = B∗(d)R
3
∗ = |Q|ΩR2

∗ (34)

In general form magnetic multipole moment is
µlm = Blm∗ Rl+2

∗

3.2. Magnetic Quadrupolar Field of Neutron Star

Under this topic magnetic fields that are in “potential state”
have been used. This terminology, which is common in
the solar/stellar physics literature, refers to a magnetic field
in which the current density ~J = 0 everywhere within the
stellar magnetosphere, and therefore the field ~B can be written
in terms of the gradient of a magnetostatic scalar potential
[13, 28] so that the intrinsic magnetic field of the star can be

written as B = −∇ϕ [3, 14], where the scalar potential of the
magnetic field is ϕ(r) =

∑
ma/ | ~r − ~ra |, and ma is an

analogy of the magnetic “charge”, ~r and ~ra are the positions
of the observer and the magnetic “charges” respectively. The
scalar potential can be represented as a multipole expansion in
powers of 1/r. In the near zone limit (kr � 1), the magnetic
field vector Blm(r, θ, ϕ), associated with a given magnetic
multipole (lm) [29], can be expressed in terms of spherical
harmonics Ylm(θ, ϕ) (ex.see Jackson 1975).
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Blm(r, θ, ϕ) = ∇
(
Ylm(θ, ϕ)

rl+1

)
(35)

Spherical harmonics are written in terms of the associated Legendre functions as

Ylm(θ, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cosθ)eimϕ

where Pml (x), is the associated Legendre function,is defined as

Pml (x) =
(−1)m

2ll!
(1− x2)m/2

dl+m

dxl+m
(x2 − 1)

In a spherical geometry, the components of an individual multipolar magnetic field vectors are written as

Blmr (r, θ, ϕ) = −4π
l + 1

2l + 1

qlm
rl+2

Ylm(θ, ϕ) (36)

Blmθ (r, θ, ϕ) =
4π

2l + 1

qlm
rl+2

Y
(1,0)
lm (θ, ϕ) (37)

Blmϕ (r, θ, ϕ) =
4π

2l + 1

qlm
rl+2

im sinθ Ylm(θ, ϕ) (38)

where 1 is for m and 0 is for ϕ it is polar component.

qlm ≡
∫
d3r′r′l Y ∗lm(θ, ϕ)ρ(~r′) (39)

=

∫ ∞
0

r′2dr′
∫ 2π

0

dϕ′
∫ π

0

sinθ′dθ′ρ(r′, θ′, ϕ′)r′lY ∗lm(θ′, ϕ′) (40)

qlm is known as multipole moment of the charge distribution. This moment satisfy the identity qlm = (−1)m q∗l,−m.The first
few moments are as follows

q00 =
q√
4π
, q10 =

√
3

4π
Pz

where q is precisely the total charge of the system and P is the electric dipole moment, when expressed in terms of spherical
polar coordinates, x = rsinθcosϕ, y = rsinθsinϕ and z = rcosθ using these

q11 = −
√

3

8π

∫
d3r′ ρ(~r′)r′sinθe−iϕ = −

√
3

8π

∫
d3r′ρ(~r′)(x− iy) =

√
3

8π
(px − ipy) (41)

q20 =
1

2

√
5

4π
Q33 , q21 = −1

3

√
15

8π
(Q13 − iQ23)

q22 =
1

12

√
15

2π
(Q11 − 2iQ12 −Q22) (42)

where, Qij is the traceless quadrupole moment tensor,defined by

Qij ≡
∫
d3r′ρ(~r′)(3r′ir

′
j − r′2δij) (43)

i and j stand for cartesian components x, y and z or 1, 2, 3

Tr(Q) =

∫
d3r′ρ(~r′)(3r′2 − 3r′2) = 0 (44)
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Since,
∑1,2,3
i r′2δii = r′2(δ11 + δ22 + δ33) = 3r′2 and∑

i r
′
ir
′
i = 3r′2. The quadrupole moment tensor is symmetric

i.e,Qij = Qji this reduces the number of possible independent
components to six. As its name suggests it has zero trace
so that Q33 = −Q11 − Q22 and only two of the diagonal
components are independent. Thus the tensor can have at most
five independent components [23].

