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Abstract 

An accurate two-step optimized hybrid block method is proposed for integrating stiff initial value problems of ordinary 

differential equations. The techniques of interpolation and collocation were applied to a power series polynomial for the 

derivation of the method using a three-parameter approximation of the hybrid points. The hybrid points were obtained by 

minimizing the local truncation error of the main method. The discrete schemes were produced as by-products of the continuous 

scheme and used to simultaneously solve initial value problems (IVPs) in block mode. The analysis of the basic properties of the 

method revealed that the schemes are self-starting, consistent, zero-stable, and A-stable. Furthermore, the analysis of the order of 

accuracy of the method showed that there is a gain of one order of accuracy in the main scheme where the optimization was 

carried out thereby enhancing the accuracy of the whole method. The accuracy of the method was ascertained using several 

numerical experiments. Comparison of the numerical results of the new method with those of the existing methods revealed that 

the newly developed method performed better than some of the existing hybrid block methods. Hence, the new method should be 

employed for the numerical solution of stiff ordinary differential equations to obtain more accurate results. 
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1. Introduction 

The first order initial value problems of ordinary differen-

tial equations are used in mathematical formulation of many 

physical processes such as growth and decay, electrical circuit, 

falling body problem, prey-predictor model, radioactive de-

cay, etc. Most of these physical phenomenon produced dif-

ferential equations that are stiff in nature. and thus finding 

exact solutions to the differential equations is often chal-

lenging. The utilization of numerical techniques was neces-

sary in order to obtain an approximate solution. Various ap-

proaches, such as collocation, interpolation, integration, and 

interpolation polynomials, have been thoroughly investigated 

in academic literature to construct continuous linear multistep 
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methods (LMMs) for the direct solution of initial value 

problems in ordinary differential equations (see [1-5] and the 

literature therein). Most of the traditional methods such as 

Runge-Kutta [6], multi-step Adams family [7-9], and high-

er-order multi-derivative types [10, 11] did not yield desirable 

results in solving stiff differential equations because a large 

amount of computational effort was required or conditional 

stability was obtained. This necessitated the adoption of im-

plicit block methods which possess the attribute of being 

self-starting, highly accurate, and absolutely stabile. One of 

such notable methods in this category are the hybrid block 

methods. Hybrid linear multi-step methods were introduced a 

few decades ago to overcome the first Dahlquist barrier on the 

step number and order of stable LMMs [12]. Dahlquist stated 

that for a k-step LMM to be stable, the order cannot exceed k 

+ 1 (if k is odd) or k + 2 (if k is even) [12]. Hybrid methods 

allow access to information at intra-step points thereby 

providing solutions at those points. Therefore, restriction on 

the order and hence accuracy of the method is removed. 

An initial value problem of the form: 

𝑥′ = 𝑓(𝑡, 𝑥), 𝑥(𝑡0) =  𝑥0         (1) 

is considered, where, 𝑡 ∈  [𝑡0, 𝑇 ], 𝑓: [𝑡0, 𝑇 ] × ℜ →

 ℜ. It is assumed that equation (1) satisfies the conditions of 

the existence and uniqueness theorem for initial value prob-

lems [9]. 

