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Abstract 

This paper proposes new six formulas allowing to calculate all roots of sixth degree polynomial equation nearly in parallel while 

including the use of radical expressions, which is extending a new engineering methodology to solve polynomial equations of nth 

degree where the value of n can exceed five. This methodology is based on developing the roots of nth degree polynomial 

equation according to a distributed structure of radical terms, where each term is built by multiplying two radicals presenting the 

roots of polynomial equations with inferior degrees. This distributed structure of terms is allowing them to neutralize each other 

during multiplications, which forward calculations toward eliminating radicalities, suppressing complex terms and reducing 

degrees. As a result, this paper is proposing new two theorems solving sixth degree polynomial equation in complete forms while 

relying on two different approaches built on the same engineering methodology of roots architecting, which allow calculating 

solutions nearly in parallel. This engineering methodology is scalable to solve higher degrees of polynomial equations while 

extending the same distributed architecture of terms whereas re-engineering the expressions of included sub-terms in order to 

manifest the same outcomes of reciprocal neutralization, radicality suppression and degrees reduction during calculations. 

Therefore, this paper is also presenting the engineered requirements and techniques along with details in order to scale the used 

methodology by projecting it on nth degree polynomial equations where the possibility of calculating the values of all roots 

nearly in parallel whereas the polynomial degrees can exceed the quantic form. The new proposed engineering methodology in 

this paper is listing all necessary logic, techniques and formulas to solve nth degree polynomial equations in general forms 

stage-by-stage while relying on the use of radical expressions, which will scale the results of this paper toward solving highly 

complex equations. 
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1. Introduction 

Solvability of nth degree polynomial equations has been 

challenging to mathematicians over centuries, especially 

when looking for algebraic terms to express the roots. This 

challenge is due to the complexity of calculations that can 

exceed the previsions of human mind especially when de-

grees of polynomials are making them surpassing the quartic 

form. 

The complexity of calculations during the attempts of 

solving polynomial equations of high degrees is mostly 

due to using radicalities while adopting specific ap-

proaches. In addition, reaching a point of having high 

complexity of outcomes where the form of equation is far 

from foreseeing a reduction; will lead to conduct a radical 

change on used approach or even replace it by adopting a 

different one. 

Adopting a specific approach to solve a specific degree of 

polynomial equations lead to have limitation in resulted 

forms of equations where reductions are harder to be con-

ducted by comparison to the starting point. In addition, con-

ducted calculations may augment in high rate when search-

ing for the solution by trying different approaches that may 

lead to restart calculations from scratch. Furthermore, the 

complexity of resulted forms of equations may lead toward 

adopting a limited solution to be used on a specific form of 

polynomial equations that have specific conditions stated by 

the values of included coefficients. 

As a results, finding unified solution formulas for poly-

nomial equations in general forms and in complete forms is 

more challenging when relying on a research methodology 

where calculations and logic may to be restarted from scratch 

when the approach is radically modified or even replaced. 

Therefore, we rely on an engineering methodology where 

we build the appropriate approach step-by-step basing on 

patterns and characteristics that should be met. Then, we use 

this approach to architect the adequate roots and to structure 

their involved terms and sub-terms. Then, we forward logic 

and calculations toward engineering the formulas of all roots, 

in order to allow the calculation of all expected solutions 

nearly in parallel. 

Relying on this engineering methodology to solve poly-

nomial equations avoid us restarting the logic and calcula-

tions from scratch, and allow us to keep relying on the same 

approach and results of calculations while conducting only 

slight modifications, when necessary, toward reaching the 

final forms of unified formulas. In addition, this engineering 

methodology allows us to project the same approach and 

extend the same logic toward solving higher degrees of pol-

ynomial equations. 

In this engineering methodology, the axe of focus is 

building and architecting according to a scalable logic start-

ing from requirements engineering toward designing the 

starting point, the path, the destination and the structure of 

expected final results. As a result, conducted calculations and 

adopted reasoning follow a pr-designed path toward struc-

turing the unified formulas of niched roots. 

The advantage of this paper is presenting two new theo-

rems solving sixth degree polynomial equations in general 

forms by using radical expressions where the possibility of 

calculating the values of all roots nearly in parallel. One 

among these two new theorems is solving sixth degree poly-

nomial equations without the quantic terms, whereas the 

other theorem is solving sixth degree polynomial equations 

in complete forms that include the quantic terms. 

This paper is also presenting the engineered requirements 

and techniques that lead to architect the results of proposed 

theorems. Furthermore, this paper is presenting another the-

orem solving quartic equations in general forms which is 

essentially used to structure all the six roots of sixth degree 

polynomial equations in complete forms. 

Each proposed theorem in this paper is developed accord-

ing to a scaled logic along with a detailed proof step-by-step, 

where we rely on the results of engineered requirements and 

techniques to forward the design and development of expres-

sions, formulas and proofs. 

This paper is a principal step in our work of solving nth 

degree polynomial equations basing on projecting the pre-

sented methods and results in this paper on other polynomial 

equations with degrees higher than five, which will be pre-

sented in other articles. 

The mathematician Ferrari Lodovico is historically at-

tributed the credit of discovering a principal solution for 

fourth degree polynomial equation by the year 1540. How-

ever, since his discovered root expression required having a 

solution for equations in cubic forms, which was not pub-

lished yet by Cardano Gerolamo at that time, Ferrari Lodo-

vico could not publish his discovery officially and immedi-

ately. Nevertheless, Ferrari’s mentor, Gerolamo Cardano, did 

publish the discovered quartic solution by Ferrari along with 

the cubic solution in the historical book of mathematics; Ars 

Magna [1]. 

The discovered cubic root by the mathematician Cardano 

Gerolamo [2] for third degree equations under the polynomi-

al form 𝑥3 + 𝑝𝑥 + 𝑞 = 0 does help Ferrari’s solution to 

solve quartic equations by reducing their expressions from 

the fourth degree to the second degree, but it does not di-

rectly help to properly define the four roots of any quartic 

equation. Therefore, when having a fourth-degree polynomi-

al equation in general form, it is necessary to conduct further 

calculations to determine its four roots while relying on the 

solution of Ferrari Lodovico. 

The proposed method by Cardano Gerolamo was also re-

lied-on as a foundation base to solve particular forms of 𝑛𝑡ℎ 

degree equations; such as by using specific radical expres-

sions under the form √𝑛𝑎 + √𝑏 + √𝑛𝑎 − √𝑏  where the 

values of n can vary in the range 2,3,4, …, etc. [3]. 

Over the history of mathematics, there have been many 

http://www.sciencepg.com/journal/ajam


American Journal of Applied Mathematics http://www.sciencepg.com/journal/ajam 

 

75 

elaborated methods and published solutions to solve poly-

nomial forms of quartic equations such as Euler’s solution 

[4], Galois’s method [5], Descartes’s method [6], Lagrange’s 

method [7] and algebraic geometry [8]. 

The cubic solution was almost-always considered as an 

essential milestone for further research to solve polynomial 

equations of fourth degree and above [9, 10], such as the 

case of trying to elaborate a proof demonstrating that quantic 

equations do not accept quadratic expressions as solutions, 

which is further discussed in the published research results in 

[11-14]. 

A particular solution for third degree polynomial equation 

was first found in the year 1515 by Scipione del Ferro 

(1465–1526), which was presented as a solution for some 

specific cases determined by the values of involved coeffi-

cients in the considered polynomials. However, the official 

root-form considered as a practical solution for cubic equa-

tions; is the discovered root by the mathematician Cardano 

Gerolamo, which is generally recognized as the base of fur-

ther historical research on solving quartic equations and 

other specific forms of polynomial equations. 

There have been other recent publications presenting re-

search results dedicated to solve quartic equations where the 

used methods are built on reducing polynomial expression 

[15, 17], whereas other published results are relying on the 

use of computational algorithms and numerical analysis in 

order to find the roots of polynomial equations with degrees 

exceeding the quartic form [17, 18]. 

In the published research article by Tschirnhaus [19], he 

proposed a particular innovative method to solve polyno-

mial equation 𝑃𝑛(𝑥)  of 𝑛𝑡ℎ  degree by relying on its 

transformation into a reduced polynomial form 𝑄𝑛(𝑦) 

with fewer terms by scaling the proposed idea of Des-

cartes; in which a polynomial of 𝑛𝑡ℎ degree is practically 

reducible by removing its term in the degree (𝑛 − 1). The 

projection of this published method on quantic forms of 

polynomial equations is presented with more details in 

[20]. 

There are some other published articles treating re-

solvable forms of quantic polynomials by relying on the 

use of radical expressions [21, 22]; in which we can find 

the description of specific criteria predetermining whether 

a quantic polynomial form may accept plausible roots with 

radical expressions or not. In addition, there are other 

published papers treating the resolvability of some equa-

tions with polynomial degrees higher than five while us-

ing factorization or by conditioning the forms of coeffi-

cients to be depending on each other [23, 24], which do 

not solve neither quantic equations nor sixth degree equa-

tions in general forms. 

Some polynomial equations of sixth degree in simple 

forms, such as 𝑎𝑥6 +  𝑑𝑥3 +  𝑔 = 0 , can be solved by 

factorization or by relying on variable change, but other 

sixth degree equations in complete forms could not be 

solved over history [25, 26], until nowadays by using the 

presented solutions in this paper, which make the content of 

this article valuable. 

The proposed concept in this article about architecting 

solutions according to a distributed structure of terms can 

extend itself to different problems in geometry, numbers 

theory and algebra in general; because this concept is in-

troducing an engineering methodology based on identifying 

patterns and characteristics that allow forwarding calcula-

tions and expressions toward specific converging points 

where the results are built step-by-step and not only 

searched. 

The used engineering methodology in this paper can also 

be projected on prime numbers by architecting the expres-

sions of odd numbers according to a distributed architecture 

of terms, which may reveal (or prove) further characteristics 

about prime numbers. Furthermore, this engineering method-

ology can be scaled on Collatz conjecture in order to architect 

odd numbers according to converged trees where odd num-

bers are presented in form of distributed structures of terms, 

which may provide insights about prime numbers and their 

distribution. 

