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Abstract: This study places a significant emphasis on assessing the efficiency of numerical methods, specifically in the
context of solving linear equations of the form Ax = b, where A is a square matrix, x is a solvent vector, and b is a column
vector representing real-world phenomena. The investigation compares the effectiveness of the Refined Successive Over
Relaxation (RSOR) method to the standard Successive Over-relaxation (SOR) method. The core evaluation criteria encompass
computational time (in seconds), convergence behavior, and the number of iterations necessary to approximate the solvents of
five distinct real-world phenomena: Model Problem 1 (MP1) involving an Electrical Circuit, Model Problem 2 (MP2) focusing
on Beam Deflection, Model Problem 3 (MP3) addressing Damped Vibrations of a Stretching Spring, Model Problem 4 (MP4)
dealing with Linear Springs and Masses, and Model Problem 5 (MP5) focusing on Temperature Distribution on Heated Plate.
The RSOR method generally outperforms the SOR method, particularly with a constant relaxation parameter (w) in the range
1.0 < w < 1.2. The RSOR method is favored for its robustness and efficiency with less need for fine-tuning w, whereas the
SOR method can achieve superior performance if the optimal w is found, although this often requires time-consuming trial and
error. Despite the potential for better performance with an optimal w, the RSOR method’s consistent results make it the more
practical choice in many cases. The study also explores the stability of the systems of linear equations arising from these
phenomena by calculating their condition numbers (K (A)). More interestingly, the results reveal that all systems MP1 to MP4
exhibit instability when subjected to even modest perturbations, shedding light on potential challenges in their solvents. This
research not only underscores the advantages of the RSOR method but also emphasizes the importance of understanding the
stability of numerical solvents in the context of real-world problems. Additionally, the results for MP5 demonstrates that tiny
changes to the original matrix’s coefficients have no effect on the desired solvent because the perturbed matrix’s condition
number is the same as the original matrix’s, making the problem well-structured. The problem becomes ill-conditioned if there
is an increase or decrement to the matrix’s coefficients that is bigger than 10~°. In summary, Sparse systems are sensitive to
perturbations, resulting in instability. If the tolerance |k(A?) — k(A;)| > 107> for all positive integers i, then the problem
becomes poorly structured.
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1. Introduction in terms of number of iterations, computation time, and
relaxation parameter when solving linear systems of equations

According to Young, the analysis reveals that the SOR resulting from partial differential equations (PDEs) of the
approach is more efficient than the Gauss-Seidel method  elliptic type [33].
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Evaluating the accuracy of the method at various stages
poses a challenge unless the optimal accelerating factor is
determined. The introduction of a new algorithm sheds light
on the significance of identifying optimal relaxation factor that
consistently produces satisfactory error bounds at any stage of
computation. An interesting observation arises: the refined
SOR method exhibits a remarkable efficiency, requiring
approximately one-third of the iterations when compared to the
existing Successive Over-relaxation (SOR) method proposed
by Carre [6]. This reduction in the number of iterations not
only signifies a potential acceleration in convergence but also
emphasizes the improved computational efficiency offered by
the refined SOR technique.

With reference from the study by Kulsrud, when solving
the discretized Laplace’s equation in rectangular coordinates
via SOR method, the investigations indicate that an optimal
relaxation factor is attained within the range 1 < w < 2 where
at desirable solvent, the quantity of iterations is relatively small
[18].

In order to ensure the efficiency and effectiveness of
SOR method, restricting the parameters is vital so that the
spectral radius and the norms of SOR coincide with that of
the Modified Successive Over-relaxation (MSOR). Optimal
parameters which speed up the rate of convergence for MSOR
method were obtained and revealed to be the best when solving
the system of linear equations of the form Ax = b, [16].

The choice of relaxation factor for the SOR has been
analyzed by Young, that the optimal w is a real positive number
obtained in the interval 0 < w < 2. The study revealed
that one iteration for the Refined Successive Over-relaxation
(RSOR) is equal to twice iterations for the SOR, which means
that the existing SOR converges faster than the old one [35].

The research by Hadjidimos shows that the sufficient
condition of the convergence for the Syatematic Successive
Over-relaxation (SSOR) is |w — 1| < 1 for all w € R, which
results to w € (0,2) . The convergence of the refined SOR
is observed by varying different values of w within the range
of 0 and 2. Each iteration step of the SSOR is faster in terms
of convergence because the error obtained in the Successive
Over-relaxation (SOR) is bigger than that of SSOR [15].

Bai & Chi introduced an innovative adaptation of the
Successive Over-relaxation (SOR) method known as the
Asymptotically Successive Over-relaxation (ASOR) method
for solving systems of linear equations. Their approach
takes into account various factors, including the number
of iterations, mesh spacing, and residual errors. Through
numerical computations, it is evident that the ASOR method
outperforms the traditional SOR in terms of both the number of
iterations and residual errors. Furthermore, the results indicate
that the ASOR method achieves faster convergence compared
to both the classical Successive Over-relaxation method and
the Gauss-Seidel method [5].

More interestingly, in order to minimize difficulties in
solving large fuzzy system of linear equations, Allahviranloo
made a numerical investigations comparing the SOR iterative
method and Gauss-Seidel method, the result shows that
the SOR converges faster than the Gauss-Seidel method.

Additionally, the Successive Over-relaxation (SOR) method
achieves improved convergence with a carefully chosen
relaxation parameter w, especially effective for systems of
linear equation already convergent with the Gauss-Seidel
method. The developed algorithm for fuzzy system of linear
equations (FSLE) was recommended to be more effective [3].

Bai et al. developed the Generalized Successive Over-
relaxation (GSOR) method for linear augmented systems
where its convergence was proved in terms of quantity of
iterations and relaxation parameter at the desirable solvent.
The numerical result proves that the generalized successive
over relaxation method is more efficient than the existing SOR
method. Also the GSOR proved to be distinguished iterative
technique in terms of quantity of iterations, computational
time and residual error particularly when solving the systems
of linear equations by using vector extrapolation and matrix
relaxation techniques [4].

Dehghan & Hajarian introduced two novel preconditioner
approaches aimed at addressing linear systems involving L-
matrices and accurately assessing their convergence. By
making reasonable assumptions about matrix A of Ax = b,
the findings indicate that the recommended preconditioning
techniques can accelerate the convergence of the Successive
Over-relaxation (SOR) iterative method, as confirmed by
comparison theorems. The preconditioned iteration is
established to converge under specific conditions imposed on
the coefficient matrix. Numerical experiments validate the
proposed theorems, demonstrating the effectiveness of the
method in solving linear systems of equations by achieving
faster convergence compared to established iterative methods
[9].

Vatti & Gonfa conducted research on how to improve the
Generalized Jacobi (RGJ) approach for solving linear equation
systems. By using MATLAB software to conduct experiments,
the effectiveness of the RGJ approach is confirmed. The results
established that the generalized Jacobi (GJ) approach does not
converge as quickly as the RGJ method. The research also
reveals that the spectral radius of the RGJ technique is smaller
than that of the GJ method, indicating that the RGJ approach
works better than the GJ method [31].

To speed up the rate of convergence for the Successive Over-
relaxation (SOR) iterative method for solving linear equation
systems, Ndanusa and Adeboye, introduced a preconditioned
SOR. Two variations of the preconditioned SOR iteration are
formulated and applied, with specific assumptions imposed
on the coefficient matrix of the original linear system of
equations. Convergence properties are derived and scrutinized
following established protocols. The results illustrate that the
rates of convergence for the preconditioned iterations surpass
those of the conventional SOR technique. The theoretical
findings firmly establish the superiority of the new algorithm
over the existing one, a conclusion further substantiated
through numerical experiments [28].

