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Abstract 

The Lagrange Multiplier method has been applied in solving the regular Sturm Liouville (RSL) equation under a boundary 

condition of the first kind (Dirichlet boundary condition). This method is a very powerful tool for solving the RSL equation and 

it involves the solution of the RSL equation with the expansion of eigenfunctions into trigonometric series. The efficiency of this 

approach is emphasized by solving two examples of regular Sturm Liouville problem under homogenous Dirichlet boundary 

conditions. The methodology is effectively demonstrated, and the results show a high degree of accuracy of the solution in 

comparison with the exact solution and reasonably fast convergence. 
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1. Introduction 

Differential equations with suitable initial and boundary 

conditions are widely used to describe the physics of the 

problems. In order to study the physical systems, it is im-

portant to understand the differential equations and find their 

solutions. It is well known that in most of the practical sys-

tems, the equations are complex and do not have conventional 

analytical solutions [1-4]. In many complex linear second 

order differential equations, solutions are often obtained with 

the help of semi–analytical or numerical methods, like a series 

of expansion of functions [1, 2]. Such obtained solutions 

warrant in-depth understanding in the view of the physics of 

the problem and their application to the real problem of 

physical situations needs analytical study [3-5]. Most of the 

problems in physics arise in the form of boundary value 

problems (BVP). In this article, the solution of linear second 

order differential equations with BVP will be studied. 

In complex situations, the solution of BVP can be easily 

made with the help of variational techniques. Such as un-

steady state heat and mass transfer problems can be easily 

converted to the problem of eigenvalue one and in these cases, 

variational methods are very useful [1-3]. However, very 

often, variational techniques demand both homogeneous 

differential equations along homogenous boundary conditions. 

In many physical systems, homogenous boundary conditions 

do not prevail particularly in the case of boundary conditions 

of first kind or Dirichlet boundary conditions. In such situa-

tions, it is convenient to choose a suitable variable and reduce 

the boundary conditions into a homogeneous one. This leads 

to non-homogeneous differential equations with homogene-

ous Dirichlet boundary conditions. 

In this paper, an elegant method of solving non – homo-

geneous differential equations with homogeneous Dirichlet 
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boundary conditions are described by seeking a solution as an 

expansion of eigenfunctions. The method involves converting 

the second-order differential equation to the Sturm – Liouville 

eigenvalue problem and equating the homogeneous part of the 

RSL equation to a multiplier. It is also termed as Lagrange 

multiplier method [2, 4-7]. However, the application of this 

method and its governing rules in the field of engineering 

problems are not well documented in the literature. The ob-

jective of this article is to find a straight forward approach to 

solve the RSL equation by deriving Lagrange multipliers and 

evolving a generalized solution as a set of functions. In this 

article, the principles of Lagrange Multiplier from a varia-

tional perspective are discussed and a deep understanding of 

the nature of such principles along with their application to 

basic problems is provided. 

2. The Method 

It is possible to express any second order differential 

equation as Sturm – Liouville equation as; 

L(Z) =  
d

dx
(p(x)

dZ

dx
) + q(x)Z            (1) 

where, L is Sturm – Liouville operator. 

In practical systems, non – homogeneous Dirichlet bound-

ary conditions can be reduced to homogeneous ones. This 

leads the Sturm – Liouville equation to become a non – ho-

mogeneous one and can be expressed as, 

L(Z) =  F(x)               (2) 

It may be noted that non – homogeneous Sturm – Liou-

ville problems may also arise when we try to solve non – 

homogeneous partial differential equations (PDE). This can 

have two parts – a general solution to the homogenous prob-

lem and a particular solution of non – homogeneous part as; 

L(Z) = L(Zh + Zp) = L(Zh) +  L(Zp)       (3) 

such that, L(Zh) =  0 and L(Zp) = F(x)      (4) 

Any linear second order operator can be converted into an 

operator with self – adjointedness by carrying out following 

procedure. The resulting operator is referred to as a Sturm 

Liouville operator which is expressed as; 

L =  
d

dx
p(x)

d

dx
+ q(x)          (5) 

Putting equation (5) into equation (2), we obtain, 

L(Z) =  
d

dx
(p(x)

dZ

dx
) + q(x)Z = F(x)       (6) 

The functions p(x), p’(x) and q(x) are assumed to be con-

tinuous in the range (x1, x2) and p(x) >0 on [x1, x2]. Thus, the 

Sturm – Liouville equation becomes regular (RSL) in the 

interval [x1, x2]. 