Because the contained results in this article are original, 

consisting of many new codependent formulas, mathe-

matical expressions and new theorems interconnected in a 

scaling manner basing on extendable logic; every pro-

posed formula will be proved mathematically and used to 

build the rest of presented content, and we will scale 

through them by relying on logical analysis and deduction 

which are following a structured development architecture 

guided by the proposed engineering methodology in this 

paper. 

This engineering methodology was first used to develop 

the solution of quartic polynomial equations in general 

forms [27], by building the unified formulas of the four 

roots of any quartic equation, which allow calculating the 

four solutions nearly simultaneously. Then, the same engi-

neering methodology was scaled to solve quantic equations 

[28] in complete forms by proposing the necessary unified 

formulas of roots to calculate the five solutions nearly in 

parallel. Therefore, this paper is allowing to scale this en-

gineering methodology from quartic and quantic polynomi-

als toward solving sixth degree polynomial equations in 

general forms whereas enabling values calculation of all 

roots nearly in parallel. 

The contents of this paper are structured as follow: Sec-

tion 2 presenting the used methodology and its results of 

engineered requirements and techniques to solve polyno-

mial equations of nth degree. Section 3 presenting four 

formulary solutions for fourth degree polynomial equations 

in general forms, which enable calculating the roots of 

these equations nearly in parallel. Section 4, presenting new 

six formulary solutions using radical expressions to solve 

sixth degree polynomial equation in general forms where 

the coefficient of fifth degree part is different from zero. 

Section 5, presenting new six roots solving sixth degree 
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polynomial equation in general forms where the coefficient 

of fifth degree part is equal zero. Finally, Section 6 for 

conclusion. 

2. Engineered Methodology and 

Techniques to Solve Nth Degree 

Polynomial Equations 

The used methodology in this paper to solve nth degree 

polynomial equations in general forms is based on architect-

ing roots according to a distributed structure of terms while 

relying on radicality. 

In addition, this used methodology is relying on develop-

ing specific patterns into the structure of roots in order to 

help converging calculations whereas eliminating degrees. 

Furthermore, this methodology is built on an engineering 

logic where roots are predesigned before being expressed 

according to unified formulas, which support the expressions 

structuring for all roots of polynomial equation. 

The used methodology in this paper lead to define a list of 

engineered requirements and techniques, which are helping 

to develop the necessary unified formulas to calculate the 

roots of nth degree polynomial equations in general forms 

whereas enabling to calculate the values of possible roots 

nearly in parallel. 

The results of our engineered requirements and techniques 

according to the used methodology are described as follow: 

1. Roots should be expressed according to a distributed 

structure of terms {∑ Ti
𝑖=𝑢
𝑖=0 }, which will be multiplied 

by each other during calculations. 

2. Each included term in the distributed structure of roots 

should be expressed according to the simplest possible 

radicality. 

3. All included terms in the distributed structure of roots 

should either be constants or be radical expressions. 

4. The included constant terms in the distributed structure 

of roots should allow eliminating specific parts with 

specific degrees from a polynomial equation. 

5. We adapt a polynomial equation of nth degree 

{(∑ 𝑎𝑖𝑋
𝑖𝑖=𝑛

𝑖=0
) = 0} where {𝑎𝑛 ≠ 0} by presenting it 

as {(∑
𝑎𝑖

𝑎𝑛
𝑋𝑖

𝑖=𝑛

𝑖=0
) = 0}. 

6. We use the expression {𝑋 =
−𝑎𝑛−1

𝑛𝑎𝑛
+
𝑌

𝑛
} to eliminate 

the term of degree (𝑛 − 1) from a polynomial equa-

tion of nth degree {(∑
𝑎𝑖

𝑎𝑛
𝑋𝑖

𝑖=𝑛

𝑖=0
) = 0} when (𝑛 −

1) is an odd value or when this elimination is simpli-

fying calculations. 

7. All included radical terms in each root should have the 

same radicality, in order to converge resulted expres-

sions during calculations. Therefore, we choose them to 

have a radicality of square root. 

8. Each included radical term in the distributed structure 

of a root {∑ Ti
𝑖=𝑢
𝑖=0 } should be expressed according to a 

sum of simple radical terms {(∑ 𝑇𝑖
𝑖=𝑢
𝑖=0 ) = (∑ 𝑥𝑖

𝑖=𝑢
𝑖=0 ) =

(∑ √𝑦𝑖
𝑖=𝑢

𝑖=0
)} when the degree of polynomial equa-

tion is equal four. 

9. Each included radical term in the distributed structure 

of a root {∑ 𝑇𝑖
𝑖=𝑢
𝑖=0 } should be expressed according to a 

multiplication of at least two different sub-terms 

{(∑ 𝑇𝑖
𝑖=𝑢
𝑖=0 ) = (∑ 𝑥𝑖  𝑥𝑗𝑖≠ 𝑗 )} when the degree of poly-

nomial equation is surpassing four. 

10. When the degree of polynomial equation is surpassing 

four, each included sub-term {𝑥𝑙} in the distributed 

structure of a root {(∑ 𝑇𝑖
𝑖=𝑢
𝑖=0 ) = (∑ 𝑥𝑖  𝑥𝑗𝑖≠ 𝑗 )} should 

appear in multiple distributed terms in order to allow 

further factorizations. 

11. When the degree of polynomial equation is surpassing 

four, each included sub-term {𝑥𝑙} in the distributed 

structure of terms {(∑ 𝑇𝑖
𝑖=𝑢
𝑖=0 ) = (∑ 𝑥𝑖  𝑥𝑗𝑖≠ 𝑗 )} should 

be presented according to a radical expression of cubic 

root, quadratic root or a constant. 

12. Combinations among included sub-terms in a root 

should allow expressing the values of involved coeffi-

cients in a polynomial equation. 

13. The included sub-terms in the distributed structure of 

terms should allow neutralizing their contents when 

they are multiplied by each other in order to have sim-

plified results. 

14. The included sub-terms in the distributed structure of 

terms should allow eliminating radicality when they 

are raised to the power of higher polynomial degrees. 

15. The included sub-terms in the distributed structure of 

terms should allow eliminating radicality when they 

are multiplied by each other. 

16. The included sub-terms in the distributed structure of 

terms should allow forwarded calculations to supress 

terms that have odd values of polynomial degrees. 

17. The included sub-terms in the distributed structure of 

terms should allow forwarded calculations to either 

supressing terms of the highest degrees or supressing 

terms of the lowest degrees. 

18. The distributed structure of terms {(∑ 𝑇𝑖
𝑖=𝑢
𝑖=0 ) = (∑ 𝑥𝑖  𝑥𝑗𝑖≠ 𝑗 )} should include a sub-term {𝑥1} presented according to a 
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radical expression of cubic root where 

(

 
 
𝑥1 =

√−𝑏
3
 +

1

3
√−

D

2
 + √(

D

2
)
2

+ (
C

3
)
33

+
1

3
√−

D

2
− √(

D

2
)
2

+ (
C

3
)
33

)

 
 

. 

19. The distributed structure of terms should include two sub-terms {𝑥2, 𝑥3} presented according to radical expressions of 

quadratic roots where 

(

 
 
𝑥2 = √−

𝑃

2
+𝑥1

2
+√(

𝑃

2
+𝑥1

2
)

2

−
𝑄2

64𝑥1

)

 
 

 and 

(

 
 
𝑥3 = √−

𝑃

2
+𝑥1

2
− √(

𝑃

2
+𝑥1

2
)

2

−
𝑄2

64𝑥1

)

 
 

. 

20. In order to eliminate high degree expressions in a pol-

ynomial equation whereas allowing calculations to 

converge, we use a constant value {𝛼1} expressed by 

using included sub-terms in the distributed structure of 

root where {𝛼1 = ∑𝑥𝑖
2}. 

21. In order to eliminate average degree expressions in a 

polynomial equation whereas allowing calculations to 

converge, we use a constant value {𝛼2} expressed by 

using included sub-terms in the distributed structure of 

root where {𝛼2 = ∑ 𝑥𝑖
2 𝑥𝑗

2
𝑖≠ 𝑗 } 

22. In order to eliminate low degree expressions in a pol-

ynomial equation whereas allowing calculations to 

converge, we use a constant value {𝛼3} expressed by 

using included sub-terms in the distributed structure of 

root where {𝛼3 = ∑ 𝑥𝑖𝑥𝑗𝑥𝑘𝑖≠ 𝑗≠𝑘 } 

23. In order to eliminate the lowest degree expressions in a 

polynomial equation whereas allowing calculations to 

converge, we use a constant value {𝛼4} expressed by 

using included sub-terms in the distributed structure of 

root where {𝛼4 = ∑ 𝑥𝑖𝑥𝑗𝑥𝑘𝑖≠ 𝑗≠𝑘≠𝑙 𝑥𝑙}. 

24. In order to eliminate odd degrees of expressions in a 

polynomial equation whereas allowing calculations to 

converge, we re-formulate the solution {𝑋 =

(∑ 𝑥𝑖  𝑥𝑗𝑖≠ 𝑗 )}  to be presented as {𝑋 = (∑𝑥𝑖)
2 −

∑𝑥𝑖
2 = (∑𝑥𝑖)

2 − 𝛼1}. 

25. In order to reduce degrees of expressions in a polyno-

mial equation whereas allowing calculations to con-

verge, we re-formulate the second-degree form 

{𝑋2 = (∑ 𝑥𝑖  𝑥𝑗𝑖≠ 𝑗 )
2
} to be presented as {𝑋2 = 𝛼2 +

 2𝛼3(∑𝑥𝑖) + 6𝛼4}. 

26. In order to reduce degrees of complex expressions in a 

polynomial equation whereas allowing calculations to 

converge, we re-formulate the quartic form {𝑋4 =

(∑ 𝑥𝑖  𝑥𝑗𝑖≠ 𝑗 )
4
}  to be presented as {𝑋4 =

4(∑𝑥𝑖)
2 𝛼3

2  + 4𝛼3(∑𝑥𝑖)[𝛼2 + 6𝛼4] +  [𝛼2 +

6𝛼4]
2}. 