The study done by Mai & Wu, revealed that the rate
of convergence in Multi-layer scheme depends on the size
of spectral radius, if an iterative matrix has small spectral
radius then the fast the SOR method will converge. When
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solving multi-layer scheme, an optimal relaxation parameter w
reduces the number of iterations in comparison to a relaxation
parameter w obtained by linear search method [23].

Additional research conducted by Youssef & Taha suggests
that the Modified Successive Over-relaxation (MSOR)
technique demonstrates quicker convergence in comparison to
the conventional Successive Over-relaxation (SOR) method.
Furthermore, the study observes that the optimal relaxation
parameter falls within the range of w € (0,2), where
the method concurrently updates the residue along with
the solvent, incorporating the most recently calculated
solvent. The recommendation is made that a combination
of the modified SOR and the conventional SOR could
potentially enhance efficiency and effectiveness in accelerating
convergence, especially with the integration of updated residue
[37].

According to Kyurkchiev & Iliev, when solving the large
sparse linear systems, the results indicate that the refined
successive over relaxation method yields more considerable
improvement in the rate of convergence compared to the
existing SOR method. Also, the result indicates that the
spectral radius via RSOR is finer than that of SOR [18].

The study by Emmanuel, on iterative methods for solving
systems of linear equations presents the Jacobi approach
and the modified Jacobi method as the two basic iterative
techniques for solving a system of linear equations using real-
world linear examples. The examination of the data indicates
that the modified Jacobi technique is more convergent than the
Jacobi method, when the number of repetitions is taken into
account [11]. This demonstrates that compared to the Jacobi
approach, the modified Jacobi method uses less computer
storage. As a result, the modified Jacobi approach is more
accurate than the Jacobi method; its rate of convergence is
faster and its number of iterations is minimum.

Further study by Mayooran & Light, the results reveal that
the minimum number of iterations for convergence is attained
when w = 1.2. It was also recommended that relaxation
factor for a minimum number of iterations lies between 1 and
2 . Finally, it was observed that the computational time (in
seconds) of displaying the results for the Successive Over-
relaxation (SOR) is 0.084 seconds and it is optimal in terms
of memory storage [25].

More interestingly, Mayooran & Light came up with
the formula for finding optimal relaxation factor. If A is
a symmetric matrix with all positive eigenvalues and the
relaxation parameter (w) falls within the range 0 < w < 2
subsequently, with any starting estimation X gy then the SOR
method will converge [25]. If in addition A is tridiagonal and
p(Ty) is the spectral radius of Iterative matrix where

T, =D Y(L+U) < 1 and p is a spectral radius, then the
desirable relaxation parameter is given by

=PI o

According to Gonfa, the analysis of results showed that
RGGS (refined generalized Gauss-Seidel) when solving 6 x 6

linear system of equations and 4 x 4 linear system of equations
the approach is effective in terms of time, it uses 0.003789
seconds and 0.002961 seconds, respectively. The refined
method converges to the exact solvent in approximately 6
iterations, outperforming other methods such as SOR (14
iterations for the first linear system, 9 iterations for the second
linear system).The Refined Gauss Seidel (RGS) achieves
convergence in 10 and 11 iterations for the respective linear
systems, both with a specified tolerance error. Investigations
prove that refined generalized Gauss Seidel uses minimum
memory space in storing data because it performs few
iterations towards the desired solvent in comparison to other
methods; SOR and RGS respectively.  This shows that
refined generalized Gauss-Seidel is effective and optimal in
comparison to other methods [14].

According to Muleta & Gofe, the square of the
generalized accelerated successive over relaxation iterative
matrix represents the novel method’s iterative matrix. The
findings demonstrate that compared to the current SOR
method, the Refined Successive Over-relaxation (RSOR)
method converges more quickly. After examining comparative
examples, the findings show that the suggested method
outperforms the current SOR method. The RSOR has less
quantity of iterations and minimum computational time [27].

The recently introduced version of the Successive Over-
relaxation method [8] exhibits clear improvements in terms of
both the quantity of iterations and computational time when
compared to the conventional SOR. Specifically, the refined
SOR demonstrates a reduced number of iterations compared to
the existing SOR. Additionally, the outcomes indicate that the
effectiveness of the modified SOR, as measured by the spectral
radius of the matrix, surpasses that of the existing SOR.

In order to speed up the convergence of traditional iterative
algorithms like Jacobi, Gauss-Seidel, and SOR for the solution
of the system of linear equations, Faruk & Ndanusa devised
many types of preconditioners [13]. The study suggests
adding a preconditioner to the SOR iterative matrix, and the
outcomes show that the preconditioned iterative techniques
outperformed the traditional SOR technique in terms of
performance. Furthermore, the examination shows that the
preconditioned SOR approach converges more quickly than
the traditional SOR approach. According to the study,
preconditioned iterative methods work better than current
iterative methods.

Lotfy et al., came up with the investigations on
solving fuzzy-linear systems using iterative methods and
recommended that the Gauss-Seidel technique is the most
appropriate approach for tackling fuzzy-linear systems, the
Gauss-Seidel method is effective in terms of storage,
convergence, running time and accordingly computational
work [22].

Furthermore, the research conducted by Mayaki & Ndanusa
reveals that p(G1) is less than p(Ggor) for relaxation factors
w ranging from 0.1 to 0.9. This suggests the effectiveness
of the preconditioned SOR scheme, characterized by the
matrix (G; [24]. Additionally, the findings indicate that the
preconditioned SOR exhibits faster convergence compared to
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the traditional SOR method, establishing its superiority over
the classical SOR.

The Jacobi and Gauss-Seidel methods, which are widely
recognized as numerical techniques for approximating
solutions to linear systems of equations, are thoroughly
examined for their accuracy and efficacy. Particular attention
is paid to assessing their convergence properties, including the
critical metric of the maximum number of iterations necessary
for convergence. Based on the research conducted from
[10, 26] provides important clarifications regarding the relative
effectiveness of these techniques. The findings demonstrate
the superiority of the Gauss-Seidel approach in terms of
efficacy and accuracy, attributed to its ability to achieve
convergence within a maximum number of iterations.

Abdullahi & Ndanusa, developed a new preconditioner
designed to accelerate convergence of the Accelerated
Over-relaxation (AOR) method .By advancing some
convergence theorems using well-known approaches,
theoretical investigation of the new preconditioned AOR
approach is carried out. Numerical research using example
issues is conducted to verify the theoretical convergence
analysis conclusions. The comparison of the suggested
preconditioner with a few preconditioners that are already
accessible in the literature is shown numerically. Results
indicate that the suggested preconditioned AOR method
converges more quickly than both the unpreconditioned AOR
and the currently used preconditioned methods [1].

According to Abdullahi & Muhammad, it also revealed
that optimum convergence for the refined SOR is attained
at w = 0.9 where w is a parameter for relaxation.
Compared to the Successive Over-relaxation (SOR) approach,
the preconditioned successive over relaxation (RPSOR)
refinement sought to accelerate the convergence criteria by
minimizing the spectral radius of the iterative matrix. More
interestingly, the outcomes demonstrate that preconditioned
successive over relaxation refinement converges more quickly
than the Successive Over-relaxation (SOR) approach [2].

The study by Lisanu Assefa & Woldeselassie
Teklehaymanot on Second Refinement of Accelerated Over-
relaxation (SRAOR) method indicates that the decrease of
spectral radius of an iterative matrix may speed up the
convergence rate of the method. Numerically, it has been
revealed that the second refinement over relaxation method is
more efficient in comparison to the refinement over relaxation
method [21].

Over time, numerous preconditioners have been developed
to improve the convergence of iterative methods for solving
linear systems of equations. Most of these preconditioners
exhibit a limited impact on specific entries of the coefficient
matrix. To address this limitation, Ndanusa and Al-Mustapha
introduced a novel preconditioner that affects every element
in the coefficient matrix. Specifically, this new approach
eliminates the last entry in the leftmost column and reduces
the size of all other entries. The resulting preconditioned
iteration technique has introduced and refined convergence
and comparison theorems. Through numerical examples
featuring simulated solutions, it is demonstrated that the

proposed method achieves faster convergence compared to the
Successive Over-relaxation (SOR) method [29].

