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Abstract: In relation to group action, much research has focused on the properties of individual permutation groups acting
on both ordered and unordered subsets of a set, particularly within the Alternating group and Cyclic group. However, the action
of the direct product of Alternating group and Cyclic group on the Cartesian product of two sets remains largely unexplored,
suggesting that some properties of this group action are still undiscovered. This research paper therefore, aims to determine the
combinatorial properties - specifically transitivity and primitivity - as well as invariants which includes ranks and subdegrees
of this group action. Lemmas, theorems and definitions were utilized to achieve the objectives of study with significant use
of the Orbit-Stabilizer theorem and Cauchy-Frobeneus lemma. Therefore in this paper, the results shows that for any value
of n > 3, the group action is transitive and imprimitive. Additionally, we found out that when n = 3, the rank is 9 and the
corresponding subdegrees are ones repeated nine times that is, 1, 1, 1, 1, 1, 1, 1, 1, 1. Also, for any value of n > 4, the rank is 2n
with corresponding subdegrees comprising of n suborbits of size 1 and n suborbits of size (n− 1).
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1. Introduction
Consider two groups, Alternating group denoted as An and

Cyclic group denoted as Cn acting on disjoint sets X and
Y respectively. Then the group action of An × Cn acting
on X × Y is defined as (g1, g2)(x, y) = (g1x, g2y) ∀ g1 ∈
An, g2 ∈ Cn, x ∈ X and y ∈ Y .

This paper will determine the transitivity, primitivity, ranks
and subdegrees of group action An × Cn acting on X × Y
when n = 3, 4 and 5 before generalizing for n ≥ 3.

2. Notation and Preliminary Results

Definition 2.1. [1] A set G together with a binary operation
is said to be a group if it satisfies the axioms of closure,

associativity, identity and inverse.
Definition 2.2. [2] Let X be a non-empty set, then a

permutation is a bijective mapping from set X to itself. The
group is said to be Symmetric if it consist of all permutations of
a set X and is denoted as Sn. The subgroup of Sn that consist
of all even permutations is referred to as the Alternating group
and is denoted by An whose order is |An| = n!

2 .
Definition 2.3. [3] A Cyclic group is a group that can be

generated by a single element g ∈ G such that G = 〈g〉. It
is denoted as Cn and has an order of n.

Definition 2.4. [4] A group G is said to act on the left side of
set X if the following axioms are satisfied:

1. There is a unique element gx ∈ X for all g ∈ G and
x ∈ X .

2. ex = x for all x ∈ X where e is an identity element of
G.
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3. g1 (g2x) = (g1g2)x for all g1, g2 ∈ G and x ∈ X .
Definition 2.5. [5] Suppose that G acts on X . Then a point is

said to be fixed if the elements of set X is fixed by element of
a group. It is denoted as FixG(x) and given by : FixG(x) =
{x ∈ X : gx = x}.

Definition 2.6. [6] Suppose that G acts on X . Then the
stabilizer of point x in G is the set of elements of the group
which leaves elements of a set unchanged under group action.
It is denoted as StabG(x) and given by: StabG(x) = {g ∈
G : gx = x}.

Definition 2.7. [7] Suppose G acts on X . Then the orbits
of point x in G are the partitions under the group action that
represents the equivalence classes of elements of a set when
mapped by the elements of the group. It is denoted as OrbG(x)
and given by OrbG(x) = {gx : g ∈ G}.

Definition 2.8. [8] The action of G on X is said to be
transitive if there is only one orbit. That is, for any two
elements x, y ∈ X , there exist an element g in G such that
y = gx. Therefore, the action is transitive if and only if
|orbG(x)| = |X|.

Theorem 2.1. (Orbit-Stabilizer Theorem)[9]. Suppose that G
acts on a set X for all x ∈ X . Then the number of element in
the orbit of x is the index of the stabilizer of x in G given by:
|OrbG(x)| = |G : StabG(x)|.