The desire for improved accuracy of numerical methods 

has led to the development of new methods which are derived 

by minimization of the Local Truncation Errors (LTEs). In 

their study, Singh et al. [12] introduced an optimized hybrid 

block approach with distinct characteristics for numerically 

integrating initial value problems of ordinary differential 

systems. The method successfully overcomes the first 

Dahlquist barrier on Linear Multi-Step Methods (LMMs) by 

incorporating both block and hybrid characteristics. The 

method of interpolation and collocation was employed by 

utilizing an approximate polynomial representation of the 

theoretical solution of the problem. Three intermediate points 

were added within a single block, with one point being fixed 

and the other two optimized to minimize the errors in the 

primary formula and an additional formula. The resulting 

scheme had a fifth order accuracy and possessed the attribute 

of A-stability. The study conducted by Ramos [13] proposed a 

two-step method that involved the selection of two interme-

diate points through the optimization of the LTEs. However, 

the most optimal formulation was attained through the process 

of reformulating the method in a manner that decreases the 

frequency of instances of the source term 𝑓. Kashkari and 

Syam [14] presented a novel optimized one-step hybrid block 

technique that is specifically tailored for the optimization of 

first-order initial value problems (IVPs). The methodology 

entailed the careful selection of three hybrid points to opti-

mize the LTEs of the basic equations governing the behavior 

of the block. Furthermore, Tassaddiq et al. [15] introduced a 

novel one-step implicit block approach that incorporates three 

intra-step grid points. The principal term of the LTE was 

minimized to identify one of the three intra-step points as the 

optimal solution. A modification of the technique resulted in a 

substantial reduction in computational expenses while pre-

serving the identical levels of consistency, zero-stability, 

A-stability, and convergence. The method was employed to 

address practical issues and its outcomes were compared with 

those of other methods documented in literature to demon-

strate the superiority of the new approach. Ramos et al. [16] 

employed an enhanced hybrid block technique in conjunction 

with a modified cubic B-spline method to solve non-linear 

partial differential equations. No linearization was necessary 

in the approach, and the time step-size was optimized without 

compromising accuracy. Singla et al. [17] devised a set of 

one-step hybrid block methods that incorporate two intra-step 

points. These methods are designed to solve first-order initial 

value stiff differential systems. Within each family, there is an 

intrastep point that determines the sequence of the main 

technique, and a second point that governs the stability char-

acteristics of the method. The approaches were also devised as 

Runge-Kutta methods. Yakubu and Sibanda [18] proposed a 

novel approach for solving first-order stiff initial value prob-

lems through the development of a one-step family of three 

optimized second-derivative hybrid block methods. The op-

timization process was integrated into the derivation of the 

methods to achieve maximal accuracy. The analysis revealed 

that the methods exhibit convergence and A-stability. Some 

other recent and notable contributions on optimized hybrid 

block method may be found in [19-23] and the literature 

therein. 

The new Two Step Optimized Hybrid Block Method 

(TSOHBM) proposed in this research incorporates five hybrid 

points with a three-parameter approximation. The interval of 

integration is allowed to determine the optimal hybrid points 

through the optimization of the principal term of the LTE of 

the main method. Previous works have not considered up to 

five intra-step points with three unknown parameters in an 

optimization technique of this nature. 

This article is organized as follows: Derivation of the two 

step optimized hybrid block method is done in section 2, and 

analysis of the basic properties of the method is carried out in 

section 3. In section 4, numerical examples are solved to 

ascertain the performance of the new method, and discussion 

of the results is presented in section 5. 

2. Materials and Methods 

The theoretical solution 𝑥(𝑡) of equation (1) is approxi-

mated by the polynomial Q(t) of the form 

𝑄(𝑡) = ∑ 𝑏𝑗𝑡
𝑗𝑚

𝑗=0 .               (2) 

where 𝑏𝑗 ∈  𝑅  are real unknown coefficients to be deter-

mined. 𝑚 =  (𝐶 +  𝐼)  −  1 , 𝐼  and 𝐶  denote the 
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number of interpolation and collocation points respectively. 

The first derivative of (2) is obtained 

𝑄′(𝑡) = ∑ 𝑗𝑏𝑗𝑡
𝑗−1𝑚

𝑗=0 ,             (3) 

Interpolating equation (2) at 𝑡𝑛+𝑗 , 𝑗 =  0  collocating 

equation (3) at 𝑡𝑛+𝑗 , 𝑗 =  0, 𝑝,
2

3
 𝑞,

4

3
, 𝑟, 2 , where 

𝑝,
2

3
 𝑞,

4

3
, 𝑟  are the hybrid points such that 0 < 𝑝 <

2

3
<

𝑞 <
4

3
<  𝑟 <  2. This yields a system of linear equations 

given in (4). 