Linear systems of equations are commonly applicable
in addressing real-world phenomena that necessitate the
utilization of complex numerical techniques for iterative
solvents. The study conducted by Xu et al., the discretization
of the first-order linear Fredholm integro-differential equation
results to a system of linear equations. Three distinct
approaches, namely the traditional Gauss-Seidel (GS) method,
the Successive Over-relaxation (SOR) technique, and the
refined Successive Over-relaxation (RSOR) method, are
employed to solve the resulted generalized system of linear
equations. The analysis indicates that the RSOR method
surpasses the current GS and SOR methods in tackling large,
dense linear systems, as evidenced by three criteria: the
number of iterations, the execution time, and the highest
absolute error [32].

The study by Yahaya et al. on Refined Extended
Accelerated Over-relaxation (REAOR) indicates that
improvements to the iteration matrix reduce the spectral radius.
This reduction enhances the convergence rate of RSOR when
solving systems of linear equations in the form of Az = 0.
Also the result indicates superiority of the refined SOR over
some existing methods like SOR, Gauss-Seidel and Gauss-
Jacobi. When it comes to computation time and quantity of
iterations, the REAOR is superior [36].

The problem’s condition number expresses how
unpredictable the solvent is in response to minute changes
in the data input. The type of problem and the input data may
affect the condition number. If the condition number of an
issue is relatively minimal, it indicates that the approximate
solvent agrees with the exact solvent of the provided problem,
independent of perturbations. This indicates that the problem
is well-structured. The problem is not well-structured if the
condition number is high. The condition number during
the perturbation of matrix entries of the linear systems of
equations must be one or less; i.e. § < 1 [30].

Several strategies were devised by Epelman & Freund to
calculate the condition number of a conic linear system. The
problem is well-conditioned only if the condition number
is small, according to the numerical results. Furthermore,
the outcome demonstrates that arbitrary data perturbations
can result in ill-posed problems that are both doable and
infeasible. More interestingly, the study shows that, in contrast
to ill-conditioned problems, well-conditioned problems have a
dependable solvent [12].

According to Kiusalaas, a linear equation can be classified
as well-conditioned if the condition number is closer to one; if
not, the equation is ill-conditioned [17]. An ill-conditioned
problem is one that is not well conditioned; it arises from
minor perturbations in the matrix entries that cause departures
from the original solvent.

The literature highlights the use of the Optimal SOR
approach as a powerful numerical methodology for
solving complex systems, emphasizing its advantages over
conventional methods with regard to computing economy
and convergence speed. Numerous studies and approaches
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are examined, demonstrating the flexibility and resilience of
the Optimal SOR method in a range of real-world scenarios.
Despite the advances in methodologies, current studies have
not thoroughly examined the RSOR method. Key aspects such
as the number of iterations, residuals, computational time,
and the sensitivity of the solvent remain underexplored. This
study aims to fill this gap by employing the RSOR method
to evaluate these critical factors, providing new insights that
existing research has yet to address.

2. Materials and Methods

The Successive Over-relaxation (SOR) technique is an
iterative numerical technique used for solving systems of
linear equations. Its historical development is rooted in the
broader context of numerical analysis and iterative techniques.
The SOR method evolved as an improvement over the Gauss-
Seidel method, which is another iterative approach for solving
linear systems. The Gauss-Seidel approach employs the most
current values of the variables as soon as they are updated,
processing each equation in turn. The Gauss-Seidel method
can converge slowly for some types of matrices, despite its
effectiveness. The concept of relaxation, a key element in
SOR, was introduced to expedite convergence. The SOR
method was independently developed and popularized by

DX® —p—Lx® _pyxk-D

several researchers during the mid-20th century. Young is often
credited with the introduction and promotion of SOR [34].

Over the years, researchers have contributed to refining and
extending the SOR method. Modifications and adaptations
have been proposed to enhance its applicability to various
types of linear systems.  Several disciplines, including
computer science, physics, and engineering, use the SOR
approach. Its efficiency in solving large linear systems made
it a valuable tool for numerical simulations and scientific
computations.The SOR method remains a classic and widely
used method, especially when dealing with large, sparse linear
systems.

2.1. SOR and RSOR

In this subsection, we initiate the derivation of the
Successive Over-relaxation (SOR) technique, drawing
inspiration from the Gauss-Seidel method. Following this,
we present the Refined Successive Over-relaxation (RSOR)
method, which advances the SOR method. We proceed to
delineate the component-wise formulation of both the SOR
and RSOR approaches. Finally, we define the convergence
criteria for both the SOR and RSOR approaches.

According to Young, the Successive over-relaxation (SOR)
is derived as follows; [35] From Gauss Seidel method

k=12, )

We subtract the term DX *=1) from both sides of equation 2 and get

D[X(k) _X(kfl)] -

b— LX® —yx*-1) _ pxk-1)

= b—(L+D+U)X* Y _px® 4 x¢=1
b—AXF=D _ px®) — x (=1

Thus,

D[X(k) _ X(kfl)] —b

— AX®=D _ px () _ x (=1 3)

We introduce a parameter w called the relaxation factor on the RHS of equation 3 and get

D(X(j1) — X)) = w [(b — AX (1)) — L(X(h41) — X ()] “4)
where; k = 0,1,2,3,---, D is called a diagonal matrix, L is called strictly lower triangular component, U is called a strictly
upper triangular component, w is called relaxation factor, b is a column matrix with b = [by, ba, b3, - - | bn]T.

The component-wise formulation of the Successive Over-relaxation (SOR) method involves updating each solution component

iteratively using the following formula:

i—1
k41 k w k41
Xz( ):(1—W)Xf)+a7“ bi—zainJ(- )—
j=1

where:
1. X i(k'H) is the updated value of the i-th component in the
(k 4 1)-th iteration,
2. X i(k) is the current value of the i-th component in the
k-th iteration,
3. a;; represents the elements of the coefficient matrix A,
4. b; is the i-th element of the column vector b,

n

S axV, (5)

j=i+1

5. w is the relaxation factor.

The Refined Successive Over-relaxation (RSOR) method
extends the SOR method by applying the relaxation technique
recursively to further enhance convergence [25]. It is defined
by:

2
Wopt = (6)
T+ T (Tl
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where w,p; is the optimal relaxation parameter and p (T}) is
the spectral radius of Iterative matrix

2.1.1. Convergence Criteria for SOR

The study done by Young indicates that, if 0 < w < 2 then
the Successive Over-relaxation (SOR) technique converges for
any initial vector if matrix A is positive definite and symmetric.
It is noticed that, if w > 2 then the Successive Over-relaxation
(SOR) technique diverges. The convergence rate for the
Successive Over-relaxation (SOR) method is slower in the
range of 0 < w < 1 [34].

2.1.2. Convergence Criteria for RSOR

According to Abdullahi & Muhammad, the improved SOR
converges more quickly than SOR and its optimal convergence
occurs when p(G,,) < 1, where p(G.,,) is the spectral radius
for an iteration matrix [2]. The convergence criteria for RSOR
is given by

+1)

—(k — .
X — Xoo S NGulZlX® = X[|oo, (D)

where G, is an iteration matrixA for the refined SOR, ? is a
solvent of the refined SOR and X is the original solvent of the
system Ax = b.

2.2. Numerical Investigations

In this subsection, we undertake various investigations using
the SOR and RSOR method on the following five model

—Rygig — Ry(iz —i3)

Vs — Rg(1a — i2) —

where

(i

- 36(12 — i) — Rs(i
Vé — R5i3 — R7(i3 — i4) 4(23 ) =

) -

problems arising from real world phenomena.