Lemma 2.1. ( Cauchy Frobeneus Lemma) [10]. Suppose that
G acts on set X . Then the number of suborbits of G is given
as 1
|G|

∑
g∈G
|FixG(x)|.

Theorem 2.2. [11] Consider an Alternating group An acting
on a set X . For each x ∈ X , the stabilizer of An is isomorphic
to An−1.

Theorem 2.3. [12] Suppose a Cyclic group Cn acts on a set
X . For each x ∈ X , the stabilizer StabCn

(x) is {e} which is
the identity.

Definition 2.9. [13] Suppose that G1 and G2 are permutation
groups acting on the set X and Y respectively. Then G1 ×G2

is said to be a direct product acting on the Cartesian product
X × Y with the group operation defined by (g1 g2)(x, y) =
(g1x, g2y).

Definition 2.10. [14] Suppose G acts transitively on X and
let U be a subset of X . Then U is said to be a block action if
gU = U (g fixes U ) or gU ∩ U = ∅ (g moves U entirely). If
a group acts transitively on X and the results are an identity,
the whole set X (all elements of X) and {x}, ∀ x ∈ X , then
the group action said to have trivial blocks. Therefore, a group
action with trivial blocks is said to be primitive. If not, it is
said to be imprimitive.

Definition 2.11. [15] Suppose G acts on X transitively and
StabG(x) is the stabilizer of points x in G. Then the suborbits
are the orbits of the stabilizers which arises when the elements
of the stabilizer act on set X . They are denoted as ∆0

and defined given by: ∆0 = {x},∆1,∆2, ...,∆r−1 where r
represents the rank. The total number of suborbits is the rank
and the size of these suborbits is the subdegrees.

3. Main Results

3.1. Transitivity of A3 ×C3 on X × Y

Lemma 3.1. Let G = A3 × C3.Then the action of G on
X × Y is transitive.

Proof. Let G = A3 × C3 such that
A3 = {ex, (x1 x2 x3), (x1 x3 x2)} and

C3 = {ey, (y1 y2 y3), (y1 y3 y2)}.
Therefore, the elements of G generated by
〈{(x1 x2 x3), (y1 y2 y3)}〉 are given as:
{(ex, ey), (ex, (y1 y2 y3)), (ex, (y1 y3 y2)),

((x1 x2 x3) , ey), ((x1 x2 x3) , (y1 y2 y3)), ((x1 x3 x2) , ey),
((x1 x2 x3) , (y1 y3 y2)), ((x1 x3 x2) , (y1 y2 y3)),
((x1 x3 x2) , (y1 y3 y2))}. ⇒ |G| = 9.

Also, let V = X × Y such that X = {x1, x2, x3} and
Y = {y1, y2, y3}.

Then the element of V are:
{(x1, y1), (x2, y1), (x1, y2), (x3, y1), (x2, y2), (x1, y3),

(x3, y2), (x2, y3), (x3, y3)}.
This shows that |V | = 9.
By definition 2.6, the StabG(x1, y1) = {(ex ey)}, the

identity. Implies that |StabG(x1, y1)| = 1.
Applying theorem 2.1 (Orbit Stabilizer Theorem), it is

suffices to show if the size of |OrbG(x1, y1)| is equals to
|X × Y |. Therefore,

|OrbG(x1, y1)| = |G| : |StabG(x1, y1)|

=
|G|

|stabG(x1, y1)|

=
9

1
= 9

= |X × Y |.

Hence, the group action is transitive.

3.2. Transitivity of A4 ×C4 on X × Y

Lemma 3.2. Suppose that G = A4 × C4, then G acts
transitively on X × Y .

Proof. Let G = A4 × C4 such that the elements of A4 =
{ex, (x1 x2 x3), (x1 x2 x4), (x1 x3 x4), (x1 x4 x3), (x2 x4 x3),
(x1x3x2), (x1x4x2), (x2x3x4), (x1x4) (x2x3), (x1x2)(x3x4),
(x1 x3)(x2 x3)} and C4 = {ey, (y1 y2 y3 y4), (y1 y4 y3 y2),
(y1 y3)(y2 y4)}.