A general linear second order differential equation can be 

expressed as below, 

a2(x)Z′′ + a1(x)Z′ + a0(x)Z = f(x)      (7) 

Or, Z′′ +
a1(x)

a2(x)
Z′ +

a0(x)

a2(x)
Z =

f(x)

a2(x)
       (8) 

Both sides of equation (8) are multiplied by µ(x) and the 

equation may be written as; 

µ(x)Z′′ + µ(x)
a1(x)

a2(x)
Z′ + µ(x)

a0(x)

a2(x)
Z =  µ(x)

f(x)

a2(x)
      (9) 

The first two terms of equation (9) can be combined into 

an exact derivative of (µZ′)′ if µ(x) satisfies 

dµ

dx
=  µ(x)

a1(x)

a2(x)
          (10) 

The equation (10) can be solved to obtain µ(x) as follows; 

µ(x) =  e
∫(

a1(x)

a2(x)
)dx         (11) 

Thus, the original equation (7) can be multiplied by a fac-

tor 

µ(𝑥)

𝑎2(𝑥)
=  

1

𝑎2(𝑥)
 𝑒

∫(
a1(x)

a2(x)
)dx

        (12) 

to turn it into RSL form of equation (6). In summary, it may 

be expressed as follows; 

p(x) =  𝑒
∫(

a1(x)

a2(x)
)dx

             (13) 

q(x) =  p(x)
a0(x)

a2(x)
             (14) 

and, F(x) = p(x)
f(x)

a2(x)
              (15) 

Hence it is possible to transform any linear second order 

differential equation in the form of Sturm-Liouville equation 

and can be described as in equation (2), where Z(x) is to sat-

isfy given homogeneous Dirichlet boundary conditions. The 

eigenfunction expansion method makes use of eigenfunc-

tions, Φn(x), satisfying the eigenvalue problem and can be 

equated with the left side of equation (2), subject to the given 

boundary conditions. 

L(Φn) =  −λσ(x)Φn              (16) 

Here, λ is the Lagrange multiplier [2, 6-10] and σ(x) is 

weight function. Then Z(x) of equation (2) can be written as 

an expansion in the eigenfunctions such as; 
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Z(x) =  ∑ CnΦn(x)∞
n=1            (17) 

Inserting the expansion of equation (17) into the left part 

of non-homogeneous differential equation (16) gives; 

L(∑ CnΦn(x)∞
n=1 ) = − ∑ Cnλnσ(x)Φn(x)∞

n=1        (18) 

Therefore, the non – homogeneous part of equation (2), 

F(x), can be expressed as a series of expansion of eigenfunc-

tions as: 

F(x) =  − ∑ Cnλnσ(x)Φn(x)∞
n=1           (19) 

It is known that inner product of two functions f(x) and g(x) 

can be defined in the interval [x1, x2] if the integral exists as; 

< f, g > =  ∫ f(x)g(x)dx 
x2

x1
         (20) 

If Φm(x) is the m-th eigenfunction of series *Φn(x)+𝑛=1
∞ ; 

which constitutes F(x), then the inner product in between F(x) 

and Φm(x) can be expressed by multiplying right part of equa-

tion (19) by Φm(x) and integrate over the range [x1, x2] as, 

∫ F(x)Φm(x)dx =  − ∑ Cnλn ∫ Φn(x)Φm(x)σ(x)dx 
x2

x1

∞
n=1

x2

x1
                     (21) 

Or, ∫ F(x)Φm(x)dx 
x2

x1
=

− (C1λ1 ∫ Φ1(x)Φm(x)σ(x)dx
x2

x1
+ C2λ2 ∫ Φ2(x)Φm(x)σ(x)dx + . . + Cmλm ∫ Φm(x)Φm(x)σ(x)dx

x2

x1
+ ⋯ 

x2

x1
)      (22) 

We consider the inner product of two functions F(x) and Φm(x) where F(x) is an expansion series as described in equation 

(19) and using the basis of orthogonality, it can be expressed as; 

< F(x), Φm(x) > =  ∑ Cnλn < Φn(x), Φm(x) > σ(x)∞
n=1 =  ∑ Cnλn

∞
n=1 < Φm(x), Φm(x) > δn,mσ(x)       (23) 

Where, δn, m is the Kronecker delta and is defined as; 

δn,m =  {  1,n=m
0,n≠m              (24) 

Therefore, applying orthogonality to equation (22), the 

following equation is obtained; 

∫ F(x)Φm(x)dx 
x2

x1
= − Cmλm ∫ Φm(x)Φm(x)σ(x)dx

x2

x1
  (25) 