2.2.1. Model Problem 1 (MP1)

The problem of calculating current flowing through each
resistor in a circuit shown in Figure 1 containing resistors R,
Rs, Rs, R4, Rs5, Rg, Ry and Rg measured in Ohms (€2), the
potential differences V4, V5 and V3 measured in volts (V') and
currents i1, i, i3 and i, measured in ampere (A) is considered.

Ra ‘

3+

E

Y .
' Rs

|y

I"

Figure 1. Electric Circuit.

Using the Kirchhoff’s law, the following equations can be
extracted from the above circuit

Vi=28V Vo,=36V V3=42V
R1 =162 Ry;=10Q R3=6Q2 Ry=12Q
Rs; =80 Rg=14Q R;=4Q

Plugging the given parameter values to the above equations, the equations may be simplified to the following equation;

—22i1 + 612 =

611 — 4219 + 1203 + 1444
12y — 24iy + 4iy

14y + iy — 23i, —

The system (12) can be rearranged as A;x = b, that is, expressed as follows

-22 6 0
6 —42 12 14
0 12 —24
0 14 4

The system (13) is called linear system of equations.

0

4
—23

— Ryt — R3(i1 — i2) 0 ®)
R3(ip — 21) =0 9
0 (10)
R7(Z4 — 13 RgZ4 0 (11)
—28
=0
— 36 (12)
—42
1 —28
19 _ 0
i3 o 36 (3)
14 —42
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2.2.2. Model Problem 2 (MP2)
An ordinary differential equation controlling the deflection of a beam with load is given by
ulu?  pu

Elcm// = D) — 77 (14)

where F; means Young modulus of the material, 4 means linear load, C' is called moment of inertia of the section, L means
fixed length of the loaded part, and « represents the length of interest with boundary conditions 2(0) = (L) = 0. The problem
of finding z(u) when E; = 15Gpa, C = 3cm*, 1 = 15kgN/m and L = 3m is considered. The values of x(u) are computed by
employing the FDM with step size Au = 1/2.

The equation (14) is discretized to a system of the form of Bu = c as follows;

2FE,Cz” = pLu; — pu?
Tit1 — 2T + Yi1
Recall: o=
eca x e
Tip1 — 2% + Ti—1 - 9
= (2E,0) ( A2 ) = plLlu; — pu;
But it is known that Au = 0.5, thus
(8E1C)(wig1 — 2% +xi—1) = pLu; — pu?,
1
Tig1 — 2%+ i1 = W(NLW — pu),
1 2
Tit+1 — 2.’I}Z +x,q = g(uz — U; ) (15)
We write equation (15) at each interior points
Upg = O, Uy = 05, U = 1, Uz = 157 Uy = 2,
us = 2.5, wug=3, x9=0, and zg = 0.
At u; =0.5: —2z1 + x5 = 0.15625 (16)
At upy=1: 1 —2x0+23 = 0.25 a7
At uz=1.5: ro —2x3+x4 = 0.28125 (18)
At uyg =2 T3 —2x4 +x5 = 0.25 (19)
At us =2.5: xy —2x5 = 0.15625 (20)
Combining equations (16) up to (20) so that we may have the following system
—2LE1 + Xy = 0.15625
1 —2x9+x3 = 0.25
ro—2x3+ x4 = 0.28125 2D
r3 —2x4 +2x5 = 0.25
The system (21) may be expressed in the form of Asz = b;
-2 1 0 0 O x1 0.15625
1 -2 1 0 0 X2 0.25
0 1 -2 1 0 3 = 0.28125 (22)
0 0 1 -2 1 Ty 0.25
0 0 0 1 -2 T5 0.15625
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2.2.3. Model Problem 3 (MP3)

The differential equation below represents the damped vibrations of a stretching spring

md2—glj + ud—x + E:v = 2u
du? du 4 o ’

(23)

where m is a mass of the body in kilograms, k is a spring constant, « is the distance of oscillations, x is the interval of oscillations,
m=1,k=4,0 < wu < 0.9 with boundary conditions z(0) = 2:(0.9) = 1. The problem of finding the value of x(0.6) using step

size Au = 0.1 is considered.
The equation (23) is discretized to linear equation as follows;

d’x n dx L 5
-y Ui —— Tr; = Uj .
du? du|
d’z Tit1 — 225 + X1
Recall: —
eca du? Au? ’
dxr Tit1 — Tj—1
d ar Litl = Li—1
o du| 28

Tit1 — 2% + i1 (T — T o
A2 s ( oha )T

Simplifying equation (24) yields

Ay
Tit1 — 2% + ®i—1 + TUZ'(%‘H —zi1) + Avlry =

Substituting Aw = 0.1 into equation (25) above leads to equation (26)
(2 + (Olul))xprl + (2 - (Olul))$1,1 —3.98x; =

We write equation (26) at each interior points
Upg = 0, Uy = 01, U = 02, Uus = 03, Ug = 04, Us = 05,
ur = 0.6, uy=0.7 ug=08, ug=09 wy=1, wug=1 as follows

At w3 =0.1: —3.9871 + 2.01zy =

At upy =0.2: 1.982; — 3.98z5 4+ 2.0223 =
At uz=0.3: 1.97x9 — 3.9823 + 2.03x4 =
At us=04: 1.96x3 — 3.98z4 + 2.04z5 =
At us; =0.5: 1.9524 — 3.98z5 4+ 2.052¢ =
At ug=0.6: 1.94x5 — 3.98z¢ + 2.06x7 =
At u; =0.7: 1.93x6 — 3.98x7 + 2.07zg =
At ug =0.8: 1.9227; — 3.98zg =

Combining equations (27) up to (34) so that we may have the following system

—3.98z1 + 2.0l = —1.986
1.98z1 — 3.98x9 + 2.02z3 = 0.008
1.97z9 — 3.98x3 + 2.03z, = 0.012
1.96x3 — 3.9824 + 2.04x5 = 0.016
1.95z4 — 3.98x5 + 2.05z¢ = 0.02
1.94x5 — 3.98z¢ + 2.0627; = 0.024
1.93x¢ — 3.98z7 + 2.07xg = 0.028
1.92x7 —3.98zg = —2.048

then we have

2ui .

QUiAUZ

—1.986
0.008
0.012
0.016
0.02
0.024
0.028
—2.048

(24)

(25)

(26)

27)
(28)
(29)
(30)
€29
(32)
(33)
(34)

(35)
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The system (35) may be expressed in the form of Azx = b;

-3.98 2.01 0 0 0 0 0 0 1 —1.986
1.98 =398 2.02 0 0 0 0 0 T2 0.008
0 1.97 =398 2.03 0 0 0 0 T3 0.012
0 0 1.96 =398 2.04 0 0 0 Ta | _ 0.016 (36)
0 0 0 1.95 =398 2.05 0 0 T5 0.02
0 0 0 0 1.94 -3.98 2.06 0 T6 0.024
0 0 0 0 0 1.93 =398 2.07 T7 0.028
0 0 0 0 0 0 1.92  —-3.98 s —2.048

2.2.4. Model Problem 4 (MP4)

The system shown in Figure 2 having £ linear springs supported by k& masses. C';, denotes the spring stiffness’s are denoted,
the masses weight are denoted by M; and the expulsion of the masses are denoted by y;, the displacements are measured from
the springs before deformation. The formulation of expulsion is given by composing equilibrium function of the masses and
replacing F; + C;y; = C;y;41 for spring forces.

—— V1 —— V2 — Vi

C Cs Cs C
D/\WM] AANAANA My A - anann] My

Figure 2. Linear Springs.