Then the size of elements of G is |G| = 48. Also, let
V = X × Y such that X = {x1, x2, x3, x4} and
Y = {y1, y2, y3, y4}, then the of elements of V are: {(x1, y1),
(x1, y2), (x1, y3), (x1, y4), (x2, y1), (x2, y2), (x2, y3), (x2, y4),
(x3, y1), (x3, y2), (x3, y3), (x3, y4), (x4, y1), (x4, y2), (x4, y3),
(x4, y4)}.⇒ |V | = 16.

From definition 2.6, the StabG(x1, y1) = (ex, ey), ((x2 x3

x4), ey), ((x2 x4 x3), ey). ⇒ |StabG(x1, y1)| = 3.
Applying theorem 2.1 ( Orbit Stabilizer Theorem), it is

suffices to show if the size of |OrbG(x1, y1)| is equals to
|X × Y |.
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|OrbG(x1, y1)| = |G| : |StabG(x1, y1)|

=
|G|

|stabG(x1, y1)|

=
48

3
= 16

= |X × Y |.
Hence, the group action is transitive.

3.3. Transitivity of A5 ×C5 on X × Y

Lemma 3.3. Suppose that G = A5 × C5, then the action of
G is transitive on X × Y .

Proof. Let G = A5 × C5 such that the elements of A5 are:
A5 = {ex, (x1 x5 x4), (x1 x4 x5) , (x1 x2 x5) , (x1 x3 x5) ,

(x2 x5 x4) , (x1 x5) (x2 x4) , (x1 x4 x2) , (x1 x2) (x4 x5) ,
(x1 x3 x5 x4 x2), (x2 x4 x5) , (x1 x5 x2) , (x1 x4) (x2 x5) ,
(x1 x2 x4) , (x1 x3 x5 x2 x4) , (x2 x3 x5) , (x1 x5 x2 x3 x4),
(x1 x4 x5 x2 x3) , (x1 x2 x3) , (x1 x3) (x2 x5) , (x3 x5 x4) ,
(x1 x5) (x3 x4) , (x1 x4 x3) , (x1 x2 x5 x4 x3) , (x1 x3)
(x4 x5) , (x2 x5) (x3 x4) , (x1 x5 x2 x4 x3) , (x2 x4 x3) ,
(x1 x4 x3 x5 x2) , (x1 x2) (x3 x4) , (x1 x3 x4 x5 x2) ,
(x1 x5 x3) , (x1 x5 x4 x3 x2) , (x2 x3 x4) , (x1 x4 x3 x2 x5) ,
(x1 x2 x3 x4 x5) , (x1 x3 x2 x4 x5) , (x2 x3) (x4 x5) ,
(x1 x5) (x2 x3) , (x1 x4) (x2 x3) , (x1 x2 x3 x5 x4) ,
(x1 x3 x2 x5 x4) , (x3x4 x5) , (x1 x3 x2) , (x1 x4) (x3 x5) ,
(x1 x2 x5 x3 x4), (x1 x3 x4) , (x2 x5 x3) , (x1 x5 x3 x2 x4) ,
(x1 x4 x5 x3 x2) , (x1 x2) (x3 x5) , (x2 x4) (x3 x5) ,
(x1 x5 x3 x4 x2) , (x1 x4 x2 x5 x3) , (x1 x2 x4 x5 x3) ,
(x1 x3) (x2 x4) , (x1 x5 x4 x2 x3), (x1 x4 x2 x3 x5) ,
(x1 x3 x4 x2 x5) , (x1 x2 x4 x3 x5)}.

The elements of C5 are:
C5 = {ey, (y1 y5 y4 y3 y2), (y1 y4 y2 y5 y3), (y1 y3 y5 y2 y4),

(y1 y2 y3 y4 y5)}.
Therefore, the size of elements of G generated by
〈{(x1,x2, x3, x4, x5) , (x3,x4, x5) , (y1,y2, y3, y4, y5)}〉 are:
|G| = 300. Also, let V = X × Y such that X = {x1, x2, x3,
x4, x5} and Y = {y1, y2, y3, y4, y5}.