Qij =

 Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33


Ifm = 0 and l is arbitrary, then one obtains axially

symmetric and uniform multipolar components [14, 15, 29].
The magnetic moment associated with the strength of the
magnetic multipole component (lm) at the surface of the star
is defined as µlm = Blms Rl+2

s [11? ]. i.e µlm = B∗0R
l+2
∗ ,

where B∗0 is the reference magnetic field on the surface of the
star and R∗ is the radius of the star. Now applying the above
expressions from equations (36) and (37) then obtain.

Br = 4π
2 + 1

4 + 1

q20
rl+2

Y20(θ, ϕ) (45)

= 4π
3

10

√
5

4π

Q33

r4

√
5

4π
(
3

2
cos2θ − 1

2
)

=
3

2

Q33

r4
(
3

2
cos2θ − 1

2
)

B(2)
r =

3

4

Q33

r4
(3cos2θ − 1) =

3

4

µq
r4

(3cos2θ − 1) (46)

where Q33 = Q is the quadrupole moment and refer to the
axis of symmetry as the “direction” of the quadrupole moment
(µq). Considering axial multipoles where the space-fixed z-
axis of the star (the stellar rotation axis) as the symmetry
axis of the multipole being considered then can get the
known general multipolar magnetic field equation [29]. Then
spherical field components of an axial multipole (Bϕ = 0) of
order l are given by

Blr = Bl,pole∗

(
R∗
r

)l+2

Pl(cosθ) (47)

Blθ =
Bl,pole∗

l + 1

(
R∗
r

)l+2

Pl1(cosθ) (48)

Where R∗ is the star radius,r is a point external to the star,
Pl1(cosθ) and Pl(cosθ) are the m = 1 lth associated Legendre
function and the lth Legendre polynomial respectively.
Now by applying quadrupole field equations, calculate the
quadrupolar magnetic field components of neutron star. In the
same way solving for ~Bθ yields

B
(2)
θ =

3Q33

2r4
sinθcosθ =

3µq
2r4

sinθcosθ (49)

where
µq = |Q|ΩR3

∗ (50)

3.3. Magnetic Octupolar Field

The octupolar field components are also found from
previously determined vector potential of l = 3 in chapter one.
The result obtained is as follows:

B(3)
r ≈

(
7Υ

5r5

)
cosθ(5cos2θ − 3)êr (51)

B
(3)
θ ≈

(
21Υ

20r5

)
sinθ(5cos2θ − 1)êθ (52)

Where Υ = Υ Υ̂=|Q|ΩR4
∗ is the octupole moment. Following

the same fashion the octupole magnetic field components are
shown as follows. Hence,from the previous relation

Υ = B∗oR
5
∗Υ̂ (53)

3.4. Magnetic Dipole-Quadrupole Field Interaction

Considering that magnetic dipole and quadrupole moments
are deflected from the rotation axis by same angle then
magnetic dipole and quadrupole combination (interaction) of
neutron star as:

Bd+qr = Bdr+Bqr =
2µd
3r3

cosθ êr+
3

4

µq
r4

(3cos2θ−1)êr (54)

Bd+qθ = Bdθ +Bqθ =
µd
3r3

sinθ êθ +
3µq
2r4

sinθcosθ êθ (55)

This interaction become minimum at the point where the
first derivative of the equation with respect to r or θ is zero,
this happen at:

− 3µq
2rµd

=
cosθ

(3cos2θ − 1)
(for the radial component)

|r| = 3µq
2µdcosθ

(3cos2θ − 1) (56)

For instance consider θ = 0 the value of r at which the
interaction is minimum will be | r |= 3