(

 
 
 
 
 
 
 
 

1 𝑡𝑛 𝑡𝑛
2

0 1 2𝑡𝑛
0 1 2𝑡𝑛+𝑝

 

𝑡𝑛
3 𝑡𝑛

4 𝑡𝑛
5

3𝑡𝑛
2 4𝑡𝑛

3 5𝑡𝑛
4

3𝑡𝑛+𝑝
2 4𝑡𝑛+𝑝

3 5𝑡𝑛+𝑝
4

 

𝑡𝑛
6 𝑡𝑛

6

6𝑡𝑛
4 7𝑡𝑛

4

6𝑡𝑛+𝑝
4 7𝑡𝑛+𝑝

4

0 1 2𝑡
𝑛+

2

3

0 1 2𝑡𝑛+𝑞

0 1 2𝑡
𝑛+

4

3

 

3𝑡
𝑛+

2

3

2 4𝑡
𝑛+

2

3

3 5𝑡
𝑛+2

3

4

3𝑡𝑛+𝑞
2 4𝑡𝑛+𝑞

3 5𝑡𝑛+𝑞
4

3𝑡
𝑛+

4

3

2 4𝑡
𝑛+

4

3

3 5𝑡
𝑛+

4

3

4

 

6𝑡
𝑛+

2
3

4 7𝑡
𝑛+

2
3

4

6𝑡𝑛+𝑞
4 7𝑡𝑛+𝑞

4

6𝑡
𝑛+

4

3

4 7𝑡
𝑛+

4

3

4

0 1
0 1

 
2𝑡𝑛+𝑟 3𝑡𝑛+𝑟

2 4𝑡𝑛+𝑟
3

2𝑡𝑛+2 3𝑡𝑛+2
2 4𝑡𝑛+2

3  
5𝑡𝑛+𝑟

4 6𝑡𝑛+𝑟
4 7𝑡𝑛+𝑟

4

5𝑡𝑛+2
4 6𝑡𝑛+2

4 7𝑡𝑛+2
4 )

 
 
 
 
 
 
 
 

(

 
 
 
 
 
 

𝑏0

𝑏1

𝑏2

𝑏3

𝑏4

𝑏5

𝑏6

𝑏7)

 
 
 
 
 
 

=

(

 
 
 
 
 
 
 

𝑥𝑛

𝑓𝑛
𝑓𝑛+𝑝

𝑓
𝑛+

2

3

𝑓𝑛+𝑞

𝑓
𝑛+

4

3

𝑓𝑛+𝑟

𝑓𝑛+2)

 
 
 
 
 
 
 

                    (4) 

Solving the system in (4) by Gaussian Elimination method 

to obtain the coefficients 𝑏𝑗  ’s, 𝑗 =  0, 1, . . . , 7 and put-

ting back into equation (2) to obtain the implicit scheme of the 

form 

𝑥(𝑡)  =  𝛼0(𝑡)𝑥𝑛  +  ℎ(𝛽0(𝑡)𝑓𝑛  +  𝛽𝑝  (𝑡)𝑓𝑛+𝑝  +

𝛽2

3

 (𝑡)𝑓
𝑛+

2

3

 +  𝛽𝑞 (𝑡)𝑓𝑛+𝑞  + 𝛽4

3

 (𝑡)𝑓
𝑛+

4

3

+

 𝛽𝑟  (𝑡)𝑓𝑛+𝑟  + 𝛽2 (𝑡)𝑓𝑛+2.  (5) 

where, 𝛼0(𝑡), and  𝛽𝑗(𝑡), 𝑗 =  0, 𝑝,
2

3
, 𝑞,

4

3
, 𝑟, 2  are con-

tinuous coefficients. 