Then the of elements of V are:

{(x1,y1) , (x2,y1) , (x1,y2) , (x3,y1) , (x2,y2) , (x1,y3) ,
(x4,y1) , (x3,y5) , (x4,y5) , (x3,y2) , (x2,y3) , (x1,y4) , (x5,y1) ,
(x4,y2) , (x3,y3) , (x2,y4) , (x1,y5) , (x5,y2) , (x4,y3) , (x3,y4) ,
(x2,y5) , (x5,y3) , (x4,y4) , (x5,y4) , (x5,y5)}. ⇒ |V | = 25.

By definition 2.6, the StabG(x1, y1) of G are:
StabG(x1, y1) = {(ex, ey), ((x2 x4 x5) , ey),

((x2 x5 x4) , ey), ((x2 x3 x5), ey), ((x3 x5 x4) , ey),
((x2 x4 x3) , ey), ((x3 x4 x5) , ey), ((x2 x5 x3) , ey),
((x2 x5) (x3 x4) , ey), ((x2 x3 x4) , ey), ((x2 x3) (x4 x5) , ey),
((x2 x4) (x3 x5) , ey)}.

Implying that |StabG(x1, y1)| = 12.
Applying theorem 2.1 ( Orbit Stabilizer Theorem), it is

suffices to show if the size of |OrbG(x1, y1)| is equals to
|X × Y |. Therefore,
|OrbG(x1, y1)| = |G| : |StabG(x1, y1)|

=
|G|

|stabG(x1, y1)|

=
300

12
= 25

= |X × Y |
Hence, the group action is transitive.

3.4. Transitivity of An ×Cn on X × Y

Theorem 3.1. For n > 3, the group action of An × Cn

on X × Y is transitive where X = {x1, x2, x3, ..., xn} and
Y = {y1,y2, y3, ..., yn}.

Proof. For n > 3, it is suffices to show that the order
of OrbG(x1, y1) is equivalent to the order of X × Y . Let
G = An × Cn. Since |An| = n!

2 and |Cn| = n, then
|G| = |An × Cn| = n×n!

2 . Again, let V = X × Y , then
|V | = n×n = n2. By theorem 2.2 and theorem 2.3, the order
of stabilizers of |StabAn

(x1)| = (n−1)!
2 and |StabCn

(y1)| =
{ey} respectively such that |StabG(x1, y1)| = |StabAn

(x1)|×
|StabCn

(y1)| = (n−1)!
2 × 1 = (n−1)!

2 . Applying theorem 2.1 (
Orbit Stabilizer Theorem):

|OrbG(x1, y1)| = |G|
|StabG(x1, y1)|

=
n×n!

2
(n−1)!

2 × 1
=

n× n!

(n− 1)!
Since n! = n× (n− 1)!

=
n× n× (n− 1)!

(n− 1)!

=
n2 ×����(n− 1)!

����(n− 1)!

= n2

= |X × Y |

Hence, the group action of An×Cn on X ×Y is transitive.
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3.5. Primitivity of A3 ×C3 on X × Y

Lemma 3.4. Given that G = A3 × C3, then G acts
imprimitively on X × Y .

Proof. Consider G = A3 × C3 and V = X × Y such
that X = {x1, x2, x3} and Y = {y1,y2, y3} where G acts
transitively on V . From lemma 3.1, the elements of V are
{(x1, y1), (x2, y1), (x1, y2), (x3, y1), (x2, y2), (x1, y3), (x3, y2),
(x2, y3), (x3, y3)}. Implies |V | = 9 = 3 × 3 = 32.
Now, by definition 2.10, let U be a subset of V such that
|U | divides |V | by any divisor of |V |. For this case, let
|U | = {(x1, y1), (x2, y2), (x3 , y3)} = 3 such that |V ||U | = 32