The linear equations for springs can be obtained by the system below;

(C1+Co)yr —Coya = M,y
—Ciyi—1 + (Ci + Ciz1)yi — Ciayit1 = M; 2<i<k-1 37
—Cpyp—1 +Crye = My,

C’1=C'2:C’3=10N/mm, C’4:C’5=C'6:5N/mm
My = M3 = Ms = 100N, My = My = Mg = 50N
Plugging the above constants into equation (37) we have the system below;

Considering six springs (k = 6) and suppose that

20y; — 10y, = 100
—10y; + 20y, — 10ys = 50
—10y2 + 15ys — byy, = 100 (38)
5ys + 10y4 — 5y = 50
—5ys + 10ys —bys = 100
—5Ys + 95y = 50
The system (38) may be expressed in the form of A4y = b;
20 —-10 O 0 0 0 Y1 100
-10 20 -10 O 0 0 Y2 50
0 -10 1 -5 0 0 Y3 _ 100
0 5 10 -5 0 Y4 B 50 (39

0
0 0 0 -5 10 =5 Ys 100
0 0 0 0 -5 50

ot
N
(=)

2.2.5. Model Problem 5 (MP5)
The problem of determining the equilibrium temperatures at nine points labeled as ¢; - - - t9 within a trapezium plate represented
in Figure 3 is considered.
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AIR

20°C

K
|
S O e S

T
o é 1 °
GROUND 10°C

Figure 3. Temperature Distribution on Heated Plate.

The four nearest grid points: West, North, East, and South, have their temperatures recorded in clockwise order on the map.
For example, ¢ is the average of four temperatures, or the sum of four temperatures divided by four, where West = 20, North =
0, East = 0, and South = ¢,. The following nine linear equations are derived from the discretized mean value property.

tlzi(20+0+0+t2):>4t1—t2 — 20 (40)
t2:3(2O+t1+t4+t3):>7t1+4t27t3—t4 — 20 41)
t3:i(t2+0+0+t5)é7t2+4t3—t5 — 0 (42)
t4:i(2o+t2+t5+t7):>—t2+4t4—155—t7 = 20 (43)

ts = 3 (ba+ b+t + 1) = —ts — ta b 45— tg 15 = 0 @
t6:i(t5+0+0+t9):>—t5+4t6—t9 — 0 (45)
t7:i(20+t4+10+t8):>—t4—|—4t7—t8 — 30 (46)
tszi(t7+t5+10+t9):—t5—t7+4t8—t9 = 10 47)
tgzi(t6+t8+10+0):>—t6—t3+4t9 — 10 (48)

(49)

Combining equations (40) up to (48) so that we may have the following system

4t —ty = 20

—t1+ 4ty —t3—ty = 20
—to+4tz3 —ts = 0

—to+ 4ty —ts —ty = 20

—t3 —ty+4ts —tg—tg = 0 (50)

—t5 + 4t6 - t9 = 0

—ty+ 4ty —tg = 30

—ts —t7; +4tg —tg = 10

—tg —tg +4tg = 10
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The system (50) may be expressed in the form of Ast = b;

4 -1 0 O 0 0
-1 4 -1 -1 0 0
-1 4 0 -1 0

0

0

0

0 0O -1 -1 4 -1
0 0 o 0 -1 4
0 0 0 -1 0 0
0 0 0o 0 -1 0
0 0 0 0 0 -1

3. Results and Discussion

3.1. Comparison of SOR and RSOR

In this subsection, we thoroughly examine the effectiveness
of refined successive over-relaxation (RSOR) and successive
over-relaxation (SOR). Key performance indicators, such as
calculation time (in seconds), number of iterations, and
rates of error across various real-world phenomena, form the
basis of the evaluation. Our experiments were executed on
MATLAB R2018a 64-bit, utilizing an Intel(R) Core(TM)i5-
5200U CPU@2.20GHz with a 64-bit operating system. Five
different real-world phenomena are considered; they are
referred to as Model Problem 1 (MP1) through Model Problem
5 (MP5). We provide detailed tables and graphs for every
model problem that compare the SOR and RSOR approaches
in terms of computational time, number of iterations, and
error. These visual depictions serve as essential instruments for
interpreting the distinctions in terms of performance between
SOR and RSOR methods. Moreover, a general remark
is included to provide insightful comment and enhance the
overall understanding of the presented data.

3.1.1. Comparison of Computational Time (in Seconds),
Number of Iterations (NIT) and Error for MP1
Numerical simulations for Model Problem 1 were executed
using MATLAB software, with a maximum of 100 iterations

224
0 0 0 th 20
0 0 0 ts 20
0 0 0 ts 0
-1 0 0 ta 20
0 -1 0 ts] = |0 (51)
0 0 -1/t 0
4 -1 0 tr 30
1 4 —1]|ts 10
0 -1 4 to 10

and a tolerance of 1075, The results are as presented in Table
1.

110 : . . , :
—&—SOR
100 O - & —RSOR| 1
90 | g
80 \

7071

60

Iterations

50 k-1
40 N
30 ~

~~a.
201 ~

10 1 . 1 L
0 0.2 0.4 0.6 0.8 1 122

omega (w)

Figure 4. Variations of omega against number of Iterations for MP1.

The comparison between SOR and RSOR is visually
depicted in Figures 4, 5, and 6, as derived from the data
presented in Table 1.

Table 1. Comparison of SOR and RSOR methods for MP1.

SOR RSOR

w NIT Time (s) Error w NIT Time (s) Error
0.1 101 3.32 x 1072 1.19 x 1073

0.3 87 4.20 x 10~4 9.88 x 1076

0.4 64 1.12 x 10~4 9.36 x 1076

0.5 50 2.50 x 10~ 4 8.23 x 10~6

0.6 40 4.18 x 1074 7.75 x 1076

0.7 32 7.63 x 107° 8.72 x 1076 1.0446 16 0.00018 5.19 x 1076
0.8 26 9.53 x 107° 9.08 x 1076

0.9 22 2.07 x 107° 5.86 x 1076

1 17 1.72 x 10~° 9.28 x 1076

1.1 14 1.34 x 10~° 4.03 x 1076

12 11 1.17 x 10~° 6.29 x 10~°
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In Figure 4, it is evident that the number of iterations
decreases with an increase in the value of omega for the
SOR method. From an iteration efficiency perspective, at the
desirable solvent, the graphical depiction clearly shows that
the SOR approach is superior to the RSOR method. Notably,
the graph reveals that RSOR achieves faster convergence when
the relaxation parameter (w) is set to w = 1.0446, whereas the
SOR method converges at w = 1.2 and diverges at w = 0.1.

Error

0 0.2 0.4 0.6 0.8 1 1.2
omega (w)

Figure 5. Variations of omega against Error for MP1.

The depicted figure above illustrates a diminishing trend in
the error associated with the SOR method as the relaxation
parameter (w)increases. Specifically, in Figure 5, it is evident
that the error for the RSOR method at the optimal relaxation
factor is consistently lower than that of the SOR method. This
observation underscores the superior performance of the SOR
method in terms of error magnitude. More interestingly, the
error for SOR method is less than that of RSOR method at
w = 1.1, implying that the SOR converges faster than the
RSOR method when w = 1.1. However, it’s worth noting
that the SOR method exhibits reduced efficiency at varying
relaxation parameters compared to the RSOR method.

—&—SO0R
— 5 —RSOR

Time (seconds)
=

0 0.2 0.4 0.6 0.8 1 1.2
omega (w)

Figure 6. Variations of omega against computational time for MP1.

Referring to Figure 6, it is evident that changes
in the relaxation parameter (w) significantly impact the
computational time for the SOR method. The results reveal
that the increase of relaxation parameter leads to the decrease
of computational time for SOR method. Notably, at the
optimal relaxation factor, the computational time for the SOR
technique proves to be superior to that of the RSOR technique.
In summary, considering three key criteria: computational
time, number of iterations, and error; the results strongly
support the trial-and-error technique (SOR) for determining
the relaxation factor(w) over using a formula. This underscores
the superiority of the SOR method compared to the RSOR
technique. Interestingly, the RSOR technique demonstrates
greater efficiency than the SOR technique across all relaxation
parameters except for the optimal (w) . For RSOR, the optimal
relaxation parameter lies in the range w = 1.0 to w = 1.2,
specifically at w = 1.0446.