µq

µd
and so on for other

angles. After some calculation for polar component then get

− 9µq
2rµd

=
cosθ

(cos2θ − sin2θ)
(for polar angle θ) (57)

cosθ =
−9µq
2rµd

(1− 2sin2θ) (58)

Note, that r is measured from the center of the star. Figure 1
shows the field is very strong for dipole plus quadrupole. Both
are reducing at the point far from the star. However, the dipolar
field is strongest of all very far from the star because the
far field potential is dominated by the first non-zero moment
(l = 1). According to our assumption on this graph if r = 1 it
is on the surface of the star.
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Figure 1. Graphical comparison of neutron star magnetic multipole fields and the dipole-quadrupole interaction field vs r(distance from the center of the star). As seen from the graph
octupolar field is fast decaying field as r increases where as the dipole-quadrupole interaction field is strongest at the surface of the star.

3.5. Magnetic Multipole Field Line Equations of Neutron
Star

Qualitatively, a field line for any vector field ~V is a curve
that is tangential to ~V at every point along the line. The
concept of a field line may be given a mathematical description
by writing down the equation for the field line. A convenient
starting point is the parametric equations for the field line in
cartesian coordinates:

dx

Bx
=
dy

By
=
dz

Bz
(59)

The above parametric equations (may be written in terms
of any other orthogonal coordinate system. Accordingly, the
magnetic field line equations for different poles and model
their geometry can be derived.

4. Magnetic Dipole Field Line
Here by “equation of the field lines” it means an expression

of the form r = r(θ) which describes the path (shape) of the
field lines in a spherical coordinate system. An expression for
the field lines of an axisymmetric (axial) multipole of arbitrary
degree is derived. In this context the order of a magnetic
multipole for(l = 1 and l = 2) can be thought of as the
number of polarity changes in the surface field between the
north and south pole of the star. In this paper the attention
given to axial multipoles, which generate planar field lines.
For example, an axial dipole (l = 1),quadrupole l = 2, and
octupole (l = 3). Throughout our work r and θ are standard
spherical polar coordinates, with θ measured from the rotation
pole of the star; θ = 0 corresponds to the stellar rotation pole,
θ = π

2 corresponds to the equatorial plane.The origin of the
coordinate system is at the center of the star, and thus the stellar

surface corresponds to r = R∗. Only azimuthally symmetric
multipoles, known as axial multipoles are considered, i.e,
Bϕ = 0. The differential equation describing the path of the
field lines in spherical coordinate is

Figure 2. Pure magnetic dipole field line geometry forKd > 1.

dr = drr̂ + rdθθ̂ + rsinθdϕϕ̂ (60)

In two dimension (2-D) magnetic field can be written as

~B = Br r̂ +Bθ θ̂ (61)
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Here l = 1 dividing these equation one by the other then get

B
(1)
r r̂

drr̂
=
B

(1)
θ θ̂

rdθθ̂
=⇒ B

(1)
r

dr
=
B

(1)
θ

rdθ
(62)

=⇒ dr

r
=
B

(1)
r

B
(1)
θ

dθ = Kd

Where kd is a constant related to the field curvature which,
upon substituting for Br and Bθ from above and integrating,
yields the well known result.

dr

rdθ
=

2cosθ

sinθ

⇒ dr

r
= 2cotθdθ

⇒ dr

r
=

∫
2cotθdθ

⇒ lnr = 2ln|sinθ|+ lnkd = ln|sinθ|2 + lnkd

| r(θ) |= kdsin
2θ (63)

This is the general field line equation for magnetic dipole
field. Figure 2 implies if a particular closed field line loop
of the dipole reaches a maximum radial extent of rmax in the
stellar equatorial plane, where θ = π/2, then the integration
constant in the above equation (63) is equal to rmax [29]. Thus
for a dipole the equation of the particular closed field line will
be

r(θ) = rmaxsin
2θ (64)

Different values of rmax correspond to different field lines.
There are two lobes in a spam of 360 degrees or in the
range (0, 2π) for a specific kd, where kd is a constant related
to the dipolar field curvature. For r < rm the magnetic
energy-density dominates and the field lines are closed. The
surfaces where magnetic stress energy balanced with matter
stress (P + ρv2 = B2

8π ) i.e, the surface β = 1 separates
the regions of magnetically dominated and matter dominated
plasma

(
β = (P + ρv2)/B

2

8π

)
.