Evaluating equation (5) at the points 𝑡 =

 𝑡𝑛+𝑝, 𝑡𝑛+
2

3

, 𝑡𝑛+𝑞 , 𝑡𝑛+
4

3

, 𝑡𝑛+𝑟 , 𝑡𝑛+2, yield the respective formu-

las for 𝑥𝑛+𝑝, 𝑥𝑛+
2

3

, 𝑥𝑛+𝑞 , 𝑥𝑛+
4

3

, 𝑥𝑛+𝑟 , 𝑥𝑛+2. Expanding the main 

formula 𝑥(𝑡𝑛+2) in the Taylor series around 𝑡𝑛  yield after 

some simplification the following local truncation error. 

ℒ(𝑥(𝑡𝑛+2); ℎ) =
1

297675
(𝑟((7𝑝)𝑞) − (7𝑝)𝑞 − (7𝑝)𝑟 +

12𝑝 − (7𝑞)𝑟 + 12𝑞 + 12𝑟 − 22)ℎ8𝑥(8)(𝑡𝑛) + 𝑂(ℎ8).  (6) 

Setting the principal term of the LTE in (6) to zero yields 

the following equation in three unknowns: 

𝑟((7𝑝)𝑞) − (7𝑝)𝑞 − (7𝑝)𝑟 + 12𝑝 − (7𝑞)𝑟 + 12𝑞 + 12𝑟 −

22 = 0.       (7) 

Solving the equation gives the optimized values of 𝑝, 𝑞, 𝑟 

as 

𝑝 =
1

7
(7 − √35);  𝑞 = 1;  𝑟 =

1

7
(7 + √35)       (8) 

Substituting the values of 𝑝, 𝑞, 𝑟 into the local truncation 

error formulae (6) gives 

ℒ(𝑥(𝑡𝑛+2); ℎ) =
1

4167450
ℎ9𝑥(9)(𝑡𝑛) + 𝑂(ℎ10).      (9) 

Lastly, putting the values of the parameters 𝑝, 𝑞, 𝑟 into the 

equations for 𝑥𝑛+𝑝, 𝑥𝑛+
2

3

, 𝑥𝑛+𝑞 , 𝑥𝑛+
4

3

, 𝑥𝑛+𝑟 , 𝑥𝑛+2 , we get the 

following two-step optimal hybrid block method: 

𝑥𝑛+𝑝 = 𝑥𝑛 +
ℎ

10948560
(817(539 + 50√35)𝑓𝑛 + (1882384 − 130928√35)𝑓𝑛+𝑝 + (3441123 − 619650√35)𝑓

𝑛+
2

3

+

36480√35𝑓𝑛+𝑞 + (3560193 − 619650√35)𝑓
𝑛+

4

3

+ (1882384 − 130928√35)𝑓𝑛+𝑟 + 19(−13573 + 2150√35)𝑓𝑛+2),  

𝑥
𝑛+

2

3

= 𝑥𝑛 +
ℎ

92340
(323𝑓𝑛 + (16072 − 3136√35)𝑓𝑛+𝑝 + 39393𝑓

𝑛+
2

3

+ 19456𝑓𝑛+𝑞 + 8073𝑓
𝑛+

4

3

+ (16072 −

3136√35)𝑓𝑛+𝑟 + 1083𝑓𝑛+2),  

𝑥𝑛+𝑞 = 𝑥𝑛 +
ℎ

4560
(38𝑓𝑛 + (784 + 147√35)𝑓𝑛+𝑝 + 2673𝑓

𝑛+
2

3

+ 243𝑓
𝑛+

4

3

+ (784 − 147√35)𝑓𝑛+𝑟 + 38𝑓𝑛+2) , 𝑥
𝑛+

4

3

= 𝑥𝑛 +

ℎ

23085
(114𝑓𝑛 + (3920 − 784√35)𝑓𝑛+𝑝 + 12744𝑓

𝑛+
2

3

+ 4864𝑓𝑛+𝑞 + 4914𝑓
𝑛+

4

3

+ (3920 − 784√35)𝑓𝑛+𝑟 + 304𝑓𝑛+2),  
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𝑥𝑛+𝑟 = 𝑥𝑛 +
ℎ