Hence, it is possible to obtain expansion coefficient as 

follows; 

Cm = − 
∫ F(x)Φm(x)dx

x2
x1

λm ∫ Φm
2 (x)σ(x)dx

x2
x1

            (26) 

3. Illustrative Example 

In this section, we will present an example that has exact 

solution as well as an approximate solution can be computed 

with expansion series of eigenfunctions. We now consider a 

generalized non-homogeneous differential equation and try 

to solve it with Lagrange Multiplier method. For example, 

we try to solve; 

d2y

dx2 + ky = x                 (27) 

Under homogeneous Dirichlet boundary conditions; 

y(0) =  0 = y(1)               (28) 

It may be noted that this type of differential equation com-

monly arises in mechanical and electrical engineering, physics, 

and other fields where the behavior of dynamic systems is 

analyzed. It may be pointed out that application of  the 

method of separation on unsteady state heat or mass transfer 

problems often leads into ordinary differential equation which 

are usually in the form of equation (27). In many physical 

problems, the above differential equation (27) relates to a mass 

– spring system with an external force. Solving the differential 

equation would provide the function y(x), giving a displace-

ment of the mass as a function of the external force applied. 

Applying equation (13), (14) and (15), it is possible to 

convert equation (27) to RSL form as follows: 

(y′)′ +  ky = x           (29) 

Where, p(x) = 1, q(x) = k and F(x) = x. 

If Φ is the set of eigenfunctions, then LHS of equation (29) 

can equated to Lagrange multiplier as follows: 

Φ′′ +  kΦ =  − λσ(x)Φ          (30) 

Where, λ is Lagrange Multiplier [2, 6, 8-10], σ(x) is 

weight function and σ(x) > 0. In this case, we consider σ(x) = 

1 and rewrite the equation (30) as; 

Φ′′ +  (k + λ)Φ = 0         (31) 

Here, we assume λ > - k, so that the eigenfunctions be-

come expansion series of trigonometric functions. It may be 

mentioned that k may a constant or a function of x. Therefore, 

the solution can be written as: 
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Φn(x) = Acos ((√k + λ)x) + Bsin (√(k + λ)x)    (32) 

Putting the first part of boundary conditions (28), we ob-

tain A = 0 and, therefore; 

Bsin ((√k + λ)x) = 0           (33) 

If B = 0, then the solution becomes trivial one. Hence, we 

assume, 

sin (√(k +  λ)x) = 0           (34) 

The equation (34) can lead the solution of equation (30) to 

some meaningful solution and the equation (34) is only valid 

when λn =  n2π2 −  k. Therefore, the solution can be ex-

pressed as; 

Φn(x) =  Bsin(nπx)           (35) 

In order to find out B, it is often useful to normalize the 

eigenfunctions. Thus, we have 

∫ (Φn(x))
2

σ(x)dx = 1
1

0
            (36) 

Since, σ(x) = 1, the equation becomes; 

∫ B2(sin (nπx))2dx
1

0
= 1             (37) 

Thus, we obtain B =  √2 and the solution becomes; 

yn =  ∑ CnΦn(x)∞
n=1          (38) 

Now, we first expand the unknown solution in terms of 

eigenfunctions and equate with non – homogeneous part of 

equation (29). 

x =  − ∑ Cnλn(√2)∞
n=1 sin(nπx)        (39) 

Applying orthogonality and equations (22) to (25) and 

equation (39), it can be easily derived as; 

Cm =  − 
∫ xΦm(x)dx

1
0  

λm ∫ (Φm(x))
2

σ(x)dx
1

0

         (40) 

Since, we considered σ(x) = 1, each coefficient can easily 

be derived as follows: 

Cm =  − 
1

√2
 

∫ xsin(mπx)dx
1

0

(m2π2−k) ∫ (sin(mπx))2dx 
1

0

       (41) 

The above equations (40) and (41) is true when k is con-

stant. If k is a function of x, then equation (41) should be 

rewritten as; 

Cm =  −
1

√2
 

∫ xsin(mπx)dx
1

0

∫ (m2π2−k)(sin (mπx))2dx
1

0

       (42) 

4. Results 

4.1. Analysis with Constant k 

In this section, a reasonably simple form of the differential 

equation for the solution is chosen with constant k so that it 

is possible to compare the results with that of the exact solu-

tion. 