3.1.2. Comparison of Computational Time (in Seconds),
Number of Iterations (NIT) and Error for MP2
Numerical simulations for Model Problem 2 were executed
using MATLAB software, with a maximum of 100 iterations
and a tolerance of 10~5. The results are as presented in Table
2.

Table 2. Comparison of SOR and RSOR methods for MP2.

SOR RSOR

w NIT Time (s) Error w NIT Time (s) Error

0.1 101 9.32 x 1072 3.75 x 1073

0.8 55 1.11 x 1071 9.09 x 1076

0.9 45 7.84 x 107° 9.62 x 10~¢

1.0 37 1.46 x 10~4 9.34 x 1076

1.1 30 5.99 x 1073 9.56 x 1076

12 24 5.30 x 10~° 8.22 x 1076 1.0518 34 0.0074 7.44 x 1076
13 18 8.07 x 10~° 5.20 x 1076
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SOR RSOR

w NIT Time (s) Error w NIT Time (s) Error
1.4 15 2.41 x 107° 6.51 x 10~

15 18 9.30 x 1076 6.89 x 10~

1.6 24 1.08 x 102 3.70 x 1076

1.7 33 1.63 x 10~° 8.14 x 107°

1.8 53 5.09 x 107° 8.63 x 1076

The comparison between SOR and RSOR is visually
depicted in Figures 7, 8, and 9, as derived from the data
presented in Table 2.
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omega (w)

Figure 7. Variations of omega against number of Iterations for MP2.
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Figure 8. Variations of omega against Error for MP2.

Figure 7 illustrates that, with the increase of the relaxation
factor (w) in the Successive Over-relaxation (SOR) technique,
the number of iterations decreases until reaching the optimal
solvent, beyond which divergence occurs immediately. The

graph also highlights that the Refined Successive Over-
relaxation (RSOR) method exhibits superior performance with
the minimum number of iterations compared to the traditional
SOR method. Moreover, the graph demonstrates that SOR
achieves faster convergence when w = 1.4, whereas RSOR
converges at w = 1.0518. More interestingly, the graph depicts
that the SOR method diverges when w = 0.1 and immediately
atw > 1.4.

Upon examining Figure 8, it is evident that at the optimal
solvent point, the error obtained by the Successive Over-
relaxation (SOR) technique surpasses that of the Refined
Successive Over-relaxation (RSOR) technique.  Despite
this, the RSOR technique consistently exhibits remarkable
performance, maintaining its superiority even when the
parameter for relaxation is varied in the SOR technique.
Furthermore, the graph highlights slight differences in errors,
particularly within a range 0.8 < w < 1.2. Notably, during
this range, the RSOR method demonstrates faster convergence
compared to the conventional SOR technique. The optimal
convergence for SOR is attained when w = 1.6.

0
10 T T T T T T T con

— 5 —RSOR

Time (seconds)

105 | | | | | | 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

omega (w)

Figure 9. Variations of omega against computational time for MP2.

When w > 1.1, the Successive Over-relaxation
(SOR) method demonstrates greater efficiency in comparison
to Refined Successive Over-relaxation (RSOR) technique,
particularly in terms of computational time, as depicted in
Figure 9. More interestingly, the SOR technique exhibits
reduced efficiency compared to RSOR in computational time
when the parameter for relaxation falls within the range 0 <
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w < 0.9. In a nutshell, the optimal parameter for relaxation
falls within the range 1.0 < w < 1.2 . Analyzing the results at
desirable solvent presented in Figures 7, 8, and 9, it becomes
evident that the Successive Over-relaxation (SOR) technique
outperforms the Refined Successive Over-relaxation (RSOR)
technique.

3.1.3. Comparison of Computational Time (in Seconds),
Number of Iterations (NIT) and Error for MP3
Numerical simulations for Model Problem 3 were executed
using MATLAB software, with a maximum of 100 iterations
and a tolerance of 10~5. The results are as presented in Table
3.

Table 3. Comparison of SOR and RSOR methods for MP3.

SOR RSOR

w NIT Time (s) Error w NIT Time (s) Error
0.1 101 1.39 x 10~ ¢ 4.11 x 1073

0.3 101 2.08 x 10~ 4 3.43 x 1073

0.4 101 4.49 x 10~4 2.08 x 1073

1 82 3.71 x 107* 9.62 x 10~¢

1.1 68 1.06 x 1074 9.42 x 10=¢

12 56 1.51 x 10~% 8.86 x 10~¢ 1.0623 73 0.00208 9.55 x 10=¢
1.3 45 2.03 x 107* 8.64 x 107¢

1.4 35 2.25 x 107% 7.36 x 107°

1.5 22 1.78 x 10~* 8.43 x 107¢

1.6 27 5.92 x 10~° 5.02 x 10~¢

1.7 36 6.64 x 10~° 7.55 x 1076

1.8 55 9.41 x 10~° 4.21 x 10~°

The comparison between SOR and RSOR is visually
depicted in Figures 10, 11, and 12, as derived from the data
presented in Table 3.
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Figure 10. Variations of omega against number of Iterations for MP3.

Examining Figure 10, the findings indicate a constant
number of iterations for the Successive Over-relaxation (SOR)
technique across the range 0.1 < w < 0.4. Notably, the
quantity of iterations for the SOR technique is less than that
required for the Refined Successive Over-relaxation (RSOR),
establishing the superiority of the SOR technique in terms
of quantity of iterations. Specifically, the SOR technique

achieves faster convergence when w = 1.5, with 22 iterations,
further emphasizing its stability compared to RSOR at the
desirable solvent.

1072 T T T T T T T con
— & —RSOR

10°F 7
9]
=104 F E
[AN)

10° ¢ 1

10-6 L L L L L L ! !

0 02 04 06 08 1 12 14 16 1.8

omega (w)

Figure 11. Variations of omega against Error for MP3.

Referencing Figure 11 , the Refined Successive Over-
relaxation (RSOR) method exhibits superior performance over
the Successive Over-relaxation (SOR) method in terms of
magnitude error, particularly within the range 0.1 < w < 1.0.
More interestingly, the trial-and-error approach employed by
SOR proves to be more effective than RSOR in terms of
convergence when w > 1.0. Additionally, the figure above
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illustrates that the magnitude error of the SOR method at the
optimal solvent is less than that of RSOR, substantiating the
superiority of the SOR method over RSOR method.

The Successive Over-relaxation (SOR) method exhibits
better computational efficiency than the Refined Successive
Over-relaxation (RSOR) method, except in cases where