10948560
(−817(50√35 − 539)𝑓𝑛 + (1882384 + 130928√35)𝑓𝑛+𝑝 + (3441123 + 619650√35)𝑓

𝑛+
2

3

−

36480√35𝑓𝑛+𝑞 + (3560193 + 619650√35)𝑓
𝑛+

4

3

+ (1882384 + 130928√35)𝑓𝑛+𝑟 − 19(13573 + 2150√35)𝑓𝑛+2),  

𝑥𝑛+2 = 𝑥𝑛 +
ℎ

1140
(19𝑓𝑛 + 392𝑓𝑛+𝑝 + 729𝑓

𝑛+
2

3

+ 729𝑓
𝑛+

4

3

+ 392𝑓𝑛+𝑟 + 19𝑓𝑛+2),        (10) 

3. Analysis of the Basic Properties of the 

TSOHBM 

Here, the basic properties of the TSOHBM (10) namely; 

accuracy, consistency, zero-stability, convergence, linear 

stability, and A-stability are investigated. 

 

3.1. Order of Accuracy and Consistency 

Rewriting the TSOHBM (10) in the matrix difference form 

yields 

𝐴1𝑋𝑛 = 𝐴0𝑋𝑛−1 + ℎ(𝐵0𝐹𝑛−1 + 𝐵1𝐹𝑛),       (11) 

Where 𝐴0, 𝐴1, 𝐵0, and 𝐵1 are 6 × 6 matrices given by 

𝐴0 =

[
 
 
 
 
 
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1]

 
 
 
 
 

; 𝐴1 =

[
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 

;  𝐵0 =

[
 
 
 
 
 
 
 
 
 0 0 0 0 0

817(539+50√35)

10948560

0 0 0 0 0
323

92340

0 0 0 0 0
38

4560

0 0 0 0 0
114

23085

0 0 0 0 0
−817(50√35−539)

10948560

0 0 0 0 0
19

1140 ]
 
 
 
 
 
 
 
 
 

         (12) 

𝐵1 =

[
 
 
 
 
 
 
 
 
 
 
1882384−130928√35

10948560

3441123−619650√35

10948560

36480√35

10948560

3560193−619650√35

10948560

1882384−130928√35

10948560

19(−13573+2150√35)

10948560

16072−3136√35

92340

39393

92340

19456

92340

8073

92340

16072−3136√35

92340

1083

92340

784+147√35

4560

2673

4560
0

243

4560

784−147√35

4560

38

4560

3920−784√35

23085

12744

23085

4864

23085

4914

23085

3920−784√35

23085

304

23085

1882384+130928√35

10948560

3441123+619650√35

10948560

−36480√35

10948560

3560193+619650√35

10948560

1882384+130928√35

10948560

19(−13573−2150√35)

10948560
392

1140

729

1140
0

729

1140

392

1140

19

1140 ]
 
 
 
 
 
 
 
 
 
 

 (13) 

𝑋𝑛 = (𝑥𝑛+𝑝, 𝑥𝑛+
2

3

, 𝑥𝑛+𝑞 , 𝑥𝑛+
4

3

, 𝑥𝑛+𝑟 , 𝑥𝑛+1)
𝑇 , 𝑋𝑛−1 = (𝑥𝑛−2+𝑝, 𝑥𝑛−2+

2

3

, 𝑥𝑛−2+𝑞 , 𝑥𝑛−2+
4

3

, 𝑥𝑛−2+𝑟 , 𝑥𝑛)𝑇 , 𝐹𝑛 =

(𝑓𝑛+𝑝, 𝑓𝑛+
2

3

, 𝑓𝑛+𝑞 , 𝑓𝑛+
4

3

, 𝑓𝑛+𝑟 , 𝑓𝑛+1)
𝑇 , 𝐹𝑛−1 = (𝑓𝑛−2+𝑝, 𝑓𝑛−2+

2

3

, 𝑓𝑛−2+𝑞 , 𝑓𝑛−2+
4

3

, 𝑓𝑛−2+𝑟 , 𝑓𝑛)𝑇 .         (14) 