3 .
Then, there exist g ∈ G which moves the elements of U
to the elements that is not in U such that gU ∩ U = ∅.
For instance, from lemma 3.1 let g = (ex, (y1 y2 y3))
such that gU = (ex, (y1 y2 y3))(x1, y1) = (x1, y2) ⇒
gU ∩ U = (x1, y2) ∩ (x1, y1) = ∅. By this argument,
it is shows that the U is a non-trivial block action and the
conclusion follows that the action group is imprimitive

3.6. Primitivity of An ×Cn on X × Y

Theorem 3.2. Suppose that G = An × Cn on X × Y , then
G acts on X × Y and V = X × Y imprimitively.

Proof. Consider G = An × Cn acting on X × Y and
V = X × Y such that X = {x1, x2, x3, ..., xn} and Y =
{y1,y2, y3, ..., yn} where G acts on V transitively. By theorem
3.1, |V | = n × n = n2. From definition 2.10, let U be
a subset of V such that |U | divides |V |. For this case, let
|U | = {(x1, y1), (x2, y2), (x3, y3), ..., (xn, yn)}= n such that
|V |
|U | = n2

n . There exist g ∈ G which moves the elements of
U to the elements not in U such that gU ∩ U = ∅. By this
argument, it is sufficient that U is a nontrivial block action and
the conclusion follows that the action is imprimitive.

3.7. Ranks and Subdegrees of A3 ×C3 on X × Y

Lemma 3.5. Suppose that the group action of A3 × C3 acts
on X ×Y then the rank is 9 and the corresponding subdegrees
are 1, 1, 1, 1, 1, 1, 1, 1, 1.

Proof. Since G = A3 × C3 and V = X × Y . From lemma
3.1, the elements of V are {(x1, y1), (x2, y1), (x1, y2), (x3, y1),
(x2, y2), (x1, y3), (x3, y2), (x2, y3), (x3, y3)}.

Also, the elements of the stabilizer are StabG(x1, y1) =
{(ex, ey)}, which is an identity. Therefore, the number of
elements of V fixed by each g ∈ G is 9 since the identity
fixes all the elements of V as shown in the table below.

Table 1. Permutations in StabG(x1, y1) and the Number of Fixed Points.

Permutation types in StabG(x1, y1) Number of permutations (H) FixG(g)

(ex, ey) 1 9

TOTAL 1

By lemma 2.1 (Cauchy Frobeneus Lemma), the number of
suborbits of G acting on V is given as:

1
H

∑
g∈G
|FixG(g)| = 1

1 [1× 9] = 9.

This shows that there are 9 suborbits classified into four
possible categories, as shown below.

Note: Let K = (x1, y1) be a distinct point in set V .
If an element (the identity) in G acts on K and the point
remains fixed, then K forms trivial orbit under the group
action. Therefore, these possible categories are:

a) Suborbit where both the first and the second components
are identical to those of K.

∆0 = OrbH(x1, y1) = {(x1, y1)} = 1 (Trivial Orbit)
b) Suborbits where the first component is identical to that of

K but the second components are different.
∆1 = OrbH(x1, y2) = {(x1, y2)} = 1
∆2 = OrbH(x1, y3) = {(x1, y3)} = 1
c)Suborbits where the second component is identical to that

of K but the first components are different.
∆3 = OrbH(x2, y1) = {(x2, y1)} = 1
∆4 = OrbH(x3, y1) = {(x3, y1)} = 1

d) Suborbits where neither the first nor the second
components are identical to those of K.

∆5 = OrbH(x2, y2) = {(x2, y2)} = 1
∆6 = OrbH(x2, y3) = {(x2, y3)} = 1
∆7 = OrbH(x3, y2) = {(x3, y2)} = 1
∆8 = OrbH(x3, y3) = {(x3, y3)} = 1
From the above sequence, it shows that the group action

has a rank of 9 and its corresponding subdegrees being
1, 1, 1, 1, 1, 1, 1, 1, 1.