w = 01 and w = 1.0, as illustrated in Figure 12.
101 F Notably, the graph emphasizes that the SOR method achieves
faster convergence, specifically when w = 1.6 , with a
computational time of 5.92 x 10~? seconds, whereas the RSOR
e method exhibits comparatively slower convergence towards
_ the optimal solvent. In summary, when employed for Model
8 Problem 3, the computational time, quantity of iterations,
g e and magnitude error favor the Successive Over-relaxation
g (SOR) technique over the Refined Successive Over-relaxation
S (RSOR) technique. The range of values for the ideal relaxation
) parameter of the SOR technique is 1.5 < w < 1.7.
107 F
3.1.4. Comparison of Computational Time (in Seconds),
Number of Iterations (NIT) and Error for MP4
10° : : : : ' : : : Numerical simulations for Model Problem 4 were executed
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
omega (w) using MATLAB software, with a maximum of 100 iterations
and a tolerance of 10~5. The results are as presented in Table
Figure 12. Variations of omega against computational time for MP3. 4.
Table 4. Comparison of SOR and RSOR methods for MP4.
SOR RSOR
w NIT Time (s) Error w NIT Time (s) Error
0.1 101 4.71 x 1071 1.19 x 10~ *
0.3 101 4.69 x 10~* 7.22 x 107*
0.4 101 3.58 x 107* 7.61 x 107°
0.5 94 5.84 x 1074 8.80 x 10~¢
0.6 74 1.13 x 1074 8.92 x 10~ ¢
0.7 59 3.92 x 10~* 9.81 x 10~¢
0.8 48 2.24 x 107* 9.34 x 107° 1.05664 28 0.00197 9.90 x 107¢
0.9 39 1.79 x 1074 9.22 x 10=¢
1 32 1.70 x 10~4 7.56 x 1076
1.1 26 4.69 x 10~° 7.57 x 1076
12 20 3.64 x 10~° 4.59 x 10~¢
1.3 21 3.77 x 107° 4.49 x 10~6
14 27 4.64 x 107° 5.67 x 10~°
The comparison between SOR and RSOR is visually 1o ' ' ' ' i E———
depicted in Figures 13, 14, and 15, as derived from the data 100 b — © —RSOR
presented in Table 4.
Analyzing Figure 13, it becomes evident that the quantity of S0
iterations for the Successive Over-relaxation (SOR) technique 8ok
remains constant within the range 0.1 < w < 0.4.
Notably, SOR diverges within the range 0.1 < w < 0.4 . g 70t
Despite this, the optimal number of iterations for achieving § ol
desirable solvents with SOR is still lower than that of the =
Refined Successive Over-relaxation (RSOR). Notably, the 50 -
RSOR method converges faster tha SOR method within the
range 0.1 < w < 1.04. Consequently, the SOR technique or
proves to be superior to the RSOR method when considering 30k
the quantity of iterations required at the targeted solvent. i
The illustration reveals that, for 0.1 < w < 1.04 there is 20 02 oa 06 08 ; s 4

no convergence because the tolerance is not met, that is the
tolerance is greater than 107°.

omega (w)

Figure 13. Variations of omega against number of Iterations for MP4.
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Figure 14. Variations of omega against Error for MP4.

The data presented in Figure 14 highlights a decrease in
the magnitude error of the Successive Over-relaxation (SOR)
technique with an increase in the relaxation parameter (w).
Notably, the figure illustrates that the magnitude error for
the Successive Over-relaxation (SOR) method consistently
outperforms that of RSOR especially when 0.1 < w <
0.4. Consequently, the RSOR technique demonstrates superior
efficiency over the SOR method in terms of magnitude error
when 0.1 < w < 0.4. Also, the graph depicts that the
SOR method converges faster when the relaxation parameter
(w=1.3).

The Successive Over-relaxation (SOR) technique exhibits
superior computational efficiency compared to the Refined
Successive Over-relaxation (RSOR) technique, with an
exception occurring when w = 0.1 and w = 0.2, as depicted in

Figure 15. Additionally, the graph above clearly demonstrates
that the RSOR technique experiences divergence throughout
the experiment, suggesting that the SOR technique holds
superiority over the SOR technique. In summary, the analyses
of Figure 13, Figure 14, and Figure 15 Unquestionably,
establish the superiority of the Successive Over-relaxation
(SOR) technique over the Refined Successive Over-relaxation
(RSOR) technique.
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Figure 15. Variations of omega against computational time for MP4.

3.1.5. Comparison of Computational Time (in Seconds),
Number of Iterations (NIT) and Error for MP5
Numerical simulations for Model Problem 5 were executed
using MATLAB software, with a maximum of 100 iterations
and a tolerance of 10~5. The results are as presented in Table
5.

Table 5. Comparison of SOR and RSOR methods for MP5.

SOR RSOR

w NIT Time (s) Error w NIT Time (s) Error
0.1 101 2.97 x 1071 1.41 x 10~2

0.3 101 3.52 x 1071 1.54 x 10~°

0.4 76 1.00 x 10~4 8.75 x 1076

0.5 58 1.63 x 10~ 4 8.82 x 107¢

0.6 46 4.90 x 10~ 4 7.96 x 1076

0.7 37 9.54 x 10~* 7.37 x 1076

0.8 30 1.58 x 104 6.70 x 10=¢ 1.0640 16 0.00022 7.31 x 1076
0.9 24 1.04 x 10~4 7.21 x 1076

1.0 19 3.47 x 107° 7.45 x 1076

1.1 14 1.32 x 107° 9.38 x 10~¢

12 12 1.25 x 10~° 2.43 x 1076

13 14 1.37 x 102 8.52 x 1076

1.4 18 1.90 x 102 3.90 x 1076
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The comparison between SOR and RSOR is visually
depicted in Figures 16, 17, and 18, as derived from the data
presented in Table 5.
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Figure 16. Variations of omega against number of Iterations for MP5.

Examining Figure 16, it is observed that the quantity of
iterations for Successive Over-relaxation (SOR) technique
remains constant within the range w = 0.1 to w = 0.3.
Additionally, the results indicate a decrease in the quantity
of iterations for the SOR technique with an increase in the
relaxation parameter (w). However, beyond w = 1.2, the
number of iterations for SOR diverges immediately upon
reaching the desirable solvent, occurring at w = 1.2, where
the number of iterations is 12, this is notably fewer than
the corresponding number for the Refined Successive Over-
relaxation (RSOR) method. Consequently, the SOR technique
demonstrates superior efficiency over the RSOR technique in
terms of required quantity of iterations to reach the targeted
solvent.
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Figure 17. Variations of omega against Error for MP5.

The error reduction in the Successive Over-relaxation
(SOR) technique is evident with an increase of relaxation
parameter (w), as illustrated in Figure 17. Moreover, the
findings reveal that the magnitude error for the Refined

Successive Over-relaxation (RSOR) technique consistently
surpasses that of the SOR technique, except at the targeted
solvent. This observation suggests that RSOR technique
converges more rapidly than SOR. Consequently, it is evident
that the RSOR technique excels over the conventional SOR
technique when considering magnitude error. Notably, the
SOR method shows optimal convergence especially at w =
1.2.
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Figure 18. Variations of omega against computational time for MPS5.

The findings presented in Figure 18 underscore the Model
Problem 5 is sensitive to variations in the relaxation parameter.
The results indicate that the computational time for SOR
decreases as the increase of relaxation parameter throughout
the experiment. Additionally, the results suggest that, at
the optimal solvent, the Refined Successive Over-relaxation
(RSOR) technique exhibits lower computational efficiency
compared to the Successive Over-relaxation (SOR) technique.
To summarize, the insights drawn from Figure 16, Figure
17, and Figure 18 collectively suggest a preference for the
Successive Over-relaxation (SOR) technique over the Refined
Successive Over-relaxation (RSOR) technique.

3.2. Condition Number and Sensitivity Analysis on
Systems of Linear Equations

According to Rice (1966), a condition number for systems
of linear equations Az = b is given by k(A) = ||A71]||A].
It is very important to note that, the perturbations may be
applied to the system of equations with a non-singular matrix
otherwise the perturbations cannot be done. It means that the
condition number for the system of equations with singular
matrix is infinite, i.e. k(A) = oo. In this subsection we
investigate the nature of condition number before perturbation
and after perturbation and how does it affect the exact solvent
of MP1 to MP5. The investigations can be done using Figures
6&7.