For a sufficiently differentiable test function 𝜑(𝑡𝑛) in the 

interval [0, 𝑇 ] , Let the difference operator 𝐷̅  for the 

TSOHBM in (10) be given as 

𝐷̅(𝜑(𝑡𝑛); ℎ) = ∑ [𝜉𝑗̅(𝑡𝑛 + 𝑗ℎ) − ℎ𝜇̅𝑗𝜑′(𝑡𝑛 + 𝑗ℎ)]𝑗 =𝜔 , 𝜔 =

0, 𝑝,
2

3
 𝑞,

4

3
, 𝑟, 2.            (15) 

Where, 𝜉𝑗̅ and 𝜇̅𝑗 are column vectors of the matrices 𝐴0 

and 𝐴1, respectively. The Taylor series expansion about 𝑡𝑛 

for 𝑥(𝑡𝑛 + 𝑗ℎ) and 𝑥′(𝑡𝑛 + 𝑗ℎ) yield 

ℒ̅(𝜑(𝑡𝑛); ℎ) = 𝑐0𝑥(𝑡𝑛) + 𝑐1ℎ𝑥′(𝑡𝑛) + 𝑐2ℎ
2𝑥(2)(𝑡𝑛) + ⋯ +

𝑐𝑝ℎ
𝑝𝑥(𝑝)(𝑡𝑛) + ⋯                (16) 

where 𝑐𝑖 , 𝑖 = 0,1,2, … are vectors. From equation (16), the 

order of the TSOHBM is 𝑝 = (7,7,7,7,7,8)𝑇  with the error 

constant 

𝑐𝑝+1 =
47

163364040
,

−16

8680203
,

−11

7620480
,

−16

8680203
,

47

163364040
,

1

4167450
.  (17) 

showing that the TSOHBM has at least seventh order accu-

racy. 

Since 𝑝 ≥ 1 , then the block method TSOHBM (10) is 

consistent (see [5]). 
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3.2. Zero-stability and Convergence 

The zero-stability pertains to the stability of the difference 

system in (11) in the limit as ℎ → 0. As ℎ → 0, (11) becomes 

𝐴1𝑋𝑛 − 𝐴0𝑋𝑛−1 = 0         (18) 

The first characteristic polynomial 𝜌(𝜎)  =  𝑑𝑒𝑡 (𝜎𝐴1 −

 𝐴0)  =  𝜎5(𝜎 −  1)  =  0. Thus, 𝜎1 = 𝜎2 = 𝜎3 = 𝜎4 =

𝜎5 = 0, 𝜎6 = 1. Hence the block method (10) is zero-stable. 

Since the TSOHBM satisfy the properties of consistency 

and zero-stability, then the method is convergent according to 

[24]. 

3.3. Linear Stability 

Consider the linearized test problem 

𝑥′(𝑡)  =  𝜎𝑥(𝑡), 𝑅𝑒(𝜎)  <  0        (19) 

Applying the proposed block method to the trial problem 

(19), we obtain the recurrence relation 

𝑋𝑛 =  𝐻(ℏ)𝑋𝑛−1, ℏ =  𝜎ℎ       (20) 

where the matrix 𝐻(ℏ)  is given by (𝐴1 − 𝑟𝐵0)
−1(𝐴0 −

 𝑟𝐵0). The stability property of this matrix’s eigenvalues, 

which governs how the numerical solution behaves, is the 

spectral radius, 𝐻(ℏ), which is used in the method to define 

the region of absolute stability S. The method is A-stable if 

𝑆 =  {ℏ ∈  𝐶: |𝜌[𝐻(ℏ)]|  <  1}         (21) 

 
Figure 1. Region of absolute stability of the TSOHBM. 

Upon performing various calculations, it becomes evident 

that the predominant eigenvalue can be expressed as a quo-

tient function. 