3.8. Ranks and Subdegrees of A4 ×C4 on X × Y

Lemma 3.6. Let G = A4×C4 acts on X×Y . Then the rank
is 8 and the subdegrees are 1, 1, 1, 1, 3, 3, 3, 3.

Proof. Let G = A4 × C4 and V = X × Y . From lemma
3.2, the elements of V are {(x1, y1), (x1, y2), (x1, y3), (x1, y4),
(x2, y1), (x2, y2), (x2, y3), (x2, y4), (x3, y1), (x3, y2), (x3, y3),
(x3, y4), (x4, y1), (x4, y2), (x4, y3), (x4, y4)}.

Also, the elements of the stabilizers are: StabG(x1, y1) =
{(ex, ey), ((x2 x3 x4), ey), ((x2 x4 x3), ey)}. Therefore, the
number of elements of V fixed by each g ∈ G are as shown in
the table below:
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Table 2. Permutations in StabG(x1, y1) and the Number of Fixed Points.

Type of permutation in StabG(x1, y1) Number of permutations (H) FixG(g)

(ex, ey) 1 16

((a b c), ey) 2 4

TOTAL 3

By lemma 2.1 (Cauchy Frobeneus Lemma), the number of
suborbits of G acting on V is given as: 1

H

∑
g∈G
|FixG(g)| =

1
3 [(1× 16) + (2× 4)] = 24

3 = 8.
This shows that there are 8 suborbits classified into the

following four possible categories:
a) Suborbit where both the first and the second components

are identical to those of K.
∆0 = OrbH(x1, y1) = {(x1, y1)} = 1 (Trivial Orbit)
b) Suborbits where the first component is identical to that of

K but the second components are different.
∆1 = OrbH(x1, y2) = {(x1, y2)} = 1
∆2 = OrbH(x1, y3) = {(x1, y3)} = 1
∆3 = OrbH(x1, y4) = {(x1, y4)} = 1
c) Suborbit where the second component is identical to that

of K but the first components are different.
∆4 = OrbH(x2, y1) = {(x2, y1), (x3, y1), (x4, y1)} = 3
d) Suborbits where neither the first nor the second

components are identical to those of K.
∆5 = OrbH(x2, y2) = {(x2, y2), (x3, y2), (x4, y2)} = 3
∆6 = OrbH(x2, y3) = {(x2, y3), (x3, y3), (x4, y3)} = 3

∆7 = OrbH(x2, y4) = {(x2, y4), (x3, y4), (x4, y4)} = 3
From above sequence, the rank is 8 and the corresponding

subdegrees are 1, 1, 1, 1, 3, 3, 3, 3.

3.9. Ranks and Subdegrees of A5 ×C5 on X × Y

Lemma 3.7. Suppose that the group action of A5×C5 acts on
X × Y , then the rank is 10 and the corresponding subdegrees
are 1, 1, 1, 1, 1, 4, 4, 4, 4, 4.

Proof Let G = A5×C5 and V = X ×Y . From lemma 3.3,
the elements of V are {(x1,y1) , (x2,y1) , (x1,y2) , (x3,y1) ,
(x2,y2) , (x1,y3) , (x4,y1) , (x3,y5) , (x4,y5) , (x3,y2) , (x2,y3) ,
(x1,y4) , (x5,y1) , (x4,y2) , (x3,y3) , (x2,y4) , (x1,y5) , (x5,y2) ,
(x4,y3) , (x3,y4) , (x2,y5) , (x5,y3) , (x4,y4) , (x5,y4) , (x5,y5)}.

Also, the elements of stabilizers are StabG(x1, y1) =
{(ex, ey), ((x2 x4 x5) , ey), ((x2 x5 x4) , ey), ((x2x3x5), ey),
((x3 x5 x4) , ey), ((x2 x4 x3) , ey), ((x3 x4 x5) , ey),
((x2 x5 x3) , ey), ((x2 x3 x4) , ey), ((x2 x5) (x3 x4) , ey),
((x2 x3) (x4 x5) , ey), ((x2 x4) (x3 x5) , ey)}.