27. We use the proposed constants {𝛼1, 𝛼2, 𝛼3, 𝛼4} and 

the expression {𝑋 = (∑ 𝑥𝑖  𝑥𝑗𝑖≠ 𝑗 )}  in order 

re-express the polynomial equation {(∑
𝑎𝑖

𝑎𝑛
𝑋𝑖

𝑖=𝑛

𝑖=0
) =

0}  to be represented as {(∑ 𝛾𝑖𝑍
𝑖𝑖=𝑛

𝑖=0
) = 0}  where 

{𝑍 = (∑𝑥𝑖)}. 

28. When the solution of nth degree polynomial equation 

is expressed as {𝑋 = (∑ 𝑥𝑖  𝑥𝑗𝑖≠ 𝑗 )}, we adopt a con-

stant value {
𝛤

𝛼3
=

𝛤

∑ 𝑥𝑖𝑥𝑗𝑥𝑘𝑖≠ 𝑗≠𝑘
= 𝑉} where Γ is ex-

pressed in function of {(∑𝑥𝑘)}; in order to converge 

calculations during the process of equations solving. 

29. The resulted polynomial expression at the final stages 

of forwarded calculations should have only one un-

known variable expressed by including the use of one 

sub-term incorporated in the distributed structure of 

roots which to be considered as an unknown variable. 

30. The resulted polynomial form at the final stages of 

forwarded calculations should have less degree than 

the staring point, or should not have the term of con-

stant value (the term with zero degree). Otherwise, this 

resulted polynomial form should not have any terms 

with odd degrees. 

31. The included sub-terms {𝑥𝑖} in the distributed struc-

ture of a root {(∑Ti = ∑𝑥𝑖) 𝑜𝑟 (∑Ti =

∑ 𝑥𝑖  𝑥𝑗𝑖≠ 𝑗  )} should also be used in the calculation 

of all other roots by changing signs of these sub-terms 

whereas exploiting the involved coefficients in the 

polynomial equation. 

32. Reusing the included sub-terms in the structure of a 

root while only changing their signs should allow cal-

culating the values of different roots {𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑘 =

∑± Ti} nearly in parallel. 

3. Solutions and Theorems for Fourth 

Degree Polynomial Equation in 

General Form 

This section presents new unified formulary solutions for 

fourth degree polynomial equation in general form. 

3.1. First Proposed Theorem 

In this subsection, we propose a new theorem to solve 

fourth degree polynomial equations that may be presented as 

shown in (eq.1). The expressions of proposed solutions are 

http://www.sciencepg.com/journal/ajam


American Journal of Applied Mathematics http://www.sciencepg.com/journal/ajam 

 

78 

dependent on the value of the expression (8 (
𝑏

𝑎
)
3

−
32𝑐𝑏

𝑎2
+

64𝑑

𝑎
). We are proposing four solutions for (8 (

𝑏

𝑎
)
3

−
32𝑐𝑏

𝑎2
+

64𝑑

𝑎
) < 0, four solutions for (8 (

𝑏

𝑎
)
3

−
32𝑐𝑏

𝑎2
+
64𝑑

𝑎
) > 0 and 

four solutions for (8 (
𝑏

𝑎
)
3

−
32𝑐𝑏

𝑎2
+
64𝑑

𝑎
) = 0. 

The proposed solutions are expressed by using 𝑦0,1 , 

which is presented in (eq.17), and by using 𝑃, 𝑄 and 𝑅 

shown in (eq.6). 

The proof of this theorem is presented in an independent 

subsection, because it is long and it contains the full expres-

sions of proposed solutions along with details, in order to 

highlight the used logic to develop those solutions and to 

build the ground that we use to prove other proposed theo-

rems in this paper. 

Theorem 1 

A fourth-degree polynomial equation under the expression 

(eq.1), where coefficients belong to the group of numbers ℝ, 

has four solutions: 

𝑎𝑥4 + 𝑏𝑥3 + 𝑐𝑥2 + 𝑑𝑥 + 𝑒 = 0 𝑤ℎ𝑒𝑟𝑒 𝑎 ≠ 0    (1) 

If (8 (
𝑏

𝑎
)
3

−
32𝑐𝑏

𝑎2
+
64𝑑

𝑎
)  < 0, and by using the expres-

sions of 𝑦0,1 in (eq.17), P in (Eq.6) and Q in (Eq.6): 

a) Solution 1: 𝑆1,1 presented in the expression (eq.35); 

b) Solution 2: 𝑆1,2 presented in the expression (eq.36); 

c) Solution 3: 𝑆1,3 presented in the expression (eq.37); 

d) Solution 4: 𝑆1,4 presented in the expression (eq.38). 

If (8 (
𝑏

𝑎
)
3

−
32𝑐𝑏

𝑎2
+
64𝑑

𝑎
)  > 0, and by using the expres-

sions of 𝑦0,1 in (eq.17), P in (Eq.6) and Q in (Eq.6): 

a) Solution 1: 𝑆2,1 presented in the expression (eq.39); 

b) Solution 2: 𝑆2,2 presented in the expression (eq.40); 

c) Solution 3: 𝑆2,3 presented in the expression (eq.41); 

d) Solution 4: 𝑆2,4 presented in the expression (eq.42). 

If (8 (
𝑏

𝑎
)
3

−
32𝑐𝑏

𝑎2
+
64𝑑

𝑎
)  = 0, and by using the expres-

sions of 𝑦0,1 in (eq.28), P in (Eq.6) and Q in (Eq.6): 

a) Solution 1: 𝑆3,1 presented in the expression (eq.43); 

b) Solution 2: 𝑆3,2 presented in the expression (eq.44); 

c) Solution 3: 𝑆3,3 presented in the expression (eq.45); 

d) Solution 4: 𝑆3,4 presented in the expression (eq.46). 

3.2. Proof of Theorem 1 

By dividing the polynomial (eq.1) on the coefficient 𝑎, we 

have the next form: 

𝑥4 +
𝑏

𝑎
𝑥3 +

𝑐

𝑎
𝑥2  +

𝑑

𝑎
𝑥 +

𝑒

𝑎
= 0 𝑤𝑖𝑡ℎ 𝑎 ≠  0    (2) 

We suppose that 𝑥 is expressed as shown in (eq.3): 

𝑥 =
(
−𝑏

𝑎
+𝑦)

4
                 (3) 

We replace 𝑥 with supposed expression in (eq.3) to re-

duce the form of presented polynomial in (eq.2). Thereby, we 

have the presented expression in (eq.4). 

𝑦4 + 𝑦2  [−6 (
𝑏

𝑎
)
2

+
16𝑐

𝑎
] + 𝑦 [8 (

𝑏

𝑎
)
3

−
32𝑐𝑏

𝑎2
+
64𝑑

𝑎
] − 3 (

𝑏

𝑎
)
4

+
16𝑐𝑏2

𝑎3
−
64𝑑𝑏

𝑎2
+
256𝑒

𝑎
= 0           (4) 

To simplify the expression of shown polynomial equation in (eq.4), we replace the expressions of used coefficients as shown 

in (eq.5) where the values of those coefficients are defined in (eq.6). 

𝑦4 + 𝑃𝑦2 + 𝑄𝑦 + 𝑅 = 0                                    (5) 

𝑃 = −6 (
𝑏

𝑎
)
2

+
16𝑐

𝑎
; 𝑄 = 8 (

𝑏

𝑎
)
3

−
32𝑐𝑏

𝑎2
+
64𝑑

𝑎
; 𝑅 = −3 (

𝑏

𝑎
)
4

+
16𝑐𝑏2

𝑎3
−
64𝑑𝑏

𝑎2
+
256𝑒

𝑎
              (6) 

To solve the shown polynomial equation in (eq.5), we 

propose new expressions for the variable 𝑦; expressions 

(eq.7) and (eq.8): 

For 𝑄 ≤ 0: 𝑦 = √𝑦0  + √𝑦1 +√𝑦2        (7) 

For 𝑄 ≥ 0: 𝑦 = −√𝑦0  − √𝑦1 − √𝑦2       (8) 

We propose the expressions (eq.9) and (eq.10) for 𝑦1 and 

𝑦2 successively, in condition of 𝑦0 ≠ 0. Those expressions 

of 𝑦1 and 𝑦2 are based on quadratic solutions. 

𝑦1 = −
𝑃

2
+𝑦0

2
+√(

𝑃

2
+𝑦0

2
)

2

−
𝑄2

64𝑦0

           (9) 

𝑦2 = −
𝑃

2
+𝑦0

2
− √(

𝑃

2
+𝑦0

2
)

2

−
𝑄2

64𝑦0

          (10) 

To reduce the expression of equation (eq.5) and find a way 

to solve it, we propose the following expressions for the 

coefficients 𝑃 and 𝑄: 

−2 [𝑦0
2 + 𝑦1

2 + 𝑦2
2 ] = 𝑃         (11) 
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For 𝑄 ≤ 0: −8√𝑦0√𝑦1√𝑦2 = 𝑄       (12) 

For 𝑄 ≥ 0: 8√𝑦0√𝑦1√𝑦2 = 𝑄        (13) 

In the following calculation, we replace the variable 𝑦 with 

the expression (eq.7) where we suppose 𝑄 < 0, and we replace 

P and Q with their shown expressions in (eq.11) and (eq.12): 

 

𝑦4  + 𝑃𝑦2  + 𝑄𝑦 + 𝑅 = −[√𝑦0
4  + √𝑦1

4 + √𝑦2
4] + 2[√𝑦0

2√𝑦1
2  + √𝑦0

2√𝑦2
2 +√𝑦1

2√𝑦2
2 ] + 𝑅  

= −[√𝑦0
2  + √𝑦1

2 + √𝑦2
2]
2
+ 4 [√𝑦0

2
√𝑦1

2
+ √𝑦0

2
√𝑦2

2
+ √𝑦1

2
√𝑦2

2
] + 𝑅  

=  4 [− 𝑦0 (
𝑃

2
 +  𝑦0 )  +

𝑄2

64𝑦0
] +  𝑅 −

𝑃2

4
= 0  

−[√𝑦0
2  + √𝑦1

2 + √𝑦2
2]
2
+ 4[√𝑦0

2√𝑦1
2 + √𝑦0

2√𝑦2
2 + √𝑦1

2√𝑦2
2 ] + 𝑅 = 0 ⇒ 𝑦0

3 +
𝑃

2
𝑦0
2 +

𝑃2−4𝑅

16
𝑦0 −

𝑄2

64
= 0 (14) 

To solve the resulted expression in (eq.14), we use Cardano’s solution for third degree polynomial equations. 