5. Magnetic Quadrupole Field Line

Here, again applying the same method as dipole field line

dr = drr̂ + rdθθ̂ + rsinθdϕϕ̂ (65)

As usual in 2D magnetic field can be written as

B = Br r̂ +Bθ θ̂ (66)

B
(2)
r

dr
=
B

(2)
θ

rdθ
=⇒ dr

r
=
B

(2)
r

B
(2)
θ

= kq (67)

Substituting the quadrupolar field B
(2)
r and B

(2)
θ from

chapter 2 and have

dr

r
=

3µq

4r4 (3cos2θ − 1)
3µq

2r4 sinθcosθ
(68)

⇒
∫
dr

r
=

∫
1

2

(3cos2θ − 1)

sinθcosθ

lnr =
1

2

∫
(3cos2θ − 1)

sinθcosθ
dθ =

1

2

∫
3(1− sin2θ)− 1

sinθcosθ
dθ

=
1

2

∫
3− 3sin2θ − 1

sinθcosθ
dθ =

1

2

∫
2− 3sin2θ

sinθcosθ
dθ

=

∫
1

sinθcosθ
dθ − 3

2

∫
sin2θ

sinθcosθ
dθ

=

∫
1

sinθcosθ
dθ − 3

2

∫
sinθ

cosθ
dθ

=

∫
1

sinθcosθ
dθ − 3

2

∫
tanθdθ

=

∫
cscθsecθdθ − 3

2
(−ln)|cosθ|+ lnkq

= ln|tanθ|+ 3

2
ln |cosθ|+ lnkq

r(θ) = ln|tanθ|+ ln |cosθ|3/2 + lnkq

| r(θ) |= kq tanθ cos
3
2 θ (69)

Figure 3. Pure quadrupole field line geometry for the solution derived above.

Figure 3 indicates the quadrupole field has four lobes in
the range (0, 2π) or in a spam of 360 degrees.which have one
solution for a single degree in one quadrant for a specific kq .



American Journal of Astronomy and Astrophysics 2024; 11(4): 92-105 102

6. Results

6.1. Equation of Magnetic Dipole-quadrupole Interaction
Field Line and Its Geometry

Summing up our previous dipole and quadrupole filed
equations as:

B(d+q)
r = B(1)

r +B(2)
r , B

(d+q)
θ = B

(1)
θ +B

(2)
θ (70)

Where the indices 1 and 2 indicate the dipole (l = 1) and
quadrupole (l = 2) respectively.

Bd+qr =
2µd
3r3

cosθ +
3Q

4r4
(3cos2θ − 1) (71)

Bd+qθ =
µd
3r3

sinθ +
3Q

2r4
sinθcosθ (72)

dr

rdθ
=
Br
Bθ

(73)

=⇒
∫
dr

r
=

∫
Br
Bθ

dθ

=⇒ lnr =

∫
Br
Bθ

dθ (74)

Inserting the values of Br and Bθ from above, and find

lnr(θ) =

∫ 2µd

3r3 cosθ +
3µq

4r4 (3cos2θ − 1)
µd

3r3 sinθ +
3µq

2r4 sinθcosθ
dθ (75)

=

∫ 2µd

3r3 cosθ
µd

3r3 sinθ +
3µq

2r4 sinθcosθ
dθ +

∫ 3µq

4r4 (3cos2θ − 1)
µd

3r3 sinθ +
3µq

2r4 sinθcosθ
dθ

the integration yields

lnr(θ) =
9logsin(θ/2)/cos(θ/2)

11
− log(4 + 18cosθ)

cosθ + 1
/2

−162log(4 + 18cos(θ)

cos(θ) + 1)
/(8− 162)− 3log

1/cos(θ/2)2

2
+ 4log

sin(θ/2)

cos(θ/2)
/11 + lnk (76)

Simplifying this one can arrive at the solution keeping magnetic moments and r constant.

| r(θ) |= k

 (tan(θ/2))
13
11[(

4+18cosθ
cosθ+1

) 162
8−162−1/2 ( 1

1/2cosθ+1/2

)]3/2
 (77)

Figure 4. Dipole-Quadrupole interaction field line geometry for specific k.