Therefore, the number of elements of V fixed by each g ∈ G
are as shown in the table below:

Table 3. Permutations in StabG(x1, y1) and the Number of Fixed Points.

Type of permutation in StabG(x1, y1) Number of permutations (H) FixG(g)

(ex, ey) 1 25

((a b c), ey) 8 10

((a b)(c d), ey) 3 5

TOTAL 12

By lemma 2.1 (Cauchy Frobeneus Lemma), the number of
suborbits of G acting on V is given as:

1
H

∑
g∈G
|FixG(g)| = 1

12 [(1× 25) + (8× 10) + (3× 5)] =

120
12 = 10.

This implies that there are 10 suborbits classified into the
following four possible categories:

a) Suborbit where both the first and second components are
identical to those of K.

∆0 = OrbH(x1, y1) = {(x1, y1)} = 1 (Trivial Orbit)
b) Suborbits where the first component is identical to that of

K but the second components are different.
∆1 = OrbH(x1, y2) = {(x1, y2)} = 1
∆2 = OrbH(x1, y3) = {(x1, y3)} = 1
∆3 = OrbH(x1, y4) = {(x1, y4)} = 1
∆4 = OrbH(x1, y4) = {(x1, y5)} = 1
c) Suborbit where the second component is identical to that

of K but the first components are different.

∆5 = OrbH(x2, y1) = {(x2, y1), (x3, y1), (x4, y1), (x5, y1)} = 4
d) Suborbits where neither the first nor the second components are identical to those of K.
∆6 = OrbH(x2, y2) = {(x2, y2), (x3, y2), (x4, y2), (x5, y2)} = 4
∆7 = OrbH(x2, y3) = {(x2, y3), (x3, y3), (x4, y3), (x5, y3)} = 4
∆8 = OrbH(x2, y4) = {(x2, y4), (x3, y4), (x4, y4), (x5, y4)} = 4
∆9 = OrbH(x2, y5) = {(x2, y5), (x3, y5), (x4, y5), (x5, y5)} = 4
From the above sequence, the group action has a rank of 10 and the corresponding subdegrees are 1, 1, 1, 1, 1, 4, 4, 4, 4, 4.
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3.10. Ranks and Subdegrees of An ×Cn on X × Y

Theorem 3.3. Let G = An × Cn acts on X × Y , then the rank is 2n and subdegrees are 1, 1, ..., 1︸ ︷︷ ︸
n

, n− 1, n− 1, ..., n− 1︸ ︷︷ ︸
n

for

n > 4.
Proof. By generalizing the results obtained from lemma 3.5, lemma 3.6 and lemma 3.7, the number of suborbits are classified

into the following four possible categories. They are:
a) Suborbit where both the first and the second components are identical to those of K.
∆0 = OrbH(x1, y1) = (x1, y1) = 1 (Trivial Orbit)
b) Suborbits where the first component is identical to that of K but the second components are different.
∆1 = OrbH(x1, y2) = (x1, y2) = 1
∆2 = OrbH(x1, y3) = (x1, y3) = 1
...
∆(n−1) = OrbH(x1, yn) = (x1, yn) = 1
c) Suborbit where the second component is identical to that of K but the first components are different.
∆(n−1)+1 = OrbH(x2, y1) = (x2, y1), (x3, y1), (x4, y1), ..., (xn, y1) = n− 1
d) Suborbits where neither the first nor the second components are identical to those of K.
∆(n−1)+2 = OrbH(x2, y2) = (x2, y2), (x3, y2), (x4, y2), ..., (xn, y2) = n− 1
∆(n−1)+3 = OrbH(x2, y3) = (x2, y3), (x3, y3), (x4, y3), ..., (xn, y3) = n− 1
∆(n−1)+4 = OrbH(x2, y4) = (x2, y4), (x3, y4), (x4, y4), ..., (xn, y4) = n− 1
...
∆(n−1)+n = OrbH(x2, yn) = (x2, yn), (x3, yn), (x4, yn), ..., (xn, yn) = n− 1
From the above sequence, it shows that there are n suborbits of size 1 and n suborbits of size (n − 1). Therefore, the rank is

2n and the corresponding subdegrees are 1, 1, ..., 1︸ ︷︷ ︸
n

, n− 1, n− 1, ..., n− 1︸ ︷︷ ︸
n

.