For 𝑤3 + 𝑐𝑤 + 𝑑 = 0, Cardano's solution is as follow: 

𝑤 = √−𝑑
2
+ √(

𝑑

2
)
2

+ (
𝑐

3
)
33

 + √
−𝑑

2
−√(

𝑑

2
)
2

+ (
𝑐

3
)
33

                           (15) 

For 𝑦3 + 𝑏𝑦2 + 𝑐𝑦 + 𝑑 = 0, we use the form 𝑦 =
−𝑏+𝑤

3
, and we suppose D = 27𝑑 + 2𝑏3 − 9𝑐𝑏  and C = 9𝑐 − 3𝑏2  to 

express the cubic solution as follow: 

𝑦 =
−𝑏

3
 +

1

3
√−

D

2
 + √(

D

2
)
2

+ (
C

3
)
33

+
1

3
√−

D

2
−√(

D

2
)
2

+ (
C

3
)
33
                     (16) 

By using the expression (eq.16), the solutions of third degree polynomial equation shown in (eq.14) are 𝑦0,1 in (eq.17), 𝑦0,2 

in (eq.18) and 𝑦0,3 in (eq.19), where 𝑃; =
𝑃

2
, 𝑅; =

−27𝑄2−2𝑃3+72𝑃𝑅

64
 and 𝑄; = −

3𝑃2+36𝑅

16
 

𝑦0,1 = −
𝑃;

3
 +

1

3
√−

𝑅;

2
 + √(

𝑅;

2
)
2

+ (
𝑄;

3
)
33

+
1

3
√−

𝑅;

2
− √(

𝑅;

2
)
2

+ (
𝑄;

3
)
33
                  (17) 

In condition of 𝑦0,1 ≠  0 , 𝑦0,2 and 𝑦0,3 are as follow: 

𝑦0,2 = −
𝑃

2
+𝑦0,1

2
+ √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1

                             (18) 

𝑦0,3 = −
𝑃

2
+𝑦0,1

2
− √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1

                             (19) 

We deduce that when 𝑦0 takes the value 𝑦0,1, the value of 𝑦0,2 is equal to the shown value of 𝑦1 in (eq.9), and the value of 

𝑦0,3 is equal to the shown value of 𝑦2 in (eq.10). 

There are three other possible expressions for 𝑦 which respect the proposition −8√𝑦0√𝑦1√𝑦2 = 𝑄 when 𝑄 ≤  0, and they 

give the same results of calculations toward having the shown third degree polynomial in (eq.14). Thereby, they give the same 

values for roots 𝑦0,1, 𝑦0,2  and 𝑦0,3 . These three expressions are 𝑦 = −√𝑦0  − √𝑦1 + √𝑦2 , 𝑦 = −√𝑦0  + √𝑦1 − √𝑦2  and 

𝑦 = √𝑦0  − √𝑦1 −√𝑦2. 

By using the expressions in (eq.6) and (eq.17), the solutions of presented fourth degree polynomial equation in (eq.5) when 
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(8 (
𝑏

𝑎
)
3

−
32𝑐𝑏

𝑎2
+
64𝑑

𝑎
)  < 0 are as shown in (eq.20), (eq.21), (eq.22) and (eq.23). 

Solution 1: 𝑠1,1 = √𝑦0,1 + √−
𝑃

2
+𝑦0,1

2
+ √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1
 + √−

𝑃

2
+𝑦0,1

2
−√(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1

         (20) 

Solution 2: 𝑠1,2 = −√𝑦0,1 − √−
𝑃

2
+𝑦0,1

2
+ √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1
 + √−

𝑃

2
+𝑦0,1

2
− √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1

       (21) 

Solution 3: 𝑠1,3 = −√𝑦0,1 + √−
𝑃

2
+𝑦0,1

2
+ √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1
− √−

𝑃

2
+𝑦0,1

2
− √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1

       (22) 

Solution 4: 𝑠1,4 = √𝑦0,1 − √−
𝑃

2
+𝑦0,1

2
+ √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1
− √−

𝑃

2
+𝑦0,1

2
− √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1

       (23) 

There are three other possible expressions for 𝑦 which respect the proposition 8√𝑦0√𝑦1√𝑦2 = 𝑄 when 𝑄 ≥  0, and they 

give the same third degree polynomial shown in (eq.14) after calculations. These three expressions are 𝑦 = −√𝑦0  + √𝑦1 +

√𝑦2, 𝑦 = √𝑦0  − √𝑦1 + √𝑦2 and 𝑦 = √𝑦0  + √𝑦1 − √𝑦2. 

By using the shown expressions in (eq.6) and (eq.17), the solutions of presented fourth degree polynomial equation in (eq.5) 

when (8 (
𝑏

𝑎
)
3

−
32𝑐𝑏

𝑎2
+
64𝑑

𝑎
)  > 0 are as shown in (eq.24), (eq.25), (eq.26) and (eq.27). 

Solution 1: 𝑠2,1 = −√𝑦0,1 − √−
𝑃

2
+𝑦0,1

2
+ √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1
− √−

𝑃

2
+𝑦0,1

2
− √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1

        (24) 

Solution 2: 𝑠2,2 = −√𝑦0,1 + √−
𝑃

2
+𝑦0,1

2
+ √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1
+ √−

𝑃

2
+𝑦0,1

2
− √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1

        (25) 

Solution 3: 𝑠2,3 = √𝑦0,1 − √−
𝑃

2
+𝑦0,1

2
+ √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1
+√−

𝑃

2
+𝑦0,1

2
− √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1

        (26) 

Solution 4: 𝑠2,4 = √𝑦0,1 + √−
𝑃

2
+𝑦0,1

2
+ √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1
−√−

𝑃

2
+𝑦0,1

2
− √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1

        (27) 

Concerning (8 (
𝑏

𝑎
)
3

−
32𝑐𝑏

𝑎2
+
64𝑑

𝑎
) = 0: 

The expression of 𝑦0,1 is as shown in (eq.28) where 𝑃; =
𝑃

2
, 𝑅; =

−2𝑃3+72𝑃𝑅

64
 and 𝑄; = −

3𝑃2+36𝑅

16
, whereas 𝑦0,2 and 𝑦0,3 

are as shown in (eq.29) and (eq.30). 
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𝑦0,1 = −
𝑃;

3
 +

1

3
√−

𝑅;

2
 + √(

𝑅;

2
)
2

+ (
𝑄;

3
)
33

+
1

3
√−

𝑅;

2
− √(

𝑅;

2
)
2

+ (
𝑄;

3
)
33
                 (28) 

𝑦0,2 = −
𝑃

2
+𝑦0,1

2
+ √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1
= 0 𝑜𝑟 𝑦0,2 = −(

𝑃

2
+ 𝑦0,2)                   (29) 

𝑦0,3 = −
𝑃

2
+𝑦0,1

2
− √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1
= −(

𝑃

2
+ 𝑦0,2)  𝑜𝑟 𝑦0,3 = 0                  (30) 

Because of having the expressions 𝑦0,2 = 0 or 𝑦0,3 = 0, and having the intersection between the forms (eq.7) and (eq.8) for 

Q=0 (𝑦 = √𝑦0  + √𝑦1 + √𝑦2 𝑓𝑜𝑟 𝑄 ≤ 0 𝑎𝑛𝑑 𝑦 = −√𝑦0  − √𝑦1  − √𝑦2 𝑓𝑜𝑟 𝑄 ≥ 0), there are four solutions for the 

polynomial equation shown in (eq.5) when Q=0 and they are as shown in (eq.31), (eq.32), (eq.33) and (eq.34). 

Solution 1: 𝑠3,1 = √𝑦0,1 + √−(
𝑃

2
+ 𝑦0,1)                          (31) 

Solution 2: 𝑠3,2 = −√𝑦0,1 − √−(
𝑃

2
+ 𝑦0,1)                         (32) 

Solution 3: 𝑠3,3 = −√𝑦0,1 + √−(
𝑃

2
+ 𝑦0,1)                         (33) 

Solution 4: 𝑠3,4 = √𝑦0,1 − √−(
𝑃

2
+ 𝑦0,1)                          (34) 

When we give the value 𝑦0,1 in (eq.17) to 𝑦0, the values of 𝑦0,2 in (eq.18) and 𝑦0,3 in (eq.19) are equal to the shown values 

of 𝑦1 in (eq.9) and (𝑦3) in (eq.10) respectively. Thereby, even when we replace the value of 𝑦0,1 in the expressions of proposed 

solutions by the values of 𝑦0,2 or 𝑦0,3, the results are only redundancies of proposed solutions, because the value of 𝑃 in the 

precedent expressions and in the proposed solutions is as follow: 

𝑃

2
= −(√𝑦0

2 + √𝑦1
2 + √𝑦2

2) = −(√𝑦0,1
2 +√𝑦0,2

2 + √𝑦0,3
2)  

In order to solve the polynomial equation shown in (eq.2), we use the expression 𝑥 =
−
𝑏

𝑎
+𝑦

4
 where 𝑦 is the unknown variable 

in polynomial equation (eq.5). By using expressions (eq.6) and (eq.17) for (8 (
𝑏

𝑎
)
3

−
32𝑐𝑏

𝑎2
+
64𝑑

𝑎
) < 0 , the solutions for equa-

tion (eq.1) are as shown in (eq.35), (eq.36), (eq.37) and (eq.38). 