𝜌[𝐻(ℏ)] =
2ℏ6+43ℏ5+417ℏ4+2445ℏ3+9060ℏ2+19845ℏ+19845

2ℏ6−43ℏ5+417ℏ4−2445ℏ3+9060ℏ2−19845ℏ+19845
  (22) 

which has a modulus of less than one in C− (see Figure 1). 

Hence, the TSOHBM (10) is A-stable. 

4. Results 

The accuracy of the TSOHBM is shown by applying the 

method to solve some popular applied problems of the form (1) 

in literature. The methods being compared are the TSOHBM 

(10), the TDHM) in [25], the TOBBDF in [26], and the 

RBHMO in [13]. 

Example 1 

Consider the Prothero-Robinson problem which has ap-

peared in [13]: 

𝑥′(𝑡) = 10−6(𝑥 − sin 𝑥) + cos 𝑥 , 𝑥(0) = 0.    (23) 

The exact solution is 𝑥(𝑡) = sin 𝑥. The problem is solved 

in the interval [0,10]  for number of steps 𝑛 =

50, 100, 200, ,400. 

Example 2 

Given the highly stiff problem investigated by [26]: 

𝑥′(𝑡) = −𝜆𝑥, 𝑥(0) = 1, 𝜆 = 10.     (24) 

with exact solution 𝑥(𝑡) = 𝑒𝜆𝑡 , The problem is solved in 

the interval [0,0.1] for step size ℎ = 0.1. 

Example 3 

Consider the first order stiff initial value problem has ap-

peared in [26]: 

𝑥′(𝑡) = 𝑡 − 𝑥, 𝑥(0) = 0.              (25) 

The exact solution is 𝑥(𝑡) = 𝑡 + 𝑒−𝑡 − 1. The problem is 

solved in the interval [0,1] for step size ℎ = 0.1. 

Example 4 

We consider the stiff problem investigated by [25]: 

𝑥1
′ = −𝑥1 + 95𝑥2, 𝑥1(0) = 1, 𝑥2

′ = −𝑥1 − 97𝑥2, 𝑥2(0) = 1. (26) 

with exact solution 𝑥1(𝑡) =
1

47
(95𝑒−2𝑡 − 48𝑒−96𝑡), , 

𝑥2(𝑡) =
1

47
(48𝑒−96𝑡 − 𝑒−2𝑡), The problem is solved in the 

interval [0,1] for step sizes h= 1/8, 1/16, 1/32, 1/64. 
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Figure 2. Solution plot for example 1. 

 
Figure 3. Error plot for example 1. 

 
Figure 4. Solution plot for example 2. 

 
Figure 5. Error plot for example 2. 

 
Figure 6. Solution plot for example 3. 

 
Figure 7. Error plot for example 3. 
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5. Discussion 

Table 1 shows the comparison of maximum absolute er-

rors in TSOHBM and RBHMO. The first, second, third, 

fourth and fifth columns indicate number of steps, exact so-

lution, computed solution, error in TSOHBM, and error in 

RBHMO respectively. The solution from TSOHBM agrees 

with the exact solution up to at least 12 decimal places while 

that of RBHMO agrees up to 10 decimal places indicating 

that the current method is more accurate. 

Figures 2 and 3 shows the solution plot and error plots 

respectively for example 1. Table 2 shows the comparison 

of maximum absolute errors in TSOHBM and TOBBDF. 

The first, second, third, fourth and fifth columns indicate 

step size, exact solution, computed solution, error in 

TSOHBM, and error in TOBBDF respectively. The solu-

tion from TSOHBM coincides with the exact solution up 

to at least 15 decimal places while that of TOBBDF coin-

cides up to 10 decimal places indicating that the current 

method is more accurate. 

Figures 4 and 5 shows the solution plot and error plots 

respectively for example 2. Table 3 shows the comparison 

of maximum absolute errors in TSOHBM and TOBBDF. 

The first, second, third, fourth and fifth columns indicate 

step size, exact solution, computed solution, error in 

TSOHBM, and error in TOBBDF respectively. The solu-

tion from TSOHBM coincides with the exact solution up 

to at least 15 decimal places while that of TOBBDF coin-

cides up to 10 decimal places indicating that the current 

method is more accurate. 

