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Abstract: Group theory, an area in mathematics, has undergone extensive research, but not exhaustively. In group theory,
especially symmetric groups have been studied in terms of properties and actions. In this research, two groups of the Symmetric
Group (Alternating and Dihedral Groups) are studied in terms of their properties and also their direct product between them.
Also, ordered sets are studied in this research where their Cartesian product is looked at. Finally, this research combines the direct
product of two symmetric groups (alternating group and dihedral group) and the Cartesian product of two ordered sets (X×Y ) by
group action. This research therefore focuses on determining the combinatorial properties (transitivity and primitivity), invariants
(ranks and subdegrees), and structures (suborbital graphs) of this group action. To accomplish this, orbit-stabilizer theorem is
used to compute transitivity, block action concept is applied to determine primitivity, and Cauchy-Frobenius lemma is used to
compute ranks and subdegrees. For n > 3, it has been confirmed that the group action is transitive and also imprimitive. The
rank of this group action is 6 and the subdegrees are obtained using the formula of Theorem 3.3. This research adds new concepts
in group theory which will be useful in other areas like graph theory and also application in real life situations.
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1. Introduction
Suppose that (An, X) and (Dn, Y ) are permutation groups,

then the direct product An × Dn acting on the Cartesian
product X×Y is given by the rule (g1, g2)(x, y) = (g1x, g2y)
∀ g1 ∈ An, g2 ∈ Dn, x ∈ X and y ∈ Y .

The direct product is a resourceful construction which
allows groups to be combined in that they mantain their
individual structures, while also making it possible to analyze
and synthesize complex system in algebra, geometry and more.

This paper seeks to determine the transitivity, primitivity,
ranks and subdegrees of the group action An ×Dn on X × Y
where n ≥ 3.

2. Notation and Preliminary Results

Definition 2.1. A set is a collection of well defined objects.
[1]

Definition 2.2. A group G is a set with a binary operation
and satisfies the rules; identity, inverse, closure and
associativity. [2]

Definition 2.3. A permutation of n elements is a one-
to-one mapping from a set X of n elements onto itself.
The set of all permutations of X form a group G under
the operation of multiplication (composition) of permutations
called a Symmetric group (Sn). It is denoted as (G,X).[3]

Definition 2.4. The group formed by the collection of the set
of all even permutations in a Symmetric group (Sn) is called
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the Alternating group (An) and its order is |An| = n!
2 .[4]

Definition 2.5. A Dihedral group, Dn is a group of
symmetries and rigid motions of a regular polygon Pn of n
sides. It has n number of sides (degree) and 2n number of
elements (order). Dihedral group is composed of rotations and
reflections that preserves the shape of the polygon. [5]

Definition 2.6. Let G be a permutation group and X be a
non-empty set . Then, a group action of G on X is the function
G × X → X satisfying the algebraic law of identity and
associativity:

1. Identity law e · x = x ∀ x ∈ X and e ∈ G.
2. Associative law (g · h) · x = g · (h · x) ∀ g, h ∈ G and

x ∈ X . [6]
Definition 2.7. Let G act on a set X . The set of elements of

X fixed by g ∈ G is called the fixed point set of g, denoted by
Fix (g). Thus Fix (g) = {x ∈ X |gx = x}. [7]

Definition 2.8. The stabilizer of x ∈ X denoted by
StabG (x), is the set of all elements in G that fix x i.e.
StabG (x) = {g ∈ G |gx = x}. [8]

Definition 2.9. If a group G acts on a set X then, X is
partitioned into disjoint equivalence classes called orbits or
transitivity classes of the action. For each x ∈ X the orbit
containing x is denoted by OrbG (x) = {gx |g ∈ G} which
contains all the images of x under every g in G. If the action
of a group G on a set X has a single orbit (|orbG (x)| = |X|),
then G is said to act transitively on X .i.e if x, y ∈ X and g ∈
G then gx=y. [9]

Definition 2.10. Let G be a transitive group acting on a set
X . A subset Y of X is called a block if for any g ∈ G, either;

1. Y is invariant under g, (gY = Y ) or
2. g translates everything out of Y , (gY ∩ Y = ∅).[10]

Definition 2.11. All one - element subsets of X , empty set
∅ and X itself are obvious blocks and are called trivial blocks.
If they are the only blocks, then G acts primitively on X ,
otherwise G acts imprimitively if the action has also non-trivial
blocks. [11]

Definition 2.12. The Cartesian product of two sets A and B
written as A×B is the set A×B = {(a, b) |a ∈ Aandb ∈ B }.
[12]

Definition 2.13. An element of a set X is said to be
invariant under group action if the action maps the element
into itself.[13]

Definition 2.14. Suppose (G1, X1) and (G2, X2) are
permutation groups, then the direct product, G1 × G2 acts on
the Cartesian product X1×X2 by the rule (g1, g2) (x1, x2) =
(g1x1, g2x2)∀g1 ∈ G1, g2 ∈ G2, x1 ∈ X1, x2 ∈ X2.[14]

Theorem 2.1. (Orbit-Stabilizer Theorem) Suppose that a
finite group G acts on X and for any x ∈ X . Then the number
of elements in the orbit of x is the index of G over the stabilizer
of x given by:

|orbG(x)| = |G|
|stabG(x)|

(1)

[15]
Lemma 2.1. (Cauchy-Frobeneus Lemma) Suppose that G is

a finite permutation group that acts on set X. Then the number
of orbits into which the set X is divided by the equivalence
relation induced by G is;

1

|G|
∑
g∈G
|Fix(g)| (2)

Where |Fix (g)| = |{x ∈ X |gx = x}|. i.e. |Fix (g)| is the
number of elements that are invariant under g ∈ G. [16]

Theorem 2.2. Let An act on X , then StabAn
= An−1 for all

x ∈ X . Therefore;

|StabGAn−1| =
(n− 1)!

2
(3)

[17]
Definition 2.15. Let G act on X transitively and let

StabG (x) be the stabilizer of a point x ∈ X then, the orbits
[∆0 = {x} ,∆1,∆2, ...,∆r−1] of StabG (x) on X are called
suborbits of G. The total number of these suborbits r is called
the rank of G. The subdegrees of G are the lengths of the
suborbits [ni = |∆i| (i = 0, 1, 2, ..., r − 1)]. [18]

3. Main Results

3.1. Transitivity of the Group A3 ×D3 Action on X ×Y

Lemma 3.1. The group A3 × D3 action on X × Y is
transitive.

Proof Let G = A3 ×D3, A3 = {ea, (a1 a2 a3) , (a1 a3 a2)} and
D3 = {ed, (d2 d3) , (d1 d2) , (d1 d2 d3) , (d1 d3 d2) , (d1 d3)}.
Then;
G = {(ea, ed), (ea, (d2 d3)), (ea, (d1 d2)), (ea, (d1 d2 d3)), (ea, (d1 d3 d2)), (ea, (d1 d3)), ((a1 a2 a3), ed),

((a1 a2 a3), (d2 d3)), ((a1 a2 a3), (d1 d2)), ((a1 a2 a3), (d1 d2 d3)), ((a1 a2 a3), (d1 d3 d2)),

((a1 a2 a3), (d1 d3)), ((a1 a3 a2), ed), ((a1 a3 a2), (d2 d3)), ((a1 a3 a2), (d1 d2)), ((a1 a3 a2),

(d1 d2 d3)), ((a1 a3 a2), (d1 d3 d2)), ((a1 a3 a2), (d1 d3))}
|G| = 18

Suppose that K = X × Y , X = (x1, x2, x3) and Y = (y1, y2, y3) then;
K = {(x1, y1), (x1, y2), (x1, y3), (x2, y1), (x2, y2), (x2, y3), (x3, y1), (x3, y2), (x3, y3)}

such that the order of K is 9.
From definition 2.8, StabG(x1, y1) = {(ea, ed), (ea, (d2 d3))} implying that that the order of the stabilizer is 2 and from

definition 2.9,
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OrbG(x1, y1) = {(x1, y1), (x1, y2), (x1, y3), (x2, y1), (x2, y2), (x2, y3), (x3, y1), (x3, y2), (x3, y3)} |OrbG(x1, y1)| = 9
Using theorem 2.1;

|OrbG(x1, y1)| = |G|
|StabG(x1, y1)|

=
18

2
= 9 = |X × Y |

∴ The group A3 ×D3 action on X × Y is transitive.

3.2. Transitivity of the Group A4 ×D4 Action on X × Y

Lemma 3.2. The group action A4 ×D4 on X × Y is transitive.
Proof Let G = A4 ×D4,
A4 = {(ea), (a2 a3 a4), (a2 a4 a3), (a1 a2) (a3 a4), (a1 a2 a3), (a1 a2 a4), (a1 a3 a2), (a1 a3 a4), (a1 a3) (a2 a4),

(a1 a4 a2), (a1 a4 a3), (a1 a4)(a2 a3)}
D4 = {(ed), (d2 d4), (d1 d2)(d3 d4), (d1 d2 d3 d4), (d1 d3), (d1 d3)(d2 d4), (d1 d4 d3 d2),

(d1 d4)(d2 d3)}
and the order of G = A4 ×D4 is 96.

Also let;
K = X × Y,X = (x1, x2, x3, x4), Y = (y1, y2, y3, y4)

therefore,
K = {(x1, y1), (x1, y2), (x1, y3), (x1, y4), (x2, y1), (x2, y2), (x2, y3), (x2, y4), (x3, y1), (x3, y2), (x3, y3), (x3, y4),

(x4, y1), (x4, y2), (x4, y3), (x4, y4)}
|K| = 16

From the definition 2.8;
StabG(x1y1) = {(ea, ed), (ea, (d2 d4)), ((a2 a3 a4), ed), ((a2 a3 a4), (d2 d4)), ((a2 a4 a3), ed), ((a2 a4 a3), (d2 d4))}
Its order is 6. And from the definition 2.9;
OrbG(x1, y1) = {(x4, y1), (x4, y2), (x4, y3), (x4, y4), (x3, y1), (x3, y2), (x3, y3), (x3, y4), (x2, y1), (x2, y2),

(x2, y3), (x2, y4), (x1, y1), (x1, y2), (x1, y3), (x1, y4)}
The order of orbit is 16. Applying theorem 2.1;

|OrbG(x1, y1)| = |G|
|StabG(x1, y1)|

=
96

6
= 16 = |X × Y |

∴ The group action A4 ×D4 action on X × Y is transitive.

3.3. Transitivity of the Group A5 ×D5 Action on X × Y

Lemma 3.3. The group A5 ×D5 action on X × Y is transitive.
Proof Let G = A5 ×D5,
A5 = {(ea), (a3 a4 a5), (a3 a5 a4), (a2 a3)(a4 a5), (a2 a3 a4)(a2 a3 a5), (a2 a4 a3), (a2 a4 a5), (a2 a4)(a3 a5),

(a2 a5 a3), (a2 a5 a4), (a2 a5)(a3 a4), (a1 a2)(a4 a5), (a1 a2)(a3 a4), (a1 a2)(a3 a5), (a1 a2 a3), (a1 a2 a3 a4 a5),

(a1 a2 a3 a5 a4), (a1 a2 a4 a5 a3), (a1 a2 a4 a3 a5), (a1 a2 a5 a4 a3), (a1 a2 a4), (a1 a2 a5), (a1 a3 a2),

(a1 a2 a5 a3 a4), (a1 a3 a4 a5 a2), (a1 a3 a5 a4 a2), (a1 a3)(a4 a5), (a1 a3)(a2 a4), (a1 a3)(a2 a5), (a1 a3 a4),

(a1 a3 a5), (a1 a3 a2 a4 a5), (a1 a3 a5 a2 a4), (a1 a3 a2 a5 a4), (a1 a3 a4 a2 a5), (a1 a4 a2), (a1 a4 a3),

(a1 a4)(a3 a5), (a1 a4 a5 a3 a2), (a1 a4 a3 a5 a2), (a1 a4 a5), (a1 a4 a5 a2 a3), (a1 a4)(a2 a3), (a1 a4 a2 a3 a5),

(a1 a4 a2 a5 a3), (a1 a4 a3 a2 a5), (a1 a5 a4 a3 a2), (a1 a5 a3 a4 a2), (a1 a5 a4 a2 a3), (a1 a5 a2 a3 a4),

(a1 a5 a2 a4 a3), (a1 a5 a3 a2 a4), (a1 a4)(a2 a5), (a1 a5)(a3 a4), (a1 a5)(a2 a3), (a1 a5)(a2 a4), (a1 a5 a2),

(a1 a5 a3), (a1 a5 a4)},
D5 = {ed, (d2 d5)(d3 d4), (d1 d2)(d3 d5), (d1 d3)(d4 d5), (d1 d4)(d2 d3), (d1 d5)(d2 d4),

(d1 d2 d3 d4 d5), (d1 d3 d5 d2 d4), (d1 d4 d2 d5 d3), (d1 d5 d4 d3 d2)}
|G| = 600

Let K = X × Y where X = (x1, x2, x3, x4, x5) and Y = (y1, y2, y3, y4, y5) then;
K = {(x1, y1), (x1, y2), (x1, y3), (x1, y4), (x1, y5), (x2, y1), (x2, y2),

(x2, y3), (x2, y4), (x2, y5), (x3, y1), (x3, y2), (x3, y3), (x3, y4),

(x3, y5), (x4, y1), (x4, y2), (x4, y3), (x4, y4), (x4, y5), (x5, y1),

(x5, y2), (x5, y3), (x5, y4), (x5, y5)}

|K| = 25

From the definition 2.8;
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StabG(x1, y1) = {(ea, ed), (ea, (d2 d5)(d3 d4), ((a2 a3)(a4 a5), ed), ((a3 a4 a5), ed),

((a3 a4 a5), (d2 d5)(d3 d4)), ((a3 a5 a4), ed), ((a3 a5 a4), (d2 d5)(d3 d4)),

((a2 a3)(a4 a5), (d2 d5)(d3 d4)), ((a2 a3 a4), ed), ((a2 a3 a4), (d2 d5)(d3 d4)),

((a2 a3 a5), ed)), ((a2 a3 a5), (d2 d5)(d3 d4)), ((a2 a4 a3), ed), ((a2 a4 a3),

(d2 d5)(d3 d4)), ((a2 a4 a5), ed), ((a2 a4 a5), (d2 d5)(d3 d4)), ((a2 a4)(a3 a5), ed),

((a2 a4)(a3 a5), (d2 d5)(d3 d4)), (a2 a5 a3), ed), ((a2 a5 a3), (d2 d5)(d3 d4)),

(a2 a5 a4), ed), ((a2 a5 a4), (d2 d5)(d3 d4)), ((a2 a5)(a3 a4), ed),

((a2 a5)(a3 a4), (d2 d5)(d3 d4))}

|StabG(x1, y1)| = 24

From the definition 2.9;
OrbG(x1, y1) = {(x1, y1), (x1, y2), (x1, y3), (x1, y4), (x1, y5), (x2, y1), (x2, y2), (x2, y3), (x2, y4),

(x2, y5), (x3, y1), (x3, y2), (x3, y3), (x3, y4), (x3, y5), (x4, y1), (x4, y2), (x4, y3),

(x4, y4), (x4, y5), (x5, y1), (x5, y2), (x5, y3), (x5, y4), (x5, y5)}
|OrbG(x1, y1)| = 25

Applying theorem 2.1;

|OrbG(x1, y1)| = |G|
|StabG(x1, y1)|

=
600

24
= 25 = |X × Y |

∴ The group A5 ×D5 action on X × Y is transitive.

3.4. Transitivity of the Group An×Dn Action on X×Y

Theorem 3.1. For n > 3, the group An × Dn action on
X × Y is transitive, where X = {x1, x2, x3, ..., xn} and
Y = {y1, y2, y3, ..., yn}

Proof For n > 3, it can be proofed that |OrbG(xn, yn)| =
|X × Y |. If G = An × Dn, |An| = n!

2 ,|Dn| = 2n then,
|G| = |An ×Dn| = n!×2n

2 = n! × n. Also, let K = X × Y
and |X| = n, |Y | = n, then, |K| = n × n = n2. By theorem
2.2 the order of the stabilizer of An = (n−1)!

2 and that the order
of stabilizer of Dn is always 2, using theorem 2.1;

|OrbG(xn, yn)| = |G|
|StabGAn||StabGDn|

=
n!× n

(n−1)!
2 × 2

since n! = n · (n− 1)!

=
n!× n

(n− 1)!

=
n · (n− 1)!× n

(n− 1)!

= n× n

= n2

= |X × Y |
∴ The group An ×Dn action on X × Y is transitive.

3.5. Primitivity of the Group A3 ×D3 Action on X × Y

Lemma 3.4. The group A3 × D3 action on X × Y is
imprimitive.

Proof. Let G = A3 × D3, K = X × Y , X = (x1, x2, x3),
Y = (y1, y2, y3) and G acts transitively on K. The elements
of;

K = {(x1, y1), (x1, y2), (x1, y3), (x2, y1), (x2, y2), (x2, y3),

(x3, y1), (x3, y2), (x3, y3)}
|K| = 9 = 3× 3 = 32

From definition 2.10 and 2.11
Let Q ⊆ K such that |Q| divides |K| by a divisor of |K|.

Considering |Q| = {(x1, y1), (x2, y2), (x3, y3)} = 3 such that
|K|
|Q| = 32

3 . There exist g ∈ G such that it translates all elements
of Q out of Q i.e. gQ ∩Q = ∅.

Since G acts transitively on K,
g = ((a1 a2 a3), (d1 d3)) then,
gQ = ((a1 a2 a3), (d1 d3))(x1, y1) = (x2, y3)
clearly gQ ∩ Q = ∅, this is a proof that Q is a non-trivial

block and therefore the group action is imprimitive

3.6. Primitivity of the Group An ×Dn Action on X × Y

Theorem 3.2. The group An × Dn action on X × Y is
imprimitive.

Proof Consider G = An×Dn acting on X×Y , K = X×Y ,
X = (x1, x2, x3, ..., xn), K = X×Y , Y = (y1, y2, y3, ..., yn)
and G acts transitively on K therefore, |K| = n × n = n2.
Suppose that Q ⊆ K such that |Q| divides |K| by a divisor of
|K| and |Q| = |{(x1, y1), (x2, y2), (x3, y3), ..., (xn, yn)}| =

n then, |K||Q| = n2

n . There exist g ∈ G such that g translates all
elements of Q out of Q i.e. gQ ∩ Q = ∅. It is clear that Q is
a non-trivial block of the action concluding that the action is
imprimitive.

3.7. Ranks and Subdegrees of the Group A3 ×D3 Action
on X × Y

Lemma 3.5. Suppose that the group A3 × D3 action on
X × Y is transitive, then the rank is 6 and the corresponding
subdegrees are 1, 2, 2, 2, 1, 1.

Proof Since G = A3 ×D3 and K = X × Y .
From lemma 3.1,
K = {(x1, y1), (x1, y2), (x1, y3), (x2, y1), (x2, y2), (x2, y3), (x3, y1), (x3, y2), (x3, y3)}
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and
StabG(x1, y1) = {(ea, ed), (ea, (d2 d3))}.
Then, the number of elements in K fixed by each g ∈ G is 9.

Table 1. Permutations in StabG(x1, y1) and the No. of Fixed Points.

Permutation type in StabG(x1, y1) Number of permutations (|G|) FixG(g)

(ea, ed) 1 9

(ea, (ab)) 1 3

TOTAL 2

By lemma 2.1, the number of suborbits of G acting on K is given by:
1

|G|
∑
g∈G
|Fix(g)| = [

1

2
((9× 1) + (1× 3))] =

1

6
(12) = 6

This shows that there are 9 orbits classified into six suborbits i.e.
∆0 = OrbG(x1, y1) = {(x1, y1)} = 1 (Trivial Orbit)
∆1 = OrbG(x1, y2) = {(x1, y2), (x1, y3)} = 2
∆2 = OrbG(x2, y2) = {(x1, y2), (x2, y3)} = 2
∆3 = OrbG(x3, y2) = {(x3, y2), (x3, y3)} = 2
∆4 = OrbG(x2, y1) = {(x2, y1)} = 1
∆5 = OrbG(x3, y1) = {(x3, y1)} = 1
Therefore, the group action has rank 6 and the corresponding subdegrees are 1, 2, 2, 2, 1, 1.

3.8. Ranks and Subdegrees of the Group A4 ×D4 Action on X × Y

Lemma 3.6. Let the group A4 × D4 action on X × Y be transitive, then the rank is 6 and the corresponding subdegrees are
1, 3, 3, 3, 3, 3.

Proof Since G = A4 ×D4 and K = X × Y .
From lemma 3.2,
K = {(x1, y1), (x1, y2), (x1, y3), (x1, y4), (x2, y1), (x2, y2), (x2, y3), (x2, y4), (x3, y1), (x3, y2), (x3, y3), (x3, y4),

(x4, y1), (x4, y2), (x4, y3), (x4, y4)}
and

StabG(x1, y1) = {(ea, ed), (ea, (d2 d4)), ((a2 a3 a4), ed), ((a2 a3 a4), (d2 d4)), ((a2 a4 a3), ed),

((a2 a4 a3), (d2 d4))}
Therefore, the number of elements in K fixed by each g ∈ G is 16.

Table 2. Permutations in StabG(x1, y1) and the No. of Fixed Points.

Permutation types in StabG(x1, y1) Number of permutations (|G|) FixG(g)

(ea, ed) 1 16

(ea, (ab)) 1 8

((abc), ed) 1 4

((abc), de) 2 2

TOTAL 6

By lemma 2.1, the number of suborbits of G acting on K is given as:
1

|G|
∑
g∈G
|Fix(g)| = [

1

6
((1× 16) + (1× 8) + (2× 4) + (2× 2))] =

1

6
(36) = 6.

This shows that there are 16 orbits that can be classified into six suborbits i.e.
∆0 = OrbG(x1, y1) = {(x1, y1)} = 1 (Trivial Orbit)
∆1 = OrbG(x1, y2) = {(x1, y2), (x1, y3), (x1, y4)} = 3
∆2 = OrbG(x2, y1) = {(x2, y1), (x3, y1), (x4, y1)} = 3
∆3 = OrbG(x2, y2) = {(x2, y2), (x3, y2), (x4, y2)} = 3
∆4 = OrbG(x2, y3) = {(x2, y3), (x3, y3), (x4, y3)} = 3
∆5 = OrbG(x2, y4) = {(x2, y4), (x3, y4), (x4, y4)} = 3
Therefore, the group action has a rank 6 and the corresponding subdegrees are 1, 3, 3, 3, 3, 3.
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3.9. Ranks and Subdegrees of the Group A5 ×D5 Action on X × Y

Lemma 3.7. Suppose that the group A5×D5 action on X×Y is transitive, then the rank is 6 and the corresponding subdegrees
are 1, 5, 5, 5, 5, 4.

Proof Since G = A5 ×D5 and K = X × Y .
From lemma 3.3,
K = {(x1, y1), (x1, y2), (x1, y3), (x1, y4), (x1, y5), (x2, y1), (x2, y2), (x2, y3), (x2, y4), (x2, y5), (x3, y1), (x3, y2), (x3, y3),

(x3, y4), (x3, y5), (x4, y1), (x4, y2), (x4, y3), (x4, y4), (x4, y5), (x5, y1), (x5, y2), (x5, y3), (x5, y4), (x5, y5)}

and

StabG(x1, y1) = {(ea, ed), (ea, (d2 d5)(d3 d4), ((a2 a3)(a4 a5), ed), ((a3 a4 a5), ed), ((a3 a4 a5), (d2 d5)(d3 d4)),

((a3 a5 a4), ed), ((a3 a5 a4), (d2 d5)(d3 d4)), ((a2 a3)(a4 a5), (d2 d5)(d3 d4)), ((a2 a3 a4), ed),

((a2 a3 a4), (d2 d5)(d3 d4)), ((a2 a3 a5), ed)), ((a2 a3 a5), (d2 d5)(d3 d4)), ((a2 a4 a3), ed)

((a2 a4 a3), (d2 d5)(d3 d4)), ((a2 a4 a5), ed), ((a2 a4 a5), (d2 d5)(d3 d4)), ((a2 a4)(a3 a5), ed),

((a2 a4)(a3 a5), (d2 d5)(d3 d4)), (a2 a5 a3), ed), ((a2 a5 a3), (d2 d5)(d3 d4)), (a2 a5 a4), ed),

((a2 a5 a4), (d2 d5)(d3 d4)), ((a2 a5)(a3 a4), ed), ((a2 a5)(a3 a4), (d2 d5)(d3 d4))}
Therefore, the number of elements in K fixed by each g ∈ G is 25.

Table 3. Permutations in StabG(x1, y1) and the No. of Fixed Points.

Permutation types in StabG(x1, y1) Number of permutations (|G|) FixG(g)

(ea, ed) 1 25

(ea, (gj)(hi)) 1 10

((cde), ed) 1 10

((cde), (gj)(hi)) 1 10

((ced), ed) 1 10

((ced), (gj)) 1 5

((bc)(de), ed) 1 10

((bc)(de), (gj)(hi)) 1 5

((bcd), ed) 1 10

((bcd), (gj)) 1 10

((bce), ed) 1 5

((bce), (gj)(hi)) 1 10

((bdc), (gj)(hi)) 1 2

((bdc), ed) 1 5

((bde), ed) 1 2

((bde), (gj)(hi)) 1 2

((bd)(ce), ed) 1 2

((bd)(ce), (gj)(hi)) 1 1

((bec), ed) 1 2

((bec), (gj)(hi)) 1 1

((bed), ed) 1 2

((bed), (gj)(hi)) 1 2

((be)(cd), ed) 1 2

((be)(cd), (gj)(hi)) 1 2

TOTAL 24

By lemma 2.1, the number of suborbits of G acting on K is given as:
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=
1

|G|
∑
g∈G
|Fix (g)|

=
1

24
(25 + 10 + 10 + 10 + 10 + 5 + 10 + 5 + 10 + 10 + 5 + 10 + 5 + 2 + 2 + 2 + 2 + 1 + 2 + 1 + 2 + 2 + 1 + 2)

=
1

24
(144)

= 6.
This shows that there are 25 suborbits that can be classified into six categories, that is
∆0 = OrbG(x1, y1) = {(x1, y1)} = 1 (Trivial Orbit)
∆1 = OrbG(x2, y1)} = {(x2, y1), (x2, y2), (x2, y3), (x2, y4), (x2, y5)} = 5
∆2 = OrbG(x3, y1) = {(x3, y1), (x3, y2), (x3, y3), (x3, y4), (x3, y5)} = 5
∆3 = OrbG(x4, y1) = {(x4, y1), (x4, y2), (x4, y3), (x4, y4), (x4, y5)} = 5
∆4 = OrbG(x5, y1) = {(x5, y1), (x5, y2), (x5, y3), (x5, y4), (x5, y5)} = 5
∆5 = OrbG(x1, y2) = {(x1, y2), (x1, y3), (x1, y4), (x1, y5)} = 4
Therefore, the group action has a rank 6 and the corresponding subdegrees are 1, 5, 5, 5, 5, 4.

3.10. Ranks and Subdegrees of Group An×Dn Action on
X × Y

Theorem 3.3. Suppose that the group An × Dn acts on
X × Y , then the rank is 6 for n > 3 and the corresponding
subdegrees are;

|∆i| =


1,

p, if i 6 r

p− 1, if i > r

∀i = 1, 2, ..., 5, p =
[
|K|−1

5

]
and r = (|K| − 1) mod 5

Proof Using lemma 3.5, lemma 3.6 and lemma 3.7, the
number of orbits in each suborbit can be classified into two
categories;

The first suborbit which contains only the trivial orbit;
∆0 = OrbG(x1, y1) = (x1, y1) = 1
The remaining 5 suborbits that is, (∆1,∆2, ...,∆5) will

have orbits depending on the division of remaining orbits
(|K| − 1) by 5 (number of the remaining suborbits);

If (|K| − 1) is perfectly divisible by 5, then each of
the remaining five suborbits (∆1,∆2, ...,∆5) will have equal
number of p− orbits .

If (|K|−1) is not perfectly divisible by 5 and the remainder
is r, then the first r suborbits will have p − orbits and the
remaining (5− r)− suborbits will have (p− 1)− orbits.

Corollary 5.5.1 Determine the rank and subdegrees of the
group A6 ×D6 action on X × Y

Proof. From theorem 3.3 the rank is 6 and the corresponding
subdegrees are obtained by; |K| = 36 and p = 36−1

5 =
35
5 = 7 therefore each of the five suborbits will have 7 orbits.

Implying that the subdegrees are 1, 7, 7, 7, 7, 7.
Corollary 5.5.2 Determine the rank and subdegrees of the

group A7 ×D7 action on X × Y
Proof. From theorem 3.3 the rank is 6 and the corresponding

subdegrees are obtained by; |K| = 49,p = 49−1
5 = 48

5 =
9.6 ≈ 10 and r = 48 mod 5 = 3. This implies that the first
three suborbits will each have 10 orbits and the remaining two
suborbits each will have 9 orbits. Therefore the subdegrees
will be 1, 10, 10, 10, 9, 9.

4. Conclusion

Combinatorial properties (transitivity and primitivity) have
been studied and it has been proofed that the group action
(An × Dn) on set (X × Y ) is transitive and imprimitive.
Also, invariant properties (ranks and subdegrees) have been
investigated and and it was found that for n > 3, the rank is 6
and the subdegrees are obtained according to theorem 3.3

Symbols and Abbreviations

An Alternating group (degree n and order is n!
2 )

Dn Dihedral group of order 2n
ea An identity element in Alternating group
ed An identity element in Dihedral group
K = X × Y Cartesian product between set X and set Y
StabG(x) Stabilizer of a point x in G
FixG(x) A point x fixed an element in G
OrbG(x) The orbit of a point x in G
∆ Suborbit of G on set K
|K| Order of K
∀ for all
∅ An empty set
G = An×Dn Direct product between Alternating group and

Dihedral group
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