Figure 1 shows the comparison of results between the exact 

solution and solutions obtained from equation (38) in the inter-

val [0, 1]. It is clear that the solution of equation (29) in the La-

grange multiplier method with even 2 terms almost matches the 

exact solution. The variation of each term with x is illustrated in 

Figure 2. Figure 3 displays the behavior of each eigenfunction 

by computing variations after derivation of n-th term Lagrange 

multiplier and shows the variational approach to estimate the 

solution with increasing eigenvalues [4-6, 8-11]. 

 
Figure 1. Comparison of exact solution y = f(x) with solutions ob-

tained from Lagrange Multiplier method with different number of 

terms computed (k = 2). 

 
Figure 2. Variation ynth term with x (k = 2). 
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Figure 3. The variation of eigenfunctions at different eigenvalues 

(λn) with x (k = 2). 

4.2. Analysis with k as a Function of x 

When k of equation (29) is a function of x, equation (42) 

should be used to determine the coefficients and solve the 

differential equation. We have considered k = x and the 

equation becomes: 

d2y

dx2 + xy = x                  (43) 

The equation (43) has been solved under the boundary 

condition (28) using equation (42) and the results are illus-

trated in figure 4. 

 
Figure 4. Variation of yn(x) with x at different number of terms 

when k = x. 

The results are compared with one, two and three terms of 

Lagrange multiplier solution. It may be noted that the equa-

tion (43) under homogenous Dirichlet boundary conditions 

does not have exact solution. However, it is evident from the 

figure 4 that the solution with n = 3 approaches to desired 

accuracy and this will be separately emphasized in the next 

section. 

4.3. Remarks 

It should be noted that one must take a sufficiently large 

number of coefficients of yn(x) so that the solution converges 

and approaches to very near exact value. The conditions for 

the convergence of the solution broadly are discussed in the 

literature. However, these estimates are so complicated that 

they are impractical in actual situations [1, 2, 11]. For this 

reason, it is convenient to calculate yn(x) and yn+1(x) and 

compare the results. If the two successive terms coincide 

within the limits of desired accuracy, then the solution of the 

variational problem can be taken as yn(x) and the corre-

sponding value of λ is accepted. Otherwise, further iteration 

process is repeated till the values agree within the desired 

accuracy. 

Figure 5 shows that the residual reduces as n increases 

when k is assumed to constant. This suggests that the residu-

al, R, can be used as a criterion and this has been established 

for many problems [1, 7, 10, 11]. 

R =  yexact − yn                (44) 

 
Figure 5. Residual as a function of x with (i) n = 1, (ii) n = 2, (iii) n = 

3. (k = 2). 

Comparing the residuals in Figure 5, it is clear that the ap-

proximate solution corresponding to the case n = 3 would be 

a fairly good solution. Furthermore, error bounds can often 

be derived in terms of residual, so that the error bounds are 

improved [1, 2, 7, 10, 11]. For all problems, one can use the 

residual as a guide to the success of approximation, and in 
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many problems, this guide can be made precise with numer-

ical values for errors. It is more difficult to establish error 

bounds than finding the solution. 

If k is a function of x, one should examine the conver-

gence of two successive terms and justify the desired accu-

racy with requirement of the practical systems as exact solu-

tion of equation (43) does not exist. Figure 6 displays the 

difference of two consecutive terms and it is clear that the 

difference in between y3 and y2 solution becomes lesser than 

that of y2 and y1. For the requirement of very precise results, 

higher approximations must be calculated. As n increases, 

one can expect the residual become smaller. 

 
Figure 6. Difference of two successive terms as a function of x (k = x). 

The solution with n = 3 is also displayed for comparison. 

5. Conclusions 

In this article, an analytical method called Lagrange mul-

tiplier method from a variational approach for a solution of 

non – homogeneous second order differential equation under 

homogeneous Dirichlet boundary condition has been pre-

sented. In this method, it is mandatory to expand eigenfunc-

tions into the series of trigonometric functions to achieve 

meaningful, non – trivial and convergent solutions. 

The solution of non – homogeneous second order differ-

ential equation has been obtained where an exact solution is 

available and therefore, it has been possible to compare the 

results with the exact solution. In actual physical systems, 

the field differential equation is much more complicated, and 

further complexity arises due to boundary conditions. 

Therefore, this method of solving non – homogeneous RSL 

in terms of expansion of trigonometric series has been effec-

tively applied to the RSL problems where exact solution 

does not exist. In such cases, one should compare the results 

of two successive terms for desired accuracy and conver-

gence. Finally, it is evident from the analysis emphasized in 

this article that the Lagrange multiplier method is a very 

powerful and reasonably easy tool for solving non – homog-

enous linear RSL equations with varied boundary conditions 

of the first kind. 
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