Figures 6 and 7 shows the solution plot and error plots 

respectively for example 2. Table 4 shows the comparison 

of maximum absolute errors in TSOHBM and TDHM. The 

first, second, third, fourth and fifth columns indicate step 

size, method, error in 𝑥1, and error in 𝑥2 respectively. The 

solution from TSOHBM coincides with the exact solution 

up to at least 15 decimal places while that of TOBBDF 

coincides up to 10 decimal places indicating that the cur-

rent method is more accurate. 

Table 1. Comparative analysis of results of example 1 with the 

method in Ramos [13]. 

n 
Exact 

solution 

Computed 

solution 

Error in 

TSOHBM 

Error in 

RBHMO 

50 -0.544021 -0.544021 4.69580E-12 2.3770E-10 

100 -0.544021 -0.544021 3.59712E-14 1.4550E-11 

200 -0.544021 -0.544021 2.27596E-14 9.0252E-13 

400 -0.544021 -0.544021 1.02141E-14 5.6413E-14 

 

Table 2. Comparative analysis of results of example 2 with the 

method in Ukpebor [26]. 

h 
Exact 

solution 

Computed 

solution 

Error in 

TSOHBM 

Error in 

TOBBDF 

0.01 0.904837 0.904837 1.77636E-15 1.000000E-11 

0.02 0.818731 0.818731 2.9976E-15 0.000000E+00 

0.03 0.740818 0.740818 4.10783E-15 0.000000E+00 

0.08 0.449329 0.449329 6.66134E-15 2.000000E-10 

0.09 0.40657 0.40657 6.82787E-15 2.000000E-10 

0.10 0.367879 0.367879 6.93889E-15 3.000000E-10 

Table 3. Comparative analysis of results of example 3 with the 

method in Ukpebor [26]. 

h 
Exact  

solution 

Computed 

solution 

Error in 

TSOHBM 

Error in 

TOBBDF 

0.1 0.00483742 0.00483742 1.62283E-15 3.000000E-11 

0.2 0.0187308 0.0187308 2.96985E-15 2.000000E-11 

0.3 0.0408182 0.0408182 3.90660E-15 1.900000E-10 

0.8 0.249329 0.249329 6.55032E-15 2.000000E-10 

0.9 0.30657 0.30657 6.66134E-15 2.000000E-10 

1.0 0.367879 0.367879 6.77236E-15 3.000000E-10 

Table 4. Comparative analysis of results of example 4 with the 

method in Adogbe [25]. 

Step Method Error_ x1 Error_ x2 

1/8 
TSOHBM 4.08317E-11 4.11881E-13 

TDHM 1.61313E-10 1.6880E-9 

1/16 
TSOHBM 3.46612E-13 3.64856E-15 

TDHM 3.12445E-10 2.8709E-12 

1/32 
TSOHBM 2.9976E-15 3.20924E-17 

TDHM 2.28712E-10 1.90027E-12 

1/64 

TSOHBM 5.55112E-17 4.33681E-19 

TDHM 1.38512E-10 2.00324E-12 

6. Conclusions 

This work has presented an accurate two-step optimized 

hybrid block method for integrating stiff differential equations. 

The method incorporated five hybrid points with a 

three-parameter approximation. The technique was designed 
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such that the interval of integration determines the best hybrid 

points through the optimization of the principal term of the 

LTE of the main method. Consequently, the accuracy of the 

resulting numerical scheme was greatly enhanced as demon-

strated in the numerical results obtained when the method was 

implemented to solve some well-known stiff differential 

equations. It was also established through rigorous analysis 

that the method is consistent, convergent, zero stable and 

efficient for solving first-order ordinary differential equations. 

Hence, the new method is strongly suggested for general use. 
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TSOHBM Two Step Optimized Hybrid Block Method 

TDHM Third Derivative Hybrid Method 
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