Solution 1: 𝑆1,1 = −
𝑏

4𝑎
+
1

4
√𝑦0,1 +

1

4
√−

𝑃

2
+𝑦0,1

2
+ √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1
 +

1

4
√−

𝑃

2
+𝑦0,1

2
− √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1

   (35) 

Solution 2: 𝑆1,2 = −
𝑏

4𝑎
−
1

4
√𝑦0,1 −

1

4
√−

𝑃

2
+𝑦0,1

2
+ √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1
 +

1

4
√−

𝑃

2
+𝑦0,1

2
− √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1

   (36) 

Solution 3: 𝑆1,3 = −
𝑏

4𝑎
−
1

4
√𝑦0,1 +

1

4
√−

𝑃

2
+𝑦0,1

2
+ √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1
−
1

4
√−

𝑃

2
+𝑦0,1

2
−√(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1

   (37) 
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Solution 4: 𝑆1,4 = −
𝑏

4𝑎
+
1

4
√𝑦0,1 −

1

4
√−

𝑃

2
+𝑦0,1

2
+ √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1
−
1

4
√−

𝑃

2
+𝑦0,1

2
−√(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1

   (38) 

By using the expression 𝑥 =
−
𝑏

𝑎
+𝑦

4
 while relying on expressions (eq.6) and (eq.17) for (8 (

𝑏

𝑎
)
3

−
32𝑐𝑏

𝑎2
+
64𝑑

𝑎
) > 0, the pro-

posed solutions for equation (eq.1) are as shown in (eq.39), (eq.40), (eq.41) and (eq.42). 

Solution 1: 𝑆2,1 = −
𝑏

4𝑎
−
1

4
√𝑦0,1 −

1

4
√−

𝑃

2
+𝑦0,1

2
+ √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1
−
1

4
√−

𝑃

2
+𝑦0,1

2
−√(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1

   (39) 

Solution 2: 𝑆2,2 = −
𝑏

4𝑎
−
1

4
√𝑦0,1 +

1

4
√−

𝑃

2
+𝑦0,1

2
+ √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1
+
1

4
√−

𝑃

2
+𝑦0,1

2
−√(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1

   (40) 

Solution 3: 𝑆2,3 = −
𝑏

4𝑎
+
1

4
√𝑦0,1 −

1

4
√−

𝑃

2
+𝑦0,1

2
+ √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1
+
1

4
√−

𝑃

2
+𝑦0,1

2
−√(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1

   (41) 

Solution 4: 𝑆2,4 = −
𝑏

4𝑎
+
1

4
√𝑦0,1 +

1

4
√−

𝑃

2
+𝑦0,1

2
+ √(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1
−
1

4
√−

𝑃

2
+𝑦0,1

2
−√(

𝑃

2
+𝑦0,1

2
)

2

−
𝑄2

64𝑦0,1

   (42) 

By using the expression 𝑥 =
− 
𝑏

𝑎
+𝑦

4
 while relying on expressions (eq.6) and (eq.28) for (8 (

𝑏

𝑎
)
3

−
32𝑐𝑏

𝑎2
+
64𝑑

𝑎
) = 0, the pro-

posed solutions for equation (eq.1) are as shown in (eq.43), (eq.44), (eq.45) and (eq.46). 

Solution 1: 𝑆3,1 = −
𝑏

4𝑎
+
1

4
√𝑦0,1 +

1

4
√−(

𝑃

2
+ 𝑦0,1)                       (43) 

Solution 2: 𝑆3,2 = −
𝑏

4𝑎
−
1

4
√𝑦0,1 −

1

4
√−(

𝑃

2
+ 𝑦0,1)                       (44) 

Solution 3: 𝑆3,3 = −
𝑏

4𝑎
−
1

4
√𝑦0,1 +

1

4
√−(

𝑃

2
+ 𝑦0,1)                      (45) 

Solution 4: 𝑆3,4 = −
𝑏

4𝑎
+
1

4
√𝑦0,1 −

1

4
√−(

𝑃

2
+ 𝑦0,1)                       (46) 

4. New Six Solutions for Sixth Degree 

Polynomial Equation in General Form 

In this section, we propose six new solutions for sixth de-

gree polynomial equation in general form shown in (eq.47), 

where we rely on our proposed solutions for quartic polyno-

mial equations in previous section to structure the expressions 

of proposed solutions for sixth degree polynomial equations. 

We extend the used logic in precedent theorem (Theorem 1) 

by projection on sixth degree equations to prove the expres-

sions of developed roots. 

4.1. Second Proposed Theorem 

In this subsection, we present our second proposed theorem 

to introduce new six formulary solutions for sixth degree 

polynomial equation in general form shown in (eq.47), where 

coefficients belong to the group ℝ whereas the coefficient of 

fifth degree part is different from zero. First, we divide the 

polynomial (eq.47) on coefficient A to reduce its expression to 

the simplified form shown in (eq.48) where coefficients are 

expressed as shown in (eq.49). 
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A𝑥6 + B𝑥5 + C𝑥4 + D𝑥3 + E𝑥2 + F𝑥 + G = 0 𝑤𝑖𝑡ℎ A ≠  0 𝑎𝑛𝑑 B ≠  0                 (47) 

𝑥6 + 𝑏𝑥5 + 𝑐𝑥4 + 𝑑𝑥3 + 𝑒𝑥2 + 𝑓𝑥 + 𝑔 = 0 𝑤𝑖𝑡ℎ 𝑏 ≠  0                       (48) 

𝑏 =
B

A
;  𝑐 =

C

A
;  𝐷 =

D

A
; 𝑒 =

E

A
;  𝑓 =

F

A
;  𝑔 =

G

A
;                            (49) 

𝑧4 + Γ3𝑧
3  + Γ2𝑧

2 + Γ1𝑧 + Γ0 = 0                                 (50) 

Theorem 2 

After reducing the form of sixth degree polynomial shown 

in (eq.47) to the presented form in (eq.48) where coefficients 

are as expressed in (eq.49); the sixth-degree polynomial 

equation shown in (eq.48), where coefficients belong to the 

group of numbers ℝ, can be reduced to a fourth-degree pol-

ynomial equation, which may be expressed as shown in 

(eq.50). The reduction from sixth degree polynomial to quar-

tic polynomial is conducted by supposing 𝑥 = 𝑥0𝑥1 +

𝑥0𝑥2 + 𝑥0𝑥3 + 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3, whereas supposing 𝑧 =

(𝑥0  +  𝑥1 + 𝑥2 + 𝑥3) is the solution for fourth degree 

polynomial equation in (eq.50) by using Theorem 1 and 

relying on the expression 𝑥3 = −
Γ3

4
.  The variable Γ3  is 

defined as shown in (eq.51) where 𝛼3 is presented in (eq.52) 

and Γ4 is the solution for the polynomial equation (eq.53), 

which relies on the coefficients (eq.54), (eq.55), (eq.56) and 

(eq.57). The shown coefficients in (eq.54), (eq.55), (eq.56) 

and (eq.57) are expressed by using the constant 𝑉 which is 

presented in (eq.58). The coefficients Γ3 , Γ2 , Γ1  and Γ0  of 

quartic equation (eq.50), which is used to calculate 𝑧, are 

determined by using the shown expressions in (51), (eq.59), 

(eq.60) and (eq.61) while using calculated values of Γ4 and 𝑉. 

As a result, we have twelve calculated values as potential 

solutions for sixth degree polynomial equation shown in 

(eq.48), where many of them are only redundancies of others, 

because there are only six official solutions to determine. 

The twelve solutions to calculate for sixth degree equation 

(eq.48) are as shown in the groups (eq.99), (eq.100) and 

(eq.101). The proposed six values as official solutions for 

sixth degree polynomial equation shown in (eq.48) are as 

presented in (eq.102), (eq.103), (eq.104), (eq.105), (eq.106) 

and (eq.107). 

Γ3 =
4𝛼3

𝑏
 + Γ4            (51) 

𝛼3 = −

4Γ4(𝑓−
𝑑2

4𝑏)

𝑏
32𝑓

𝑏2
 +
40𝑑2

𝑏3
 −
64𝑐𝑑

𝑏2
 +
64𝑒

𝑏

            (52) 

𝜆3Γ4
6  + 𝜆2Γ4

4  + 𝜆1Γ4
2  + 𝜆0 = 0             (53) 

𝜆3 = −
40960

𝑉4𝑏4
 +

16384

𝑉3𝑏3
 −

1536

𝑉2𝑏2
             (54) 

𝜆2 = −
24576𝑑

𝑉2𝑏4
 +

16384𝑐

𝑉2𝑏3
 +

3072𝑑

𝑉𝑏3
 −

2048𝑐

𝑉𝑏2
 +

1024

𝑉
 (55) 

𝜆1 = −
512𝑑

𝑏
 +

1536𝑓

𝑏3
 +

28𝑉2𝑓

𝑏
 −

7𝑉2𝑑2

𝑏2
+
96𝑉𝑓

𝑏2
 −

168𝑑2𝑉

𝑏3
 +

192𝑐𝑑𝑉

𝑏2
 −

192𝑉𝑒

𝑏
 −

3456𝑑2

𝑏4
 +

4096𝑐𝑑

𝑏3
 −

1024𝑒

𝑏2
 −

1024𝑐2

𝑏2
    (5

6) 

𝜆0 = −
64𝑉2𝑑3

𝑏4
 +

64𝑐𝑑2𝑉2

𝑏3
 −

64𝑒𝑉2𝑑

𝑏2
 +

128𝑉2𝑔

𝑏
 +

192𝑉2𝑑𝑓

𝑏3
 −

128𝑉2𝑐𝑓

𝑏2
                    (57) 

𝑉 = −
32𝑓

𝑏2
 +
40𝑑2

𝑏3
 −
64𝑐𝑑

𝑏2
 +
64𝑒

𝑏

4
(𝑓−

𝑑2

4𝑏)

𝑏

                                    (58) 

Γ2 =
8Γ4
2

𝑉𝑏
−
6𝑑

𝑏2
+
4𝑐

𝑏
+
(𝑓−

𝑑2

4𝑏
)𝑉2

2𝑏Γ4
2 −

8Γ4
2

𝑉2𝑏2
                              (59) 