The effects of perturbations for Model Problem 1-5 were
simulated and executed using the MATLAB software, and the
results were careful organized and presented in Tables 6 & 7.
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Table 6. Comparison of condition number before and after perturbation for MP1-MP3.
a4 k(A1) Ik (A9) — k(A1) | k (Az2) Ik (A9) — k(Az2) | k (As) |k (AS) — k (As) |
100 18.9614 12.6699 499.6005 485.6723 864.8330 831.4150
1 11.1857 4.8942 4.6351 9.2931 8.3616 25.0564
0.5 8.0312 1.7397 3.7253 10.2029 8.3623 25.0557
0.1 6.5735 0.2820 18.3070 4.3788 15.3031 18.1149
0.01 6.3185 0.0270 16.8531 2.9249 48.4452 15.0272
0.001 6.2942 0.0027 14.9524 1.0242 34.4838 1.0658
0.0001 6.2918 0.0003 13.9524 0.0242 33.5215 0.1035
0.00001 6.2915 0.0000 13.9306 0.0024 33.4283 0.0103
0.00000 6.2915 0.0000 13.9282 0.0000 33.4180 0.0000
Table 7. Comparison of condition number before and after perturbation for MP4-MPS5.
AA k (As) |k (AZ) — k(Aq)| k (As) |k (A3) — k (As) |
100 213.8952 186.2222 376.7932 371.6119
1 14.1745 13.4985 4.4602 0.7211
0.5 16.4285 11.2445 2.8442 2.3371
0.1 23.2383 4.4347 3.2609 1.9204
0.01 27.1170 0.5560 4.8774 0.3039
0.001 27.6160 0.0570 5.1491 0.0322
0.0001 27.6673 0.0057 5.1781 0.0032
0.00001 27.6725 0.0005 5.1810 0.0003
0.00000 27.6730 0.0000 5.1813 0.0000

The effects of perturbations on MPI1-MP5 is visually
depicted in Figures 19, 20, 21, 22 and 23, as derived from the
data presented in Tables 6 & 7.
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Figure 19. Effects of perturbations for MP1.

In Figure 19, the observed results reveal a noteworthy
trend: the condition number of Model Problem 1 (MP1)
escalates with the augmentation of perturbations on MPI,
and conversely, it diminishes as perturbations decrease. The
disparity between the condition number of the original

matrix’s system and that of the modified system contracts
proportionally with the reduction in perturbations on MP1.
The discernible gap between these two plots underscores the
sensitivity of MP1 to even minor perturbations. Consequently,
it is evident that the system constitutes an ill-posed problem.
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Figure 20. Effects of perturbations for MP2.

Referring to Figure 20, the analysis demonstrates a clear
correlation: the condition number of Model Problem 2
(MP2) rises with the amplification of perturbations on MP2
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and decreases conversely. The graphical representation also
illustrates that the discrepancy in magnitude between the
original and new condition numbers for MP2 contracts as
perturbations in matrix entries decrease. Additionally, the
findings indicate that Model Problem 2 transforms into a
well-posed problem when subjected to minor perturbations
in matrix entries, but becomes an ill-structured problem
otherwise.
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Figure 21. Effects of perturbations for MP3.

Upon scrutinizing Figure 21, it becomes evident that
alterations in the perturbations of Model Problem 3 (MP3)
have a discernible impact on its condition number. The results
further highlight that the disparity in magnitude between the
original condition number and the new condition number for
MP3 increases with escalating perturbations and diminishes
vice versa. The sensitivity of the MP3 system to perturbations
is clearly illustrated in Figure 21. Consequently, it is
unequivocal that Model Problem 3 constitutes an ill-posed
problem.
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Figure 22. Effects of perturbations for MP4.

Examining Figure 22, the findings underscore a noteworthy
trend: the condition number of Model Problem 4 (MP4)
escalates with the augmentation of perturbations on MP4 and
decreases conversely. Furthermore, the contrast between the
condition number of the original matrix system and that of
the new system contracts with the reduction of perturbation
on MP4. The perceptible gap between these two plots
emphasizes the heightened sensitivity of MP4 to even modest
perturbations. Consequently, it becomes evident that MP4
represents an ill-structured problem.
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Figure 23. Effects of perturbations for MP5.

Referring to Figure 22, the analysis reveals a discernible
pattern: the condition number of Model Problem 5 (MPS)
rises with escalating perturbations on MP5 and diminishes in
vice versa. The graphical representation also conveys that the
magnitude difference between the original condition number
and the new condition number for MP5 diminishes with the
reduction of perturbations in matrix entries. The subtle gap
between these two plots suggests that Model Problem 5 is a
well-posed problem.

In summary, the condition number of the new matrix with
a smaller perturbation (AA) appears to be similar to the
condition number of the original matrix. This similarity
indicates that the system is well-perturbed, implying that small
changes imposed on the original system do not significantly
affect the desirable solvent. However, when larger changes are
introduced to the original system, it leads to a deviation from
the desirable solvent, rendering the new system ill-posed.

Furthermore, a notable observation is that the smaller the
increment to the original matrix, the smaller the magnitude
difference between the condition number of the original matrix
and the new matrix, and vice versa. This observation leads to
the understanding that if the condition number before and after
perturbation remains the same, the problem is termed well-
structured. Conversely, if there is a significant difference, it
indicates an ill-structured problem.

Adding to this observations, it is worth noting that if
the original matrix contains many zero entries, the analysis
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reveals that any perturbation imposed on the system will
have a substantial impact on the solvent, regardless of the
condition number. This underscores the sensitivity of systems
with numerous zero entries to perturbations, highlighting an
important aspect to consider in the context of the matrix’s
composition and its implications for the behavior of the system
of linear equations.

4. Conclusions and Recommendations

4.1. Conclusion

Findings showed that Refined Succession Over-relaxation
method is very efficient especially when 1.0 < w < 1.2
where w is constant for speeding up the convergence and
reduces the number of iterations. More interestingly it was
observed that trial and error method for finding w using
SOR gives appropriate solvent than the ideal parameter for
relaxation which is computed using formula. The successive
w at desirable solvent with tolerance of 10~ via SOR method
becomes more efficient with rapidly convergence than the
Refined Succession-Over Relaxation method.

In most cases trial and error method of finding best w via the
SOR method has noticed to be the best than using the w of the
RSOR that is obtained by using the specified formula. Further
findings may be done to generate an optimal algorithm for the
refined SOR that would yield suitable, desirable solvent with
intermittent iterations to the true values. This is due to the
fact that, the existing formula for finding optimal relaxation
parameter (w) fails in some cases.

Moreover, the results show that small inputs to the
coefficients of the original matrix does not affect the desirable
solvent because, the condition number of the original matrix
is the same as that of perturbed matrix hence the problem
becomes well-structured. If the increment or decrement to the
coefficients of matrix exceeds 10~* then the condition number
of the new system will be greater than that of the original
system hence the problem becomes ill-conditioned.

In a nutshell, the system with many 0’s entries seem to be
sensible to any perturbation imposed to the system and the new
system will be unstable. If the tolerance |k(AY) — k(A;)| >
107° for all i > 1 where i is any positive integer then the
problem becomes badly structured.

4.2. Recommendations

The findings underscore the versatility of the SOR method,
particularly in scenarios where fine-tuning the relaxation
parameter is feasible, and precision in convergence is utmost
importance. However, it is essential to consider that
the method’s efficiency may be highly dependent on the
phenomena’s characteristics and the specific criteria set for
convergence, making it crucial to tailor the choice of the
method to the unique requirements of each problem.

The use of a trial and error approach for determining the
parameter for relaxation (w) in the Successive Over Relaxation
(SOR) technique is encouraged. The SOR approach was

observed to yield more suitable solvents compared to obtaining
w through the prescribed formula. For specific cases where
successive iterations toward a desirable solution with a
tolerance of 10~° are essential, the SOR approach converges
rapidly compared to the RSOR method. It is advisable
to assess the nature of the problem and select the method
accordingly.

Care should be taken regarding the inputs to the coefficients
of the original matrix. If small adjustments are made and
the condition number remains consistent, the problem is
considered well-structured. However, exceeding a certain
threshold of adjustment can result in an ill-conditioned
system, potentially leading to instability. Systems with a
significant number of zero entries are particularly sensitive
to perturbations. Any imposed perturbation can render the
system unstable. It is advisable to exercise caution and
consider the impact of perturbations on the stability of the
system.
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