Figure 5. Dipole-Quadrupole interaction field lines geometry for k = n, as number of
k increases large space needed to see full line here.
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Figure 6. Graphical representation of field lines for neutron star magnetic dipole-quadrupole interaction,where θ is in radians.

Figure 7. Graph of magnetic pure dipole and quadrupole field lines and their interaction.

This is the solution obtained. Figures 4 and 5 are geometries
of this filed line equation for a single k and several k’s
respectively. There are two lobes in a spam of 360 degrees
or in the range (0, 2π) for a specific k, where k is a constant
related to the interaction field curvature. The geometry is some

what different in shape from pure dipole field line geometry as
it is to be.This field line geometry indicates that there is only
one solution for a particular degree in a quadrant. It also shows
that the field geometry become open at a given distance from
the star this means, if the value of k is increased one can obtain
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the point at which field lies become open (see figures 4 and 5).
Figure 6 shows the maximum field lines at the for the angle of
deflection of magnetic moments from axis of rotation.

The geometry for single k has only one loop in a given
quadrant and for many k there are many loops. Since, k
is related to the interaction field curvature, as the value of
this increases the field line open at a given distance from the
surface of the star. This point has some physical meaning or
importance to understand the flow of matter to a compact star.
The magnetic stresses thus increase much more steeply with
decreasing radius than the material stresses do. Therefore,
generically one expects that far from the star, material stresses
must dominate. Close to the star, magnetic stresses dominate.

This is the graph of our field line solution for neutron star
dipole-quadrupole magnetic field interaction. It is plotted for
the angle of deflection of magnetic moments from axis of
rotation versus r(θ) between zero degree and π or 3.14 rad and
help us to indicate the point of neutral lines. Here the graph
indicates there are three neutral lines as expected. The three
neutral lines for this interaction part are the two axes, θ = 0
and θ = π and a circle in the plane (r, θ) on which r-solutions
correspond to θ-angles in the domain [π2 ,

3π
2 ] radians.

7. Discussion

There are three neutral lines for the interaction part as
expected: the two axes, θ = 0 and θ = π and a circle in the
plane (r, θ) on which r-solutions correspond to θ-angles in the
domain [π2 ,

3π
2 ] degrees. The three field lines have the same

solution at some degrees as both have the same at π. Values of
the magnetic field on the lines θ = 0, or θ = π obtained from
the equations of magnetic field components, it is clear that on
the lines θ = 0 and θ = π, Bϕ(r, θ) = 0, as it is zero every
where, Bθ(r, θ) = 0, since sin θ is in factor, but in particular,
on the line θ = π, there is a point at which Br(r, θ) = 0.
This point show that it may be a neutral point for particular
configurations of the magnetic field in the star magnetosphere.
These neutral points may or may not have physical meaning.

8. Conclusion

In this paper the multipolar magnetic fields of neutron
star have been calculated and derived from a vector potential
produced by spinning surface charges. This paper investigated
magnetic dipole-quadrupole interaction field of neutron star
as well as simulated its geometry of field lines in 2D for a
single field curvature (k = 1) and for different field curvatures
(k = n). Simulations showed that magnetic field lines are
closed if magnetic field is strong enough or (near the surface
of the star) and open far from the star this can happen at a
maximum radial extent of rmax in the stellar equatorial plane
(a given distance from the surface of a star). Geometry of these
field lines can affect the size of matter flow to the compact star.
As seen from geometry of field line the size of accretion disc
could be thick.
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