To prove that ∆0,∆1, ...,∆(n−1)+n are the only suborbits of the group action, we have to show that
∆i = {∆0,∆1, ...,∆(n−1)+n} is a partition of X × Y .

(n−1)+n∑
i=0

|∆i| =
n−1∑
i=0

|∆i|+
(n−1)+n∑

i=(n−1)+1

|∆i|

=

n−1∑
i=0

|1, 1, ..., 1|+
(n−1)+n∑

i=(n−1)+1

|n− 1, n− 1, ..., n− 1|

Since Sn =
n

2
[a + l], then

=
n

2
[1 + 1] +

n

2
[(n− 1) + (n− 1)]

=
2n

2
+

n

2
[2n− 2]

= n + n[n− 1]

= n + n2 − n

= n2

= |X × Y |

Therefore, it follows that
n⋃

i=1

∆i =X × Y . Hence, ∆i is a

partition of X × Y .
Corollary 4.1: Determine the rank and subdegrees of group

action of A6 × C6 acting on X × Y .
Proof. From theorem 3.3, the rank is given as

2n and the corresponding subdegrees as 1, 1, ..., 1︸ ︷︷ ︸
n

,

n− 1, n− 1, ..., n− 1︸ ︷︷ ︸
n

. Therefore, when n = 6, the rank

is 2 × 6 = 12 and the corresponding subdegrees are:
1, 1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 5.

Corollary 4.2: Determine the rank and the corresponding
subdegrees of group action of A8 × C8 which acts on X × Y .

Proof. From theorem 3.3, the rank is given as
2n and the corresponding subdegrees as 1, 1, ..., 1︸ ︷︷ ︸

n

,

n− 1, n− 1, ..., n− 1︸ ︷︷ ︸
n

. Therefore, when n = 8, the rank

is 2 × 8 = 16 and the corresponding subdegrees are:
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1, 1, 1, 1, 1, 1, 1, 1, 7, 7, 7, 7, 7, 7, 7, 7.
Corollary 4.3: Determine the rank and subdegrees of A9 ×

C9 acting on X × Y .
Proof. From theorem 3.3, the rank is given as

2n and the corresponding subdegrees as 1, 1, ..., 1︸ ︷︷ ︸
n

,

n− 1, n− 1, ..., n− 1︸ ︷︷ ︸
n

. Therefore, when n = 9, the rank

is 2 × 9 = 18 and the corresponding subdegrees are
1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 8, 8, 8, 8, 8, 8, 8, 8.

4. Conclusion
In this paper, properties of group action of An × Cn

on X × Y for n > 3 were studied. Transitivity and
primitivity were determined where it was proven that the
group action is transitive and imprimitve. Also, the ranks and
subdegrees were established where it was found that when
n = 3, the rank is 9 and the corresponding subdegree being
1, 1, 1, 1, 1, 1, 1, 1, 1. When n > 4, the rank was found
to be 2n and the corresponding subdegrees are 1, 1, ..., 1︸ ︷︷ ︸

n

,

n− 1, n− 1, ..., n− 1︸ ︷︷ ︸
n

.

Abbreviations

An Alternating group of degree n whose order is
n!
2

Cn Cyclic group of order n
ex An identity element of Alternating group
ey An identity element of Cyclic group
V = X × Y Cartesian product of set X and set Y
StabG(x) Stabilizer of a point x in G
FixG(x) A point x fixed by the element in G
OrbG(x) The orbit of a point x in G
∆ Suborbit of G on set V
∅ An empty set
H Number of permutations
G = An×Cn Direct product of Alternating group and Cyclic

group
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