Γ1 =
5Γ4
3

𝑉𝑏
+

3𝑉𝑑2

4𝑏3Γ4
−
6𝑑Γ4

𝑏2
+
4𝑐Γ4

𝑏
−

𝑑𝑐𝑉

b2Γ4
+

𝑒𝑉

𝑏Γ4
−
Γ4
3

4
−

8Γ4
3

𝑉2𝑏2
+
𝑓−

𝑑2

4𝑏

4Γ4𝑏
𝑉2                (60) 

Γ0 =
Γ4
4

2𝑉𝑏
−

𝑉2𝑑3

16𝑏4Γ4
2 +

3𝑉𝑑2

8𝑏3
−
3𝑑Γ4

2

4𝑏2
+
𝑐Γ4
2

2𝑏
+
𝑐𝑑2𝑉2

8b3Γ4
2 −

𝑐𝑑𝑉

2𝑏2
+
𝑒𝑉

2𝑏
−

𝑒𝑉2𝑑

4𝑏2Γ4
2 +

𝑔𝑉2

2𝑏Γ4
2                 

− (
Γ4
2

4
+ 𝑉2

𝑓−
𝑑2

4𝑏

4𝑏Γ4
2)(

Γ4
2

4
+

8Γ4
2

𝑉2𝑏2
−
2Γ4
2

𝑉𝐵
+
3𝑑

𝑏2
−
2𝑐

𝑏
−
(𝑓−

𝑑2

4𝑏
)

4𝑏Γ4
2 𝑉

2)                     (61) 
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4.2. Proof of Theorem 2 

Considering the sixth-degree polynomial equation shown in (eq.48), we propose the expression (eq.62) in order to reduce the 

form from sixth degree to a fourth-degree polynomial. We also propose the expression (eq.63), which presents the solution form 

for quartic equation by extending the used logic and presented solutions in Theorem 1. 

𝑥 = 𝑥0𝑥1 + 𝑥0𝑥2  + 𝑥0𝑥3 + 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3                        (62) 

𝑧 = 𝑥0  +  𝑥1 + 𝑥2 + 𝑥3                                (63) 

We replace 𝑥 with its proposed value in (eq.62), in order to end by calculations to the reduced form shown in (eq.50). 

In the shown expressions in (eq.64), we rely on the use of 𝑥𝑖, 𝑥𝑗 and 𝑥𝑘 where {𝑥𝑖 , 𝑥𝑗 , 𝑥𝑘} ∈  {𝑥0, 𝑥1, 𝑥2, 𝑥3} and 𝑖 ≠  𝑗 ≠

 𝑘. 

𝛼1 = ∑ 𝑥𝑖
2𝑖=3

𝑖=0 ;  𝛼2 = ∑ 𝑥𝑖
2 𝑥𝑗

2
𝑖≠ 𝑗 ;  𝛼3 = ∑ 𝑥𝑖𝑥𝑗𝑥𝑘𝑖≠ 𝑗≠𝑘 ;  𝛼4 = 𝑥0𝑥1𝑥2𝑥3                (64) 

𝑥 =
[𝑧2−𝛼1]

2
                                           (65) 

𝑥2 = 𝛼2 +  2𝛼3𝑧 + 6𝛼4                                    (66) 

𝑥3 = 𝑧3 𝛼3  +
1

2
𝑧2 [𝛼2 + 6𝛼4] −  𝑧𝛼1𝛼3  −

1

2
[𝛼2 + 6𝛼4]𝛼1                     (67) 

𝑥4 = 4𝑧2 𝛼3
2  + 4𝛼3𝑧[𝛼2 + 6𝛼4] +  [𝛼2 + 6𝛼4]

2                          (68) 

𝑥5 = 2𝑧4 𝛼3
2  + 2𝑧3 [𝛼2 + 6𝛼4]𝛼3  +

1

2
𝑧2[(𝛼2 + 6𝛼4)

2 − 4𝛼3
2𝛼1] −  2𝑧𝛼3𝛼1[𝛼2 + 6𝛼4] −

1

2
𝛼1[𝛼2 + 6𝛼4]

2  (69) 

𝑥6 = 8𝑧3 𝛼3
3  + 12𝑧2 [𝛼2 + 6𝛼4]𝛼3

2  +  6𝑧[(𝛼2 + 6𝛼4)]
2𝛼3  +  [𝛼2 + 6𝛼4]

3             (70) 

𝛾4𝑧
4 + 𝛾3𝑧

3 + 𝛾2𝑧
2 + 𝛾1𝑧 + 𝛾0 = 0                               (71) 

We use the expressions of {𝛼1, 𝛼2, 𝛼3, 𝛼4} in (eq.64), 𝑥 in (eq.65), 𝑥2 in (eq.66), 𝑥3 in (eq.67), 𝑥4 in (eq.68), 𝑥5 in (eq.69) 

and 𝑥6 in (eq.70), to have the fourth degree polynomial shown in (eq.71) where the values of coefficients are as follow: 

𝛾4 = 2𝑏𝛼3
2  

𝛾3 = 8𝛼3
3 + 𝑑𝛼3 + 2𝑏[𝛼2 + 6𝛼4]𝛼3  

𝛾2 = 12[𝛼2 + 6𝛼4]𝛼3
2 +

1

2
𝑏[(𝛼2 + 6𝛼4)

2 − 4𝛼3
2𝛼1] + 4𝑐𝛼3

2 +
1

2
𝑑[𝛼2 + 6𝛼4] +

1

2
𝑓  

𝛾1 = 6[(𝛼2 + 6𝛼4)]
2𝛼3 − 2𝑏𝛼3𝛼1[𝛼2 + 6𝛼4] + 4𝑐[𝛼2 + 6𝛼4]𝛼3 − 𝑑𝛼1𝛼3 + 2𝑒𝛼3  

𝛾0 = [𝛼2 + 6𝛼4]
3  −

1

2
𝑏𝛼1[𝛼2 + 6𝛼4]

2 + 𝑐[𝛼2 + 6𝛼4]
2 −

1

2
𝑑[𝛼2 + 6𝛼4]𝛼1 + 𝑒[𝛼2  + 6𝛼4] −

1

2
𝑓𝛼1 + 𝑔  

We divide the polynomial equation shown in (eq.71) on γ4 to simplify its expression. As a result, we have the shown equation 

in (eq.50) where the values of coefficients are as follow: 

Γ4 =
[𝛼2+6𝛼4]+

𝑑

2𝑏

𝛼3
⇒ 𝛼2 = 𝛼3Γ4  −

𝑑

2𝑏
−  6𝛼4   

Γ3 =
4𝛼3

𝑏
+ Γ4  

Γ2 =
6[Γ4𝛼3−

𝑑

2𝑏
]

𝑏
+
Γ4
2

4
− 𝛼1 +

2𝑐

𝑏
+
𝑓−

𝑑2

4𝑏

4𝑏𝛼3
2
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Γ1 =
3[Γ4𝛼3−

𝑑

2𝑏
]
2

𝑏𝛼3
− Γ4𝛼1 +

2𝑐[𝛼3Γ4−
𝑑

2𝑏
]

𝑏𝛼3
 +

𝑒

𝑏𝛼3

  

Γ0 =
[Γ4𝛼3−

𝑑

2𝑏
]
3

2𝑏𝛼3
2  −

1

4
𝛼1Γ4

2  +
𝑐[𝛼3Γ4−

𝑑

2𝑏
]
2

2𝑏𝛼3
2  +

𝑒[𝛼3Γ4−
𝑑

2𝑏
]

2𝑏𝛼3
2  +

𝑔−
𝑓𝛼1
2
+
𝑑2𝛼1
8𝑏

2𝑏𝛼3
2

  

From precedent section (section 2), we ended with solutions expressed as 𝑦 = 𝑦0 + 𝑦1 + 𝑦2 for fourth degree polynomial 

equation in simple form shown in (eq.5), whereas the solution for fourth degree polynomial equation in complete form is ex-

pressed as 𝑧 = −
𝑏

4𝑎
+
1

4
𝑦0 +

1

4
𝑦1 +

1

4
𝑦2. 

We replace 𝑧 with 
−Γ3 +𝑦

4
 in order to reduce the form of quartic equation from expression (eq.50) to expression (eq.72), 

where the values of coefficients are as shown in (eq.73). 

𝑦4 + 𝑃𝑦2 + 𝑄𝑦 + 𝑅 = 0                                    (72) 

𝑃 = −6Γ3
2 + 16Γ2; 𝑄 = 8Γ3

3 − 32Γ2 Γ3 + 64Γ1; 𝑅 = −3Γ3
4 + 16Γ2 Γ3

2 − 64Γ1 Γ3  +  256Γ0           (73) 

Concerning the fourth degree polynomial equation in (eq.50), where 𝑧 is as shown in (eq.63), the principal proposed ex-

pressions for the solutions are 𝑧 = −
Γ3

4
+
1

4
√𝑦0 +

1

4
√𝑦1 +

1

4
√𝑦2  when 𝑄 ≤  0  and 𝑧 = −

Γ3

4
−
1

4
√𝑦0 −

1

4
√𝑦1 −

1

4
√𝑦2 𝑤ℎ𝑒𝑛 𝑄 ≥  0; where 𝑥3 = −

Γ3

4
, 𝑥0 = ±

1

4
√𝑦0, 𝑥1 = ±

1

4
√𝑦1 and 𝑥2 = ±

1

4
√𝑦2. These two principal expressions are 

sufficient to conduct the calculations of proof, and then generalize the results by using the other expressed forms of solutions in 

Theorem 1. 

We replace Γ3, Γ2, Γ1 𝑎𝑛𝑑 Γ0 with their values in function of {𝛤4 , 𝛼1 , 𝛼3} in order to have the expressions of 𝑃 in (eq.74), 

𝑄 in (eq.75) and 𝑅 in (eq.76). 

𝑃 = −2Γ4
2  −

96𝛼3
2

𝑏2
 +

48Γ4𝛼3

𝑏
 −

48𝑑

𝑏2
 − 16𝛼1  +

32𝑐

𝑏
 + 4

(𝑓−
𝑑2

4𝑏
)

𝑏𝛼3
2

                    (74) 

Q =
512𝛼3

3

𝑏3
 −

384𝛼3
2Γ4

𝑏2
 +

64𝛼3Γ4
2

𝑏
 +

384𝑑𝛼3

𝑏3
 +

128𝛼3𝛼1

𝑏
 −

256𝑐𝛼3

𝑏2
 −

32𝑓

𝑏2𝛼3
 −

96𝑑Γ4

𝑏2
 − 32Γ4𝛼1               

+
64𝑐Γ4

𝑏
−
8Γ4(𝑓−

𝑑2

4𝑏
)

𝑏𝛼3
2  +

56𝑑2

𝑏3𝛼3
 −

64𝑐𝑑

𝑏2𝛼3
 +

64𝑒

𝑏𝛼3

                          (75) 

𝑅 = −
768𝛼3

4

𝑏4
 + Γ4

4  +
768Γ4𝛼3

3

𝑏3
 +

16Γ4
3𝛼3

𝑏
 −

224Γ4
2𝛼3
2

𝑏2
 −

768𝑑𝛼3
2

𝑏4
 −

256𝛼3
2𝛼1

𝑏2
 +

512𝑐𝛼3
2

𝑏3
 +

64𝑓

𝑏3
 −

48𝑑Γ4
2

𝑏2
 − 16𝛼1Γ4

2  +
32𝑐Γ4

2

𝑏
   

+4
(𝑓−

𝑑2

4𝑏
)

𝑏𝛼3
2  Γ4

2  +
384𝑑Γ4𝛼3

𝑏3
 +

128Γ4𝛼3𝛼1

𝑏
 −

256𝑐Γ4𝛼3

𝑏2
 +

32𝑓Γ4

𝑏2𝛼3
 +

40𝑑2Γ4

𝑏3𝛼3
 −

208𝑑2

𝑏4
 +

256𝑐𝑑

𝑏3
 −

256𝑒

𝑏2
 −

64𝑐𝑑Γ4

𝑏2𝛼3
 +

64𝑒Γ4

𝑏𝛼3
 −

16𝑑3

𝑏4𝛼3
2   

+
32𝑐𝑑2

𝑏3𝛼3
2  −

64𝑒𝑑

𝑏2𝛼3
2  + 128

(𝑔−
𝑓𝛼1
2
+
𝑑2𝛼1
8𝑏

)

𝑏𝛼3
2                              (76) 

By using the expressions (eq.11), (eq.12), (eq.13) and (eq.14) from the proof of first proposed theorem (Theorem 1), the values 

of 𝑃, 𝑄 and 𝑅 are as shown in (eq.77), (eq.78) and (eq.79) successively. 

𝑃 = −2[(4𝑥0)
2 + (4𝑥1)

2 + (4𝑥2)
2]  ⇒  𝑃 = −32[𝛼1 −

Γ3
2

16
] = 2Γ4

2 +
16Γ4𝛼3

𝑏
 +

32𝛼3
2

𝑏2
− 32𝛼1        (77) 

𝑄 = −8(4𝑥0)(4𝑥1)(4𝑥2)  ⇒  𝑄 = −
8(4𝑥0)(4𝑥1)(4𝑥2)(4𝑥3)

4𝑥3
=
2048𝛼4

Γ3
=

2048𝛼4
4𝛼3
𝑏
 +Γ4

               (78) 

𝑅 = [(4𝑥0)
2 + (4𝑥1)

2 + (4𝑥2)
2]2  − 4[(4𝑥0)

2(4𝑥1)
2 + (4𝑥0)

2(4𝑥2)
2 + (4𝑥1)

2(4𝑥2)
2]  

⇒  𝑅 = 256 [𝛼1 −
Γ3
2

16
]
2

− 1024 [𝛼2 −
Γ3
2

16
(𝛼1 −

Γ3
2

16
)]  
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⇒  𝑅 = −
768𝛼3

4

𝑏4
 − 3Γ4

4  −
768𝛼3

3Γ4

𝑏3
 −

48Γ4
3𝛼3

𝑏
 −

288Γ4
2𝛼3
2

𝑏2
 +

512𝛼3
2𝛼1

𝑏2
 + 32𝛼1Γ4

2  +
256𝛼1𝛼3Γ4

𝑏
 + 256𝛼1

2  − 1024𝛼2 (79) 

We have a group of four variables {𝛼1, 𝛼2, 𝛼3, 𝛼4}, whereas we have a group of only three equations to solve {𝑃, 𝑄, 𝑅} where 

all of them are dependent on the value of Γ4. Thereby, the next step is about using the appropriate logic of analysis and calcu-

lation to find the value of Γ4 while taking advantage of the fact that having a group of four variables enables us to solve four 

equations. 

In order to reduce the expression of 𝑅 in (eq.76), and find a way to determine the value of Γ4, we suppose that (
4Γ4
2(𝑓−

𝑑2

4𝑏
)

𝑏𝛼3
2  +

32𝑓Γ4

𝑏2𝛼3
 +

40𝑑2Γ4

𝑏3𝛼3
 −

64𝑐𝑑Γ4

𝑏2𝛼3
 +

64𝑒Γ4

𝑏𝛼3
) = 0 where 

Γ4

𝛼3
≠  0. As a result, we have the shown expression in (eq.80). 

Γ4

𝛼3
= 𝑉 = −

32𝑓

𝑏2
 +
40𝑑2

𝑏3
 −
64𝑐𝑑

𝑏2
 +
64𝑒

𝑏

4(𝑓−
𝑑2

4𝑏
)

𝑏

                                    (80) 

From expression (eq.80), we can see that 
Γ4

𝛼3
 has a constant value. Therefore, in the rest of calculation, we will replace 

Γ4

𝛼3
 by 

the constant 𝑉, which is shown in (eq.58). 

From precedent calculations of dividing the polynomial equation shown in (eq.71) on 𝛾4 to simplify its expression, along 

using the expression of Γ4, we have 𝛼2 = (𝛼3Γ4  −
𝑑

2𝑏
 −  6𝛼4). 

We have the resulted equation in (eq.81) by using the expressions of 𝑃 in (eq.74) and (eq.77), which we use to define the 

shown value of 𝛼1in (eq.82). 

−4Γ4
2  −

128Γ4
2

𝑉2𝑏2
 +

32Γ4
2

𝑉𝑏
 −

48𝑑

𝑏2
 + 16𝛼1  +

32𝑐

𝑏
 +

4𝑉2(𝑓−
𝑑2

4𝑏
)

Γ4
2𝑏

= 0                       (81) 

𝛼1 =
Γ4
4 +

32Γ4
4

𝑉2𝑏2
 −
8Γ4
4

𝑉𝑏
 +
12𝑑Γ4

2

𝑏2
 −
8𝑐Γ4

2

𝑏
 −
𝑉2(𝑓−

𝑑2

4𝑏
)

𝑏

4Γ4
2  

                                (82) 

We have the presented polynomial equation in (eq.83) by using the expressions of 𝑅 in (eq.76) and (eq.79). 

4Γ4
4  +

1536Γ4𝛼3
3

𝑏3
 +

64Γ4
3𝛼3

𝑏
 +

64Γ4
2𝛼3
2

𝑏2
 −

768𝑑𝛼3
2

𝑏4
 −

768𝛼3
2𝛼1

𝑏2
 +

512𝑐𝛼3
2

𝑏3
 +

64𝑓

𝑏3
 −

48𝑑Γ4
2

𝑏2
 −48𝛼1Γ4

2  +
32𝑐Γ4

2

𝑏
 +

384𝑑Γ4𝛼3

𝑏3
 

 −
128Γ4𝛼3𝛼1

𝑏
 −

256𝑐Γ4𝛼3

𝑏2
 −

208𝑑2

𝑏4
 +

256𝑐𝑑

𝑏3
 −

256𝑒

𝑏2
 −

16𝑑3

𝑏4𝛼3
2  +

32𝑐𝑑2

𝑏3𝛼3
2  −

64𝑒𝑑

𝑏2𝛼3
2  − 256𝛼1

2  + 1024𝛼2  + 128
(𝑔−

𝑓𝛼1
2
+
𝑑2𝛼1
8𝑏

)

𝑏𝛼3
2 = 0 (83) 

We replace 
Γ4

𝛼3
 with its shown expression in (eq.80) to pass from equation (eq.83) to equation (eq.84). 

4Γ4
4  +

1536Γ4
4

𝑉3𝑏3
 +

64Γ4
4

𝑉𝑏
 +

64Γ4
4

𝑉2𝑏2
 −

768𝑑Γ4
2

𝑉2𝑏4
 −

768Γ4
2𝛼1

𝑉2𝑏2
 +

512𝑐Γ4
2

𝑉2𝑏3
 +

64𝑓

𝑏3
 −

48𝑑Γ4
2

𝑏2
 − 48𝛼1Γ4

2  +
32𝑐Γ4

2

𝑏
 +

384𝑑Γ4
2

𝑉𝑏3
 −

128Γ4
2𝛼1

𝑉𝑏
  

−
256𝑐Γ4

2

𝑉𝑏2
−
208𝑑2

𝑏4
 +

256𝑐𝑑

𝑏3
 −

256𝑒

𝑏2
 −

16𝑉2𝑑3

𝑏4Γ4
2  +

32𝑐𝑑2𝑉2

𝑏3Γ4
2  −

64𝑒𝑑𝑉2

𝑏2Γ4
2  − 256𝛼1

2  + 1024𝛼2  +
128𝑉2(𝑔−

𝑓𝛼1
2
+
𝑑2𝛼1
8𝑏

)

𝑏Γ4
2 = 0    (84) 

We use equations (eq.75) and (eq.78) to calculate the value of 𝛼4 and then express 𝛼2 as shown in (eq.85) where we rely on 

replacing 
Γ4

𝛼3
 with its constant value 𝑉, which is presented in (eq.80). 

1024𝛼2 =
1024Γ2

𝑉
 −

512𝑑

𝑏
 −

6144Γ4

𝑉4𝑏4
 +

3072Γ4

𝑉3𝑏3
 +

384Γ4

𝑉2𝑏2
 −

4608𝑑Γ2

𝑉2𝑏4
 −

1536Γ2𝛼1

𝑉2𝑏2
 +

3072𝑐Γ2 

𝑉2𝑏3
 +

384𝑓

𝑏3
 +

96𝑉(𝑓−
𝑑2

4𝑏
)

𝑏2
 −

672𝑑2

𝑏4
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+
768𝑐𝑑

𝑏3
−
768𝑒

𝑏2
 −

192Γ4

𝑉𝑏
 +

96𝑓𝑉

𝑏2
 +

288𝑑Γ2

𝑏2
 + 96Γ2𝛼1  −

192𝑐Γ2

𝑏
 +

24𝑉2(𝑓−
𝑑2

4𝑏
)

𝑏
 −

168(𝑑2𝑉)

𝑏3
 +

192(𝑐𝑑𝑉)

𝑏2
 −

192𝑒𝑉

𝑏
      (85) 

In order to pass from equation (eq.84) to equation (eq.86), we replace 𝛼2 with its shown expression in (eq.85). 

4Γ4
4 +

1024Γ4
2

𝑉
−
512𝑑

𝑏
−
6144Γ4

4

𝑉4𝑏4
+
4608Γ4

4

𝑉3𝑏3
−
128Γ4

4

𝑉𝑏
+
448Γ4

4

𝑉2𝑏2
−
5376𝑑Γ4

2

𝑉2𝑏4
−
2304Γ4

2𝛼1

𝑉2𝑏2
+
3584𝑐Γ4

2

𝑉2𝑏3
+
448𝑓

𝑏3
+
24𝑉2(𝑓−

𝑑2

4𝑏
)

𝑏
+
192𝑓𝑉

𝑏2
−
192𝑑2𝑉

𝑏3
  

+
192𝑐𝑑𝑉

𝑏2
−
192𝑒𝑉

𝑏
+
240𝑑Γ4

2

𝑏2
+ 48𝛼1 Γ4

2  −
160𝑐Γ4

2

𝑏
 +

384𝑑Γ4
2

𝑉𝑏3
 −

128Γ4
2𝛼1

𝑉𝑏
 −

256𝑐Γ4
2

𝑉𝑏2
 −

880𝑑2

𝑏4
 +

1024𝑐𝑑

𝑏3
 −

1024𝑒

𝑏2
 −

16𝑉2𝑑3

𝑏4Γ4
2   

+
32𝑐𝑑2𝑉2

𝑏3Γ4
2 −

64𝑒𝑑𝑉2

𝑏2Γ4
2  − 256𝛼1

2  +
128𝑉2𝑔

𝑏Γ4
2  −

64𝑉2𝑓𝛼1

𝑏Γ4
2  +

16𝑉2𝑑2𝛼1

𝑏2Γ4
2 = 0                         (86) 

We replace α1 with its shown expression in (eq.82), and then we assemble terms of equation (eq.86) in function of degrees, in 

order to have the expression (eq.88) where coefficients are presented in (eq.54), (eq.55), (eq.56) and (eq.57). 

𝛼4 = 𝑥1𝑥2𝑥3𝑥4 ⇒  2048𝛼4 = −32Γ3
2𝛼1 −

8Γ3
2(𝑒−

𝑐2

4
)

𝛼3
2 +

64Γ3𝑑

𝛼3

                   (87) 

𝜆3(Γ4
2)4 + 𝜆2(Γ4

2)3 + 𝜆1(Γ4
2)2 + 𝜆0(Γ4

2) = 0                          (88) 

Since we supposed that (
4Γ4
2(𝑓−

𝑑2

4𝑏
)

𝑏𝛼3
2  +

32𝑓Γ4

𝑏2𝛼3
 +

40(𝑑2Γ4)

𝑏3𝛼3
 −

64𝑐𝑑Γ4

𝑏2𝛼3
 +

64𝑒Γ4

𝑏𝛼3
) = 0 whereas adopting 

Γ4

𝛼3
 ≠  0, we eliminate 

the root zero as solution for polynomial equation (eq.88) and we use the cubic solution to solve the polynomial equation 

(𝜆3(Γ4
2)3 + 𝜆2(Γ4

2)2 + 𝜆1(Γ4
2) + 𝜆0) = 0 , because all coefficients are expressed only in function of 𝑐, 𝑑, 𝑒, 𝑓, 𝑔 and the 

constant 𝑉. As a result, we have six possible values for Γ4 as solutions for polynomial equation shown in (eq.53). 

Supposing that 𝐺{Γ4} is the group of solutions for shown equation in (eq.53), where these solutions are expressed as Γ4,𝑖 and 

−Γ4,𝑖 with 1 ≤  𝑖 ≤  3. The group of solutions 𝐺{Γ4} is determined by relying on cubic root shown in (eq.90) and quadratic 

roots (eq.91) and (eq.92). 

𝐺{Γ4} = {Γ4,1, Γ4,2, Γ4,3, −Γ4,1, −Γ4,2, −Γ4,3}                           (89) 

We suppose that 𝑏; =
𝜆2

𝜆3
, 𝑐 ; =

𝜆1

𝜆3
 and 𝑑; =

𝜆0

𝜆3
, whereas using the expressions (eq.54), (eq.55), (eq.56) and (eq.57). We sup-

pose also that 𝐷; = 27𝑑; + 2𝑏;3 − 9𝑐 ;𝑏; and 𝐶 ; = 9𝑐; − 3𝑏;2. The solutions Γ4,1, Γ4,2 and Γ4,3 for shown equation in (eq.53) 

are as follow: 

Γ4,1
2 =

−𝑏;

3
 +

1

3
√−

𝐷;

2
+ √(

𝐷;

2
)
2

+ (
𝐶 ;

3
)
33

+
1

3
√−

𝐷;

2
− √(

𝐷;

2
)
2

+ (
𝐶 ;

3
)
3

 
3

               (90) 

Γ4,2
2 = −

𝑏;

2
+Γ4,1

2

2
+ √(

𝑏;

2
+Γ4,1

2

2
)

2

−
𝐷;

Γ4,1
2

      (91) 

Γ4,3
2 = −

𝑏;

2
+Γ4,1

2

2
− √(

𝑏;

2
+Γ4,1

2

2
)

2

−
𝐷;

Γ4,1
2

      (92) 

After determining the values of Γ4 by using cubic solution 

and quadratic solutions, the following step consists of solving 

the polynomial equation shown in (eq.72). 

The coefficients 𝑃  in (eq.74) and 𝑅  in (eq.76) are de-

pendent on Γ4
2  and 𝛼1 . The coefficient 𝛼1  in (eq.82) is 

dependent on Γ4
2, whereas the coefficient 𝑄 shown in (eq.75) 

is dependent on Γ4 and 𝛼1. Therefore, we are going to use 

only Γ4,1, Γ4,2 and Γ4,3 to calculate the potential values of 𝑧, 

because {−Γ4,1, −Γ4,2, −Γ4,3} are going only to inverse the 

sign of coefficient 𝑄  and thereby inversing the signs of 

potential values of 𝑧 as solutions for polynomial equation 

shown in (eq.50), which will not influence the potential values 

of 𝑥 as solutions for sixth degree polynomial equation shown 

in (eq.48) because 𝑥 =
1

2
(𝑧2 − 𝛼1). 

We use the first proposed theorem (Theorem 1) to calculate 

the four solutions for fourth degree polynomial equation 

shown in (eq.72) after calculating the coefficients 𝑃, 𝑄 and 

𝑅  for each value of Γ4  from the group {Γ4,1, Γ4,2, Γ4,3} . 

Thereby, we have twelve values to calculate as potential 

solutions for the polynomial equation shown in (eq.72). 
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After using first proposed theorem on (eq.72) for each 

value of Γ4  from the group {Γ4,1, Γ4,2, Γ4,3}, we have three 

groups of potential solutions for polynomial equation shown 

in (eq.72), where each group is dependent on different value 

of Γ4 . We express these groups of solutions as follow: 

𝐾{Γ4,1}, 𝐾{Γ4,2}, 𝐾{Γ4,3}. 

𝐾{Γ4,1} = {𝑆(Γ4,1,1), 𝑆(Γ4,1,2), 𝑆(Γ4,1,3), 𝑆(Γ4,1,4)}   (93) 

𝐾{Γ4,2} = {𝑆(Γ4,2,1), 𝑆(Γ4,2,2), 𝑆(Γ4,2,3), 𝑆(Γ4,2,4)}   (94) 

𝐾{Γ4,3} = {𝑆(Γ4,3,1), 𝑆(Γ4,3,2), 𝑆(Γ4,3,3), 𝑆(Γ4,3,4)} (95) 

Concerning the fourth-degree polynomial equation shown 

in (eq.50), we have three groups of solutions where each 

group is dependent on different value of Γ4 ; as shown in 

(eq.96), (eq.97) and (eq.98). The values of 𝑆(Γ4,𝑖,𝑗) , where 

1 ≤  𝑖 ≤  3 and 1 ≤  𝑗 ≤  4, are from the expressed solu-

tions in the groups (eq.93), (eq.94) and (eq.95). 

𝑀{Γ4,1}
= {−

1

4
[
4Γ4,1

𝑉
 + Γ4,1] +

1

4
𝑆(Γ4,1,1), −

1

4
[
4Γ4,1

𝑉
 + Γ4,1] +

1

4
𝑆(Γ4,1,2), −

1

4
[
4Γ4,1

𝑉
 + Γ4,1] +

1

4
𝑆(Γ4,1,3), −

1

4
[
4Γ4,1

𝑉
 + Γ4,1] +

1

4
𝑆(Γ4,1,4)}               (96) 

𝑀{Γ4,2}
= {−

1

4
[
4Γ4,2

𝑉
 + Γ4,2] +

1

4
𝑆(Γ4,2,1), −

1

4
[
4Γ4,2

𝑉
 + Γ4,2] +

1

4
𝑆(Γ4,2,2), −

1

4
[
4Γ4,2

𝑉
 + Γ