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Abstract: Hypertension, or high blood pressure, is a chronic condition where blood pressure in the arteries remains elevated,
leading to severe complications such as heart disease, stroke, and kidney failure. Managing hypertension is particularly
challenging when comorbid conditions like type 2 diabetes are present. This paper investigates the combined impact of type 2
diabetes and alcohol consumption on hypertension progression using a deterministic mathematical model. We analyze the
model’s dynamics, calculate the basic reproduction number (R0), and perform a sensitivity analysis to identify key parameters
influencing the progression of hypertension. Stability analysis shows that the system is stable at both the drinking-free
equilibrium and the equilibrium with alcohol consumption. Our findings indicate that reducing alcohol intake significantly
lowers the risk of hypertension in diabetic patients. The paper also explores strategies to manage hypertension and diabetes
through family support, patient education, and lifestyle modifications such as diet and physical activity. Additionally,
Pontryagin’s maximum principle is used to optimize these intervention strategies. The results, solved numerically using Matlab,
validate the effectiveness of these optimized approaches in controlling hypertension and improving the overall health of
patients. Future research may explore the impact of psychological stress on disease progression and incorporate stochastic
elements into the model to better reflect real-world variability.

Keywords: Mathematical Model, Hypertension, Alcohol, Diabetes 2, Stability Local and Global, Sensitivity Index,
Optimal Control

1. Introduction
Hypertension, also known as high or raised blood pressure,

is a condition characterized by persistently elevated pressure
in the blood vessels. Blood is transported from the heart
to various parts of the body through these vessels. Each
time the heart beats, it pumps blood into the vessels, creating
blood pressure as the blood pushes against the walls of the
arteries. The higher the pressure, the harder the heart must
work. It is estimated that 1.28 billion adults aged 30-79 years
worldwide have hypertension, with two-thirds of them living
in low- and middle-income countries. One of the global targets
for noncommunicable diseases is to reduce the prevalence of

hypertension by 33% between 2010 and 2030 [1, 2].
Hypertension is the leading cause of premature

cardiovascular disease and death, responsible for millions of
disability-adjusted life-years lost each year due to its effects
on ischemic heart disease, strokes (both hemorrhagic and
ischemic), and chronic kidney disease [1]. In 2010, the
global prevalence of hypertension was estimated at 1.4 billion,
affecting approximately 31.1% of adults, with projections
indicating a significant rise, especially in low- and middle-
income countries. However, the prevalence had been declining
in high-income countries until the American College of
Cardiology/American Heart Association (ACC/AHA) revised
their hypertension guidelines in 2017, lowering the threshold
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for diagnosis. This change led to a significant increase in the
number of people meeting the new criteria for hypertension.
As hypertension is a major risk factor for cardiovascular and
kidney diseases, it continues to pose a serious global public
health challenge [3–7].

Heavy alcohol consumption has been associated with
high blood pressure since 1915 [3]. However, light to
moderate alcohol intake does not show a strong correlation
with hypertension. In fact, it has been linked to
improved cardiovascular outcomes when compared to non-
drinkers, often represented by a U-shaped curve in various
epidemiological studies [4–7]. Due to the cardiovascular
benefits associated with reduced atherosclerosis, blood
clotting, and platelet aggregation, which in turn lower
the risk of coronary artery disease, light to moderate
alcohol consumption is often recommended as beneficial and
cardioprotective in preventing cardiovascular diseases [8, 9].

Two recent studies, which did not specifically select
patients with diabetes mellitus, have highlighted through meta-
analyses a linear relationship between the amount of alcohol
consumed and the degree of hypertension [10, 11]. New
research published in the Journal of the American Heart
Association, an open-access journal of the American Heart
Association, suggests that consuming eight or more alcoholic
drinks per week may increase the risk of high blood pressure
in adults with Type 2 diabetes [12].

Researchers investigated the relationship between alcohol
consumption and blood pressure in over 10,000 adults with
Type 2 diabetes (average age 63, 61% male), all of whom
participated in the Action to Control Cardiovascular Risk in
Diabetes (ACCORD) trial. This large-scale, long-term trial,
conducted from 2001 to 2005 across 77 centers in the U.S.
and Canada, aimed to compare different treatment strategies
for reducing heart disease risk in adults with Type 2 diabetes.
Alcohol consumption was categorized as none, light (1-7
drinks per week), moderate (8-14 drinks per week), and heavy
(15 or more drinks per week). One alcoholic drink was defined
as a 12-ounce beer, a 5-ounce glass of wine, or 1.5 ounces
of hard liquor. Participants self-reported their weekly alcohol
intake via a questionnaire at study enrollment. Blood pressure
was classified according to the 2017 American College of
Cardiology/American Heart Association guidelines as normal
(below 120/80 mm Hg), elevated (120-129/¡80 mm Hg), Stage
1 high blood pressure (130-139/80-89 mm Hg), or Stage 2
high blood pressure (140/90 mm Hg or higher). Since most
participants were already taking one or more blood pressure
medications, the blood pressure readings were adjusted to
account for the effects of these medications and to estimate
the underlying level of hypertension.

1. Light drinking was not linked to elevated blood pressure
or any stage of high blood pressure.

2. Moderate drinking was associated with a 79% higher
likelihood of elevated blood pressure, a 66% higher
likelihood of Stage 1 high blood pressure, and a 62%
higher likelihood of Stage 2 high blood pressure.

3. Heavy drinking was associated with a 91% higher
likelihood of elevated blood pressure, a 149% higher

likelihood of Stage 1 high blood pressure (a 2.49-fold
increase), and a 204% higher likelihood of Stage 2 high
blood pressure (a 3.04-fold increase).

Excessive alcohol consumption is identified as a risk
factor for elevated blood pressure, particularly among
individuals with Type 2 diabetes, who already face a
heightened susceptibility to hypertension. The American
Heart Association advises moderate alcohol intake, if any,
emphasizing the importance for individuals to consider its
potential health implications.

Several mathematicians have worked to understand the
dynamics of alcohol consumption and its impact on both
individuals and society, aiming to reduce harm and minimize
the number of addicted drinkers. For instance, S. H.
Ma et al. [13] modeled alcoholism as a contagious
disease and used optimal control to study their mathematical
model, incorporating awareness programs and time delays.
S. Sharma et al. [14] developed a model of alcohol
abuse, examining the existence and stability of drinking-free
and endemic equilibria, as well as performing sensitivity
analysis of R0. B. Benedict [15] employed an SIR-type
model to analyze alcoholism, calculating the reproductive
number and discussing the stability of two equilibrium
states. H. F. Huo et al. [16] proposed a new social
epidemic model to depict alcoholism with media coverage,
demonstrating its effectiveness in encouraging people to quit
drinking. I. K. Adu et al. [17] utilized a non-linear
SHTR mathematical model to study the dynamics of drinking
epidemics. IMKEN [18] studied a unique mathematical
model to describe the dynamics of COVID-19 transmission
in diabetic populations, introducing optimal controls in 2023.
Additionally, IMKEN [19] developed a novel model to
investigate alcohol consumption among diabetics, particularly
in the context of anti-diabetic treatments, highlighting that
moderate consumption is beneficial for diabetics without
complications.

This is the first mathematical study based on that explores
the link between alcohol consumption and hypertension in
individuals with Type 2 diabetes[12], aiming to clarify the
risks associated with alcohol in a population that had been
living with Type 2 diabetes for an average of 10 years before
participating in the study. In addition to their diabetes, these
individuals were at heightened risk for cardiovascular events
due to pre-existing cardiovascular disease or signs of potential
cardiovascular issues. Specifically, the key contributions of
this paper are summarized as follows:

1. Proposing a novel compartmental model based on a
comprehensive study. This is the first large-scale study
to specifically examine the relationship between alcohol
consumption and hypertension in adults with Type 2
diabetes. While previous research has indicated a link
between heavy alcohol consumption and high blood
pressure, the association between moderate alcohol
consumption and hypertension remained unclear [12].

2. Modeling individuals with Type 2 diabetes for 10
years, who are at risk of cardiovascular disease,
alongside moderate drinkers, heavy drinkers, and



American Journal of Applied Mathematics 2024; 12(6): 266-285 268

hypertensive patients (Stage 1 and Stage 2). The
four compartments are represented through a system of
differential equations to analyze the temporal dynamics.

3. Using the Routh-Hurwitz criteria and constructing
Lyapunov functions to determine the local and global
stability of both alcohol-free and alcohol consumption
equilibria.

4. Performing a sensitivity analysis of model parameters to
identify those that have the most significant impact on
the reproduction number R0.

The structure of the paper is as follows. In section 2,
we derive the formulation of the model along with its
basic properties. section 3 presents the equilibrium of the
proposed model, discusses its stability, and provides some
numerical simulations. The issue of parameter sensitivity is
explored in section 4. Finally, in section 5, we introduce
the optimal controls problem for the proposed model, present
results related to the optimal controls, and use Pontryagin’s
maximum principle to characterize these controls, concluding
with numerical simulations in MATLAB at the end of the

section.

2. Mathematical Model Formulation

2.1. Model Representation

We introduce a continuous non-linear model, denoted as
D2MD2HD2Hyp, designed to explore the dynamics between
various categories of drinkers who are living with Type
2 diabetes and psychological disorders, such as stress and
depression [20]. The model divides the population into four
distinct compartments: individuals with Type 2 diabetes who
are also experiencing stress and are at risk of cardiovascular
diseases, denoted as D2(t); moderate alcohol consumers,
represented by MD2(t); heavy alcohol consumers, denoted by
HD2

(t); and those who develop hypertension as a result of the
interaction between alcohol consumption and Type 2 diabetes,
denoted as Hyp(t).

The graphical representation of the proposed model is
illustrated in Figure 1.

Figure 1. Compartments Model.

We examine the following system of four non-linear differential equations

dD1

dt
= I −

(
α3 + µ

)
D2(t)− α1

D2(t)MD2
(t)

N
dMD2

dt
= α1

D2(t)MD2(t)

N
−
(
α2 + β1 + µ

)
MD2(t)

dHD2
(t)

dt
= α2MD2(t) −

(
β2 + δ1 + µ

)
HD2(t)

dHyp(t)

dt
= β2HD2(t) + β1MD2(t) + α3D2(t)−

(
µ+ δ2

)
Hyp(t)

Where D2(0) ≥ 0, MD
2
(0) ≥ 0, HD

2
(0) ≥ 0, Hyp(0) ≥ 0 are the given initial states.

Personnes souffrant de diabète, de troubles psychologiques
et de risque cardiovasculaire D2(t)

The compartment D2 encapsulates individuals in
adolescence and adulthood who, due to lifestyle factors such as

stress and anxiety, are predisposed to psychological disorders
and are at heightened risk of developing cardiovascular
diseases [12]. This population may also engage in alcohol
consumption influenced by these stressors. The size of this
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compartment grows through recruitment at a rate denoted by
I and diminishes due to effective interactions with individuals
who consume alcohol in controlled amounts at a rate α1, as
well as through natural mortality at a rate µ. Additionally, it
increases at a rate α3 when individuals with Type 2 diabetes
transition into a state of hypertension driven by psychological
distress.

dD2(t)

dt
= I − α1

D2(t)MD2

N
−
(
α3 + µ

)
D2(t) (1)

Moderate Drinkers MD2
:

dD2(t)

dt
= α1

D2(t)MD2

N
−
(
α2 + β1 + µ

)
MD2(t) (2)

This compartment MD2
consists of diabetic individuals

who consume alcohol in a controlled or occasional manner,
typically during specific events or situations, often unnoticed
within their social environment. Controlled alcohol
consumption is categorized as drinking between 8 − 14 units
per week [12]. This Studies show that such consumption
is linked to an increased risk of progressing to stage 1
hypertension (β1), transitioning to excessive alcohol use (β2),
and natural mortality (µ).)

Heavy Drinkers HD2 :

dHD2
(t)

dt
= α2MD2

(t)−
(
α3 + β2 + δ1 + µ

)
HD2

(t) (3)

The compartment HD2 comprises individuals classified as
excessive alcohol consumers, defined as those consuming 14
to 26 units per week, and struggling with alcohol dependency.
This compartment decreases at a rate β2, representing the
transition of some individuals to a state of high blood
pressure [12]. It also diminishes due to mortality caused by
psychological disorders linked to alcohol addiction (δ1) and
natural mortality (µ). Additionally, it increases at a rate α2.

Person with High Blood Pressure Hyp:

dHDyp
(t)

dt
= β2HD2(t) + β1MD2(t) + α3D2(t)

−
(
µ+ δ2

)
Hyp(t)

(4)

The compartment Hyp represents the number of individuals
with high blood pressure. This group decreases due to natural
mortality (µ) and deaths caused by cardiovascular diseases
[21, 22], which are a consequence of hypertension. The total
population size at any given time is represented by N(t).

N(t) = D2(t) +MD2
(t) +HD2

(t) +Hyp(t)

2.2. Primary Properties

2.2.1. Positivity of Model Solutions
To ensure the biological relevance of the model, it is

essential to demonstrate that all solutions of the system
(1) remain positive for all, provided the initial conditions
are positive. This guarantees that the model variables,
representing population sizes or concentrations, do not take
non-physical negative values over time.

Theorem 2.1. IfD2(0) ≥ 0 andHyp(0)≥, then the solution
of system equations (1)D3(t),MD2

(t), HD2
(t), Hyp(t)(t) are

positive for all t > 0. Proof

dD2(t)

dt
= I −

(
α3 + µ

)
D2(t)− α1

D2(t)MD2
(t)

N

= I −
[(
α3 + µ

)
+ α1

MD2
(t)

N

]
D2(t)

(5)

We consider

A(t) =
(
α3 + µ

)
+ α1

MD2
(t)

N
(6)

It follows from the equation (5) that

dDD(t)

dt
+A(t)D2(t) ≥ 0 (7)

We multiply inequality (7) by

exp
( ∫ t

0

A(s)ds
)

We find:

dD2(t)

dt
× exp

( ∫ t

0

A(s)ds
)

+A(t)D2(t)×
∫ t

0

(
A(s)ds

)
≥ 0

Implies that
d

dt

(
D2(t) exp

( ∫ t

0

A(s)ds
))
≥ 0 (8)

Integrating (8) between 0 and t gives

D2(t) ≥ D2(0) exp

∫ t

0

(
−A(s)

)
ds (9)

So, the solution D2(t) is positive.
Similarly, from the second equation system (1), we have:

MD2
(t) ≥MD2

(0) exp

∫ t

0

(
−B(s)

)
ds (10)
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Where:

B(t) = α1
D2(t)

N
−
(
α2 + β2 + µ

)
(11)

From, the other equations of system (1), we have.

HD2
(t) ≥ HD2

(0) exp

(
−
(
β2 + δ1 + µ

)
t

)
≥ 0 (12)

Hyp(t) = Hyp(0) exp

(
−
(
µ+ δ2

)
t

)
≥ 0 (13)

Therefore, we can see that D2(t) ≥ 0, MD2
(t) ≥ 0, HD2

(t), Hyp(t) ≥ 0 ∀ t ≥ 0 this completes the proof

2.2.2. Invariant Region
Lemma 2.1. All feasible Solution D2(t), MD2(t), HD2(t) and Hyp(t) of system equation (1) are bounded by the region.

Ω =
{(
D2,MD2 , HD2 , Hyp

)
∈ R4

+ : D2 +MD2 +HD2 +Hyp ≤
I

µ

}
(14)

Proof From the system (1)
dN(t)

dt
=
dD2(t)

dt
+
dMD2(t)

dt
+
HD2(t)

dt
+
Hyp(t)

dt
= I − µN(t)− δ1HD2(t)− δ2Hyp(t)

(15)

Implies that
dN(t)

dt
≤ I − µN(t).

It follows that
N(t) ≤ I

µ
+N(0)e−µt (16)

Where N(0) is the initial value of total number of people, this

limt→∞supN(t) ≤ I

µ

Then
D2(t) +MD2

+HD2
+Hyp(t) ≤

I

µ

Hence, for the analysis of model (1). We get the region which is given by the set

Ω =

{(
D2,MD2

, HD2
, Hyp

)
∈ R4

+ : D2 +MD2
+HD2

+Hyp ≤
I

µ

}
A positively invariant set for (1) must be identified, so we need to examine the dynamics of the system within the non-negative

solution set Ω.

3. Equilibrium Points and Stability Evaluation
The first three equations in the system (1) are independent of the variable Hyp. Therefore, the dynamics of the full system (1)

are equivalent to the dynamics of the reduced system given by:
dD2

dt
= I −

(
α3 + µ

)
D2(t)− α1

D2(t)MD2
(t)

N
dMD2

dt
= α1

D2(t)MD2(t)

N
−
(
α2 + β1 + µ

)
MD2

(t)

dHD2
(t)

dt
= α2MD2

(t)−
(
β2 + δ1 + µ

)
HD2

(17)
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3.1. Equilibrium Point

The conventional approach is employed to analyze the
model (17). This model yields two equilibrium points:
one corresponding to a drinking-free state and the other
representing a drinking-present state. These equilibrium points
are obtained by setting the right-hand sides of equations (1) -
(3) equal to zero.

The drinking-free equilibrium, P0

(
I

α3+µ
, 0, 0

)
, occurs in

the absence of alcohol consumption, i.e., when MD2
=

HD2
= 0. The equilibrium with alcohol consumption,

P1

(
D∗2 ,M

∗
D2
, H∗D2

)
, is reached when individuals are

drinking, i.e., when MD2 6= 0 and HD2 6= 0, where

D∗2 =
I(

α3 + µ
)
R0

M∗D2
=
I
(
α3 + µ

)(
R0 − 1

)
α1µ

H∗D2
=
α2

(
α3 + µ

)(
R0 − 1

)
I

α1

(
β2 + δ1 + µ

)
µ

R0 is the basic reproduction number that measures the
average number of new drinkers generated by single drinker
in a population of potential drinkers. The value of R0 will
indicates the epidemic could occur or not, the reproduction
basic number can be determined by using the next generation
matrix method formulated in

(
Drissche et al (2022)

)
R0 =

α1µ(
α3 + µ

)(
α2 + β1 + µ

)
N

3.2. Local Stability Analysis

The stability properties of the equilibria P0 and P1 are now
investigated.

3.2.1. The Drinking-Free Equilibrium
This section focuses on assessing the local stability of the

drinking-free equilibrium.
Theorem 3.1. The equilibrium in the absence of drinking,

P0

(
I

α3+µ
, 0, 0

)
, of system (17) is asymptotically stable if

R0 ≤ 1 and unstable if R0 > 1.
Proof The jacobain matrix at P is given by

J(P ) =


−
(
α3 + µ

)
− α1

MD2

N −α1
D2

N 0

α1
MD2

N −
(
α2 + β1 + µ

)
+ α1

D2

N 0

0 α2 −
(
β2 + δ1 + µ

)


The Jacobian matrix corresponding to the equilibrium in the absence of drinking is given by

J(P0) =


−
(
α3 + µ

) −α1I

N
(
µ+α3

) 0

0 −
(
α2 + β1 + µ

)
+ α1I

N
(
α3+µ

) 0

0 α2 −
(
β2 + δ1 + µ

)


The characteristic equation of this matrix is expressed as det
(
J(P0) − λI3

)
= 0, where I3 is a 3 × 3 identity matrix.

Consequently, the eigenvalues of J(P0) are given by
X1 = −

(
β2 + δ1 + µ

)
X2 = −

(
α3 + µ

)
X3 = −

(
α2 + β1 + µ

)(
1−R0

)
Therefore, all the eigenvalues of the characteristic equation are real and negative if R0 < 1. Thus, we conclude that the

equilibrium in the absence of drinking is locally asymptotically stable when R0 < 1, and it becomes unstable if R0 > 1.

3.2.2. Drinking Present Equilibrium
Theorem 3.2. The equilibrium where drinking is present, P ∗1 , is locally asymptotically stable ifR0 > 1 and unstable otherwise.
Proof We denote P1

(
D∗2 ,M

∗
D2
, H∗D2

)
as the equilibrium corresponding to the presence of drinking in system (16), where

D∗2 6= 0, M∗D2
6= 0, and H∗D2

6= 0. The Jacobian matrix is given by...

J(P ∗1 ) =


−
(
α3 + µ

)
− α1

M∗D2

N −α1
D∗2
N 0

α1
M∗D2

N −
(
α2 + β1 + µ

)
+ α1

D∗2
N 0

0 α2 −
(
β2 + δ1 + µ

)

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Where: 

D∗1 =
I(

α3 + µ
)
R0

M∗D2
=
I
(
α3 + µ

)(
R0 − 1

)
α1µ

H∗D2
=
α2

(
α3 + µ

)(
R0 − 1

)
I

α1

(
β2 + δ1 + µ

)
µ

We observe that the characteristic equation P (X) of J(P ∗1 ) has an eigenvalue X1 = − (β2 + δ1 + µ), whose real part is
negative. Therefore, to determine the stability of the drinking-present equilibrium of model (17), we analyze the roots of the
following equation P (Q):

P (Q) = Q2 + a1Q+ b1

where a1 =

((
α3 + µ

)
+
(
α2 + β2 + µ

)
+
α1

N

(
M∗D −D∗2

))
b1 = N

(
α2 + β1 + µ

)(
α3 + µ

)(
R0 − 1

)
by Routh-Hurwitz Criterrin, the system (17) is locally asymptotically stable if a1 > 0 and b1 > 0.

Therefore, the equilibrium P ∗1 of system (17), where drinking is present, is locally asymptotically stable.

3.3. Global Stability

3.3.1. Global Stability of the Drinking-free Equilibrium
To demonstrate that system (17) is globally asymptotically stable, we apply Lyapunov function theory to both the non-drinking

equilibrium and the alcohol-consuming equilibrium. Initially, we establish the global stability of the non-drinking equilibrium
P0 when R0 ≤ 1.

Theorem 3.3. the drinking-free equilibrium P0 is globally asymptotically stable if R0 < 1 and unstable otherwise.
Proof Consider the following Lyapunov function.

v
(
D2,MD2

, HD2
, Hyp

)
= MD2

The derivate of v
(
D2,MD2

, HD2
, Hyp

)
with respect to t gives

dv

dt
=
dM

dt

= α1
D2MD2

N
− 2

¯
ig(α2 + β1 + µ

)
MD2

= MD2

(
α2
D2

N
−
(
α2 + β1 + µ

))
= MD2

(
α1

I

N
(
α3 + µ

) − (α2 + β1 + µ
))

= MD2

(
α1

I

N
(
α3 + µ

)(
α2 + β1 + µ

) − 1

)
= MD2

(
R0 − 1

)
So, dvdt ≤ 0 if R0 ≤ 1

Furthermore, dvdt = 0 if and only if MD2
= 0. Hence, by LaSalle’s invariance principle [23], P0 is globally asymptotically

stable.

3.3.2. Global Stability of the Alcohol-Consuming Equilibrium
The final result of the global stability of P ∗1 in this section is as follows:
Theorem 3.4. The alcohol-consuming equilibrium point P ∗1 is globally asymptotically stable if R0 > 1.
Proof. let as construct the Lyapunov function as follows:
V: Γ −→ R where Γ = {

(
D2,MD2

)
, D2 > 0,MD2

> 0}
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V
(
D2,MD2

)
= D2 +D∗2 ln

(D∗2
D2

)
+MD2

+M∗D2
ln
(M∗D2

M∗2

)
Differentiating V

=⇒
.

V
(
D2,MD2

)
=
∂V
(
D2,MD2

)
∂D2

dD2 +
∂V
(
D2,MD2

)
∂MD2

dMD2

=
(
1− D∗2

D2

)
dD2 +

(
1−

M∗D2

MD2

)
dMD2

=
(D2 −D∗2

D2

)(
I −

(
α3 + µ

)
D2 − α1

D2MD2

N

MD2
−M∗2

MD2

(αD2MD2

N
−
(
α2 + β1 + µ

)
MD2

)
So

.

V
(
D2,MD2

)
= I − ID∗2

D2
−D2

(
α3 + µ

)
+D∗2

(
α3 + µ

)
− α1D2MD2

N
+
α1D

∗
2MD2

N
+
α1MDD2

N

−
α1M

∗
D2
D2

N
−MD2

(
α2 + β1 + µ

)
+M∗D2

(
α2 + β1 + µ

) (18)

Let K be the positive term and L the negative term of (18) that is

K = I +D∗2
(
α3 + µ

)
+
α1D

∗
2MD2

N
+
α1D2MD2

N
+M∗2

(
α2 + β1 + µ

)
L =

D∗2
D

+D2

(
α3 + µ

)
+
α1D2MD2

N
+
α1M

∗
D2
D2

N
+MD2

(
α2 + β1 + µ

)
Then,

dV

dt
= K − L

If K < L, then
dV

dt
< 0

and
dV

dt
= 0

if and only if D∗2 = D2 and M∗2 = MD2
.

The largest compact invariant set in
(
D2,MD2

)
∈ R2

+,

dV

dt
= 0

is the single ton of P ∗1 It implies that P ∗1 globally asymptotically stable in Γ if K < L by Lasalle’s invariant principle [24].

3.4. Numerical Simulation

Table 1. Parameters and values for the cases R0>1 et R0<1.

Parameter Description R0 > 1 R0 < 1

µ Natural Mortality 0.05 0.045

β1 Rate of hypertensive people due to moderate consumption 0.1 0.2

β2 Rate of moderate drinkers becoming heavy drinkers 0.1 0.2

α1 Contact rate with moderate drinkers 0.66 0.44

α2 Rate of heavy drinkers 0.02 0.1

α3 Rate of hypertensive persons due to psychological disorder 0.01 0.1

δ1 Cardiovascular disease rate 0.02 0.02

δ2 Mortality due to psychological disorder 0.03 0.03

I Incidence 510 510
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(a)

(b)

Figure 2. WhenR0 < 1 the Drinking-absent equilibrium P0 is localy asymptotically stabe.

(a) Diabetic without drinking alcohol (b) Moderate drinkers

(c) heavy drinkers (d) Individual with hypertension

Figure 3. WhenR0 < 1 the Drinking-absent equilibrium P0 is localy asymptotically stabe.
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(a)

(b)

Figure 4. WhenR0 > 1 the Drinking-Present equilibrium P1 is localy asymptotically stabe.

Table 2. Initial Values of Populations by Category and Health Status.

Population Description Value source

D2(0) Diabetic without alcohol 2124 [12]

MD2
(0) Moderate drinkers 232 [12]

HD2
(0) Heavy drinkers 77 [12]

Hyp(0) Hypertensive 987 [12]

In this section, we present numerical simulations of the
model (1) for varying parameter values. The system (1) is
solved using the Gauss-Seidel-like implicit finite-difference
method, known as the GSS1 method, developed by Gumel et
al. (2001) and outlined in Karrakchou et al. (2006). The initial
conditions are chosen such that D2 + MD2

+ HD2
+ Hyp =

3420. Numerical simulations are conducted to illustrate the
theoretical findings, and we use the parameters and population
values provided in table 1 and table 2.

We begin by graphically representing the no-alcohol
equilibrium, denoted as P0. According to Theorem 3.1, the no-
alcohol equilibrium P0 of system (1) is locally asymptotically
stable within the domain Ω. For the given parameters, the
equilibrium point is P0 = (3517, 24; 0; 0; 4688.77). As shown

in Figure 2, the system clearly converges to the no-alcohol
equilibrium P0. Furthermore, as discussed in Theorem 3.3,
we conclude that the no-alcohol equilibrium P0 is globally
asymptotically stable in the domain Ω, a result confirmed by
the simulation shown in Figure 3.

At the second stage, we present a graphic representation
of the present alcohol equilibrium P1. We have P1 =
(2069.56; 2269.47; 266.99; 3428.71). According to Theorem
3.4, the present alcohol equilibrium P1 of the system (1)
is locally asymptotically stable on Ω (see Figure 4). As
a consequence, from Theorem 3.4, the present alcohol
equilibrium is globally asymptotically stable, as displayed in
Figure 5.

In summary, the combination of theoretical results
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and graphical representations provides a comprehensive
understanding of the stability properties of the equilibrium
point. The local asymptotic stability, as shown in Figures
2 and 4, confirms that small perturbations will not lead to
a departure from equilibrium, while the global asymptotic

stability, as demonstrated in Figures 3 and 5, guarantees
that the equilibrium point is the ultimate state for any initial
condition within the domain Ω. These findings together
underscore the robustness and reliability of the equilibrium in
the context of System (1)

(a) Diabetic without drinking Alcohol (b) Moderate drinkers

(c) Heavy drinkers (d) Diabetic with hypertension

Figure 5. WhenR0 > 1 the Drinking-present equilibrium P1 is globally asymptotically stabe.

4. Sensitivity Analysis of R0

In this section, we calculate the sensitivity index for each
model parameter related to the basic reproduction number R0.
This index measures the relative importance of each parameter
within the model that describes alcohol consumption in the
diabetic population. The sensitivity index is employed to
identify the parameter that has the greatest impact on R0,
which can then be targeted for intervention strategies.

4.1. Sensitivity Index Calculation

In this section, we calculate the sensitivity index for each
model parameter related to the basic reproduction number,
R0. This index helps assess the relative importance of each
parameter in the model that describes alcohol consumption
within a diabetic population. By determining the sensitivity
index, we can identify the parameters that have the most
significant impact on R0, which can then be targeted for
intervention purposes.

Definition 4.1. The normalized sensitivity index is
calculated by differentiating R0 with respect to the parameter
m as follows:

ΓR0
m =

m∂R0

∂m

R0
. (*)

This sensitivity index will be used to evaluate the influence
of each parameter on the epidemic dynamics of the disease,
guiding the implementation of control measures. The

sensitivity index for each parameter is derived from the
expression for R0 and calculated using the parameter values
presented in table 1 and the formula shown in equation (*).
For instance, the sensitivity index of R0 with respect to the
parameter m is expressed as:

R0 =
α1I

(α3 + β1 + µ)N
.

ΓR0
α1

= 1 ≥ 0

ΓR0
µ =

−
(
α3 + β1 + α2 + 2µ

)(
α3 + µ

)(
α2 + β1 + µ

)
α1I

≤ 0

ΓR0
α3

=
−α3(

α3 + µ
)
α1I

≤ 0

ΓR0

β1
=

−β1
α1

(
α2 + β1 + µ

)
I
≤ 0

ΓR0
α2

=
−α2

Iα1

(
α2 + β1 + µ

) ≤ 0

Table 3. Sensitivity indices of the effective reproduction R0 using parameter value in
table 1.

Parameter Sensitivity Index

α1 +1

α2 −0.25

α3 −2.08

µ −0.14

β1 −0.28
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4.2. Interpretation of the Sensitivity

Figure 6. Graph of sensitivity indices ofR0 with respect to the model parameters.

Figure 6 presents the sensitivity profiles of the model with
respect to the parameters influencing the basic reproduction
number R0. The analysis indicates that the parameter α1

exhibits a positive sensitivity index, whereas the parameters
µ, β1, α2, and α3 are characterized by negative sensitivity
indices. Notably, α1 emerges as the most influential positive
parameter, implying that variations in its value lead to
proportional increases or decreases in alcohol consumption
within the diabetic population. Conversely, α3 is identified
as the most impactful negative parameter, suggesting that
an increase in α3 is associated with a reduction in the
transmission dynamics of rabies within this cohort.

5. Statement of the Optimal Control
Problem

In this section, we aim to determine the optimal control
functions, denoted by (u(t), v(t)), which represent the best

strategies for familial support, psychological treatment, and
glycemic control. The objective is to maximize the diabetic
population who abstain from alcohol consumption while
minimizing both the population of heavy drinkers and those
suffering from hypertension.

Simultaneously, the optimal control strategy minimizes the
cost associated with implementing psychological and medical
treatment interventions. To achieve these goals, we define and
analyze the following optimal control problem:

J(u∗, v∗) = min
{
j
(
u, v); (u, v) ∈ U

}
(19)

where:

J(u, v) =

∫ tf

0

[
Hyp(t)−D2(t) +

A1

2
u2(t) +

A2

2
v2(t)

]
dt

Subject to the equation



dD2(t)

dt
= I − α3(1− v(t))D2(t)− α1(1− u(t))

D2(t)MD2
(t)

N
dMD2(t)

dt
= α1(1− u(t))

D2(t)MD2(t)

N
− (α2 + β1 + µ)MD2

(t)

dHD2
(t)

dt
= α2MD2

(t)−
(
β2 + δ1 + µ

)
HD2

(t)

dHyp(t)

dt
= β2HD2(t) + β1MD2(t) + α3(1− v(t))D2(t)− (µ+ δ2)Hyp(t).

(20)
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The two functions u(t) and v(t) represent:
v(t): psychological treatment.
u(t): Medical treatment + familial support.
These controls function are assumed to be elements of U .

U =

{
(u, v) : 0 ≤ u, v ≤ 1, t ∈

[
0, tf

]
; tf ∈ R; u,v are

lebesgue measurable
}

The constants A1 ≥ 0, A2 ≥ 0 are weighted cost with the
use of the controls u and v respectively.

Theorem 5.1. (Existence of Optimal Control) Consider the
optimal control problem (19) subject to (20).then there exists
on optimal control (u∗, v∗) in u and a corresponding solution.

X∗(t) = (D∗2 ,M
∗
D2
, H∗D2

, H∗yp)

that minimize J(u, v) over set of admissible controls U . Proof
To prove the existence of an optimal control, we use the
Filippov-Cesari lemma [24], requiring the following:

1. The set of admissible controls and corresponding state
solutions is non-empty.

2. The control set U is convex and closed in L2(0, T ).
3. The state system’s vector field is bounded by a linear

control function.
4. The integrand of the objective function is continuous.

These conditions ensure the existence of an optimal control.

f0
(
X(t), u(t), v(t)

)
= Hyp(t)−D2(t) +

A2

2
u2(t) +

A2

2
v(t)

is convex. i.e
The hessien matrix of f0

H =

(
A1 0
0 A2

)
we have spec(H) =

{
A1,A2

}
⊂ R∗+, the f0 at strictly convex

It exists constants K1,K2 > 0 et P > 1 such as the integrand f0 of objective function verify
f0(x(t), u(t), v(t)) ≥ K1|(u, v)|p −K2, we have:

f0
(
x(t), u(t), v(t)

)
= Hyp(t) −D2(t) +

A2

2
u2(t) +

A2

2
v2(t)

≥ 1

2
min

(
A1, A2

)(
u2(t) + v2(t)

)
+Hyp(t)−D2(t)

≥ 1

2
min

(
A1, A2

)
‖(u, v)‖22 −D2(t)

N(t) = D2(t) +MD2
(t) +HD2

(t) +Hyp(t)

is borned, then D2(t) is borned too. thus it exists, m1,m2 ∈ R+, such as m1 < D2(t) < m2 ∀ t ∈ R+. Let K1 =
1
2min

(
A1, A2

)
and K2 = m2. wo get:

f0
(
x(t), u(t), v(t)

)
≥ K1||(u, v)||22 −K2

Proposition 5.1. (Hamiltonian Characterization of the Minimization Problem)
The minimization problem (19) leads to a Hamiltonian problem H , defined as:

H
(
x(t), P (t), P 0, u(t), v(t)

)
= Hyp(t)−D2(t) +

A2

2
u2(t) +

A2

2
v2(t) +

4∑
i=1

λifi (21)

Where fi represents the right-hand side of the differential equation for the ith state variable, P (.) is an absolutely continuous
function defined on

[
0, tf

]
as P :

[
0, tf

]
→ Rn \ {0}, and P0 is a non-negative real number and

X(t) =
(
D2,MD2

, HD2
, Hyp

)
Proof. Let

P0 = 1

P (t) =
(
λ1(t), λ2(t), λ3(t), λ4(t)

)
f0
(
X(t), u(t), v(t)

)
= Hyp(t)−D2(t) +

A2

2
u2(t) +

A2v
2(t)

2

f
(
X(t), u(t), v(t)

)
=

(
f1
(
X(t), u(t), v(t)

)
, f2
(
X(t), u(t), v(t)

)
, .., f4

(
X(t), u(t), v(t)

))
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where X(t) =
(
D2,MD2

, HD2
, Hyp

)
.

and:

f1
(
x(t), u(t), v(t)

)
= I − α3(1− v(t))D2(t)− α1(1− u(t))

D2(t)MD2
(t)

N

f2
(
x(t), u(t), v(t)

)
= α1(1− u(t))

D2(t)MD2
(t)

N
− (α2 + β1 + µ)MD2

(t)

f3
(
x(t), u(t), v(t)

)
= α2MD2(t)−

(
β2 + δ1 + µ

)
HD2(t)

f4
(
x(t), u(t), v(t)

)
= β2HD2(t) + β1MD2(t) + α3(1− v(t))D2(t)− (µ+ δ2)Hyp(t).

Then, the Hamiltonian of optimal problem is defined by

H
(
t, x, p, p0, u, v

)
=< p, f

(
x(t), u(t), v(t) > +p0f0

(
x(t), u(t), v(t)

)
=<

(
λ1, λ2, λ3, λ4

)(
f1, f2, f3, f4

)
> +p0f0

=

4∑
i=1

λifi +Hyp(t)−D2(t) +
A1

2
u2(t) +

A2

2
v2(t).

H
(
t, x, p, p0, u, v

)
= Hyp(t)−D2(t) +

A1

2
u2(t) +

A2

2
v2(t) +

4∑
i=1

λifi

Proposition 5.2. (Exisence Of Adjoint Vector p(.)) The application p(.)
p(.) :

[
0, tf

]
−→ R4

t 7→
(
λ1(t), λ2(t), λ3(t), λ4(t)

)
and verify

λ
′

1 = λ1
(
α3(1− v(t)) + α1

MD2

N

(
1− u(t)

)
− α1

(
1− u(t)

)
λ2
MD2

N
− α3λ4

(
1− v(t)

)
λ
′

2 = α1

(
1− u(t)

)D2(t)

N
λ1 + λ2

[(
α2 + β1 + µ

)
− α1

(
1− u(t)

)D2

N

]
λ
′

3 = λ3
(
β2 + δ1 + µ

)
− β2λ4

λ
′

4 = (µ+ δ2)λ4.

λi(tf ) = 0 ∀ i ∈ {1, 2, 3, 4}

Proof. According to Theorem 5.1, the control pair (u∗, v∗), associated with the solution X∗, minimizes J(u, v) in U .
By Pontryagin’s Maximum Principle, there exists an absolutely continuous function P (.) such that:
p(.) :

[
0, tf

]
−→ R4

t 7→
(
λ1(t), λ2(t), λ3(t), λ4(t)

)
Such as for almost all t ∈

[
0, tf

]
p0(t) =

∂H

∂X
and p(tf ) = 0

then

p0 =
−∂H
∂X

=⇒



λ
′

1 =
−∂H
∂D2

λ
′

2 =
−∂H
∂MD2

λ
′

3 =
−∂H
∂HD2

λ
′

4 =
−∂H
∂Hyp

then, we have
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λ
′

1 =
−∂H
∂D2

(
t, x, p, p0, u, v

)
=

∂H

∂D2

(
Hyp(t)−D2(t) +

A2

2
u2(t) +

A2

2
v2(t) +

4∑
i=1

λifi(x, u, v)

)

=

4∑
i=1

λi
∂fi
∂D2

(x, u, v)

= λ1
(
α3(1− v(t)) + α1

MD2

N

(
1− u(t)

)
− α1

(
1− u(t)

)
λ2
MD2

N
− α3λ4

(
1− v(t)

)
By the same method, we have:

λ
′

2 = α1

(
1− u(t)

)D2(t)

N
λ1 + λ2

[(
α2 + β1 + µ

)
− α1

(
1− u(t)

)D2

N

]
λ
′

3 = λ3
(
β2 + δ1 + µ

)
− β2λ4

λ
′

4 = (µ+ δ2)λ4.

The condition of transversality at final time tf is p(tf ) = 0, then,

p(tf )= 0 =⇒


λ1(tf ) = 0

λ2(tf ) = 0

λ3(tf ) = 0

λ4(tf ) = 0

Finally, the characteristics of the vector
p(.): t 7−→

(
λ1(t), λ2(t), λ3(t), λ4(t)

)
are

λ
′

1 = λ1
(
α3(1− v(t)) + α1

MD2

N

(
1− u(t)

)
− α1

(
1− u(t)

)
λ2
MD2

N
− α3λ4

(
1− v(t)

)
λ
′

2 = α1

(
1− u(t)

)D2(t)

N
λ1 + λ2

[(
α2 + β1 + µ

)
− α1

(
1− u(t)

)D2

N

]
λ
′

3 = λ3
(
β2 + δ1 + µ

)
− β2λ4

λ
′

4 = (µ+ δ2)λ4.

λi(tf ) = 0 ∀ i ∈ {1, 2, 3, 4}

Theorem 5.2. (Characterization of Optimal Control) the optimal control (u∗, v∗) is defined by:

u∗ = min

(
1,max

(
0,

(λ2 − λ1)α1
D2MD2

N

A1

))
v∗ = min

(
1,max

(
0,

(λ4 − λ1)D2α3

A2

))
Proof. To prove the characterization of optimal control, we define the Lagrangien associated to the problem. It corresponds to

Hamiltonian increased by coefficient of Penalty

L
(
t, x, u, v, p

)
= H

(
t, x, p, p0, u, v

)
+ w11u+ w12(1− u) + w21v + w22(1− v)

where wij(t) ≥ 0 are penalization coefficients that verify
w11u(t) = w12

(
1− u(t)

)
= 0 for the control u∗

w21v(t) = w22

(
1− v(t)) = 0 for the control v∗

The optimal control (u∗, v∗) obtained is the resultant of application of equation of contrainte
∂L

∂u
= 0 in u∗

∂L

∂v
= 0 in v∗
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that imply, 
∂H

∂u
− w11 + w12 = 0 in u∗

∂H

∂v
− w21 + w22 = 0 in v∗

The partial derivative of H in relation to u is given by

∂H

∂u
=

∂

∂u

(
Hyp(t)−D2(t) +

A1

2
u2(t) +

A2

2
v2(t) +

4∑
i=1

λifi

)
= A1u(t) + λ1

∂f1
∂u

+ λ2
∂f2
∂u

+ λ3
∂f3
∂u

.

= A1u(t) + λ1
(
α1

D2(t)MD2(t)

N

)
+ λ2α1

D2(t)MD2
(t)

N

∂H

∂v
= A2v(t) + λ1

∂f1
∂v

+ λ4
∂f4
∂v

we obtainedA1u(t) + (λ2 − λ1)α1
D2(t)MD2

(t)

N
)− w11 + w12 = 0 for u = u∗

A2v(t) + (λ4 + λ1)α3D2(t)− w21 + w22 = 0 for v = v∗

At u∗ and v∗, we have:

A1u
∗ + (λ2 − λ1)α1

D∗2(t)M∗D2
(t)

N
)− w11 + w12 = 0

u∗ =
1

A1

(
(λ2 − λ1)

D∗2(t)M∗D2
(t)

N
α1)− w11 + w12

)
v∗ =

1

A2

[
(λ4 − λ1)α3D

∗
2(t)− w21 + w22

]
.

Let be the set {t : 0 < u∗ < 1} we have w11u
∗ = w12(1− u∗) =⇒ w11 = w12 = 0

u∗ =
(λ2 − λ1)D∗2(t)M∗D2

(t)α1

A1N

let be the set {t : u∗ = 0} we have w12(1− u∗) = 0 =⇒ w21 = 0, therefore

0 = u∗ =
(λ2 − λ1)D∗2(t)M∗D2

(t)α1) + w11

A1N

since w11 ≥ 0, then
(λ2 − λ1)D∗2(t)M∗D2

α1 + εH∗D(t)(λ3 − λ1)

A1N
≤ u∗ = 0

thus, on the set {t : 0 ≤ u < 1}, u∗ is defined like the following: max(0, B), where,

B =
(λ2 − λ1)D∗2(t)M∗D2

α1

A1N

let be the set:{t : u∗ = 1}
we have w11 × 1 = w12 × 0 = 0 =⇒ w11 = 0
then 1 = u∗ = B − w12

since w21 ≥ 0 the: B ≤ u∗ = 1
on the set {t, 0 ≤ u∗ ≤ 1} u∗ is defined by:

u∗ = min

(
1,max

(
0, B

))
.

By the same method, we get the expression of v∗:

v∗ = min

(
1,max

(
0, α3

(λ4 − λ1)D∗2
A2

)
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Finally on the set U the optimal control (u∗, v∗) is given by:

u∗ = min

(
1,max

(
0,

(λ2 − λ1)D∗2M
∗
D2
α1

A1N

)
and

v∗ = min

(
1,max

(
0,

(λ4 − λ1)α3D
∗
2(t)

A2

)
5.1. Numerical Simulations

The optimal control problem (7), along with the adjoint
equation (15) and the optimal control characterization (14),
has been solved numerically, and the results are presented
graphically. In the simulations of the optimal control problem,
the time unit is considered in months. The parameter values
are taken from the system (1), and the parameters of the model
used in the optimal control simulations are as follows:
α1 = 0.45; α2 = 0.06; α3 = 0.02; β1 = 0.09, β2 = 0.03,

δ1=0.02, δ2=0.004, µ=0.045 The numerical value of the weight
constants are A1 = 1000, A2 = 100000, initial values of the
variables in simulations are considered to be D2(0) = 2124,
MD2

(0) = 232, HD2
(0) = 77, Hyp(0) =987.

We present a numerical method to solve the optimality
system (20), with initial conditions given for the state variables
at time t = 0, and terminal conditions specified for the adjoint
variables at t = tf . The numerical simulations are carried out
using the forward Euler method for the state system and the
backward difference approximation for the adjoint system, as

inspired by [19].
We consider the following two strategies for the numerical

simulation of the model:
1. Strategy A: u = 0 et v 6= 0
2. Strategy B: u 6= 0 et v 6= 0

5.2. Strategy A

In this strategy, by setting the control u to zero, we use
control v to optimize the objective function J . In Figure 7b,
Figure 7c, and Figure 7d, we observe that the populations
of moderate and heavy drinkers, as well as hypertensive
individuals, are significantly reduced when control is applied,
compared to the situation with no control. However, Figure 7a
shows that the number of diabetic individuals not consuming
alcohol increases during the first two years with family support
and awareness. Hence, this strategy proves to be an effective
approach to combat alcohol consumption among people with
diabetes.

(a) Diabetic without drinking alcohol (b) Moderate drinkers

(c) heavy drinkers (d) hypertensive

Figure 7. Numbers ofD2,MD2
,HD2

andHyp with control v.
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Table 4. Evolution of the number of diabetics with controls v after 10 years.

Groups after 10 years without control with control Pourcentage

Diabetic without drinking alcohol 4393,81 7620,45 +73,43 %

Moderate drinkers 1148,41 40,77 -96,45 %

Heavy drinkers 444,85 21,07 -95,26 %

Hypertensive 4185,51 3216,17 - 23,15 %

For individuals with diabetes, familial support and
medical treatment are crucial to manage their condition and
avoid excessive alcohol consumption, which can lead to
hypertension.

1. Familial Support: Education and Awareness: Families
should understand diabetes and its complications,
including the impact of alcohol on blood sugar levels
and blood pressure.

2. Encouragement and Motivation: Families can
encourage healthy habits and participate in activities
like walking or cooking healthy meals together

3. Monitoring and Emotional Support: Helping to monitor
blood sugar levels, attending medical appointments, and
providing emotional support to reduce stress.

4. Regular Medical Consultations: Regular check-ups to
monitor blood sugar and blood pressure, and adjust
treatments as needed.

5. Medications: Using antihypertensives if necessary,
and diabetes medications to maintain normal blood
sugar levels. Alcohol Management Plan: Advising
on moderate alcohol consumption or abstinence and

suggesting healthy alternatives for social occasions.
By combining strong familial support with appropriate

medical treatment, individuals with diabetes can better manage
their condition and prevent complications like hypertension.

5.3. Strategy B

In the second case, we perform a simulation of the control
system incorporating both strategies u and v. It is evident
from Figure 8b, Figure 8c, Figure 8d that the numbers of
moderate drinkers (MD2

), heavy drinkers (HD2
), as well as

hypertensive individuals (Hyp) are significantly reduced when
these strategies are applied, compared to the scenario with
no control. This indicates that the combined application of
strategies u and v is effective in reducing alcohol consumption.
Additionally, it maximizes the number of individuals who do
not consume alcohol, demonstrating the overall success of
the intervention in promoting healthier behaviors across the
population Figure 8a. The simulation results clearly show that
using both strategies in tandem produces a more substantial
impact on reducing the prevalence of alcohol-related health
issues.

(a) (b)

(c) (d)

Figure 8. Numbers ofD2,MD2
,HD2

andHyp with control v and u.
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Table 5. Evolution of the number of diabetics with controls u and v after 10 years.

Groups after 10 years without control with control Pourcentage
Diabetic without drinking alcohol 4393,81 9875,59 +124,79 %
Moderate drinkers 1148,41 254,30 -77,85 %
Heavy drinkers 444,85 101,49 -77,19 %
Hyperetensive 4185,51 725,59 -82,67 %

[25] Psychological treatment for diabetic patients is
essential in preventing hypertension. Cognitive Behavioral
Therapy (CBT) helps patients identify and change negative
thought patterns that cause stress, which can elevate blood
pressure. Mindfulness practices like meditation and deep
breathing exercises reduce stress effectively. Counseling
and support groups provide emotional support, helping
patients cope with diabetes-related challenges. Behavioral
interventions such as motivational interviewing encourage
healthy habits, while lifestyle coaching guides patients
in maintaining these changes. Regular psychological
assessments monitor mental health and allow for treatment
adjustments.

These strategies help manage stress and emotions, crucial
for preventing hypertension and improving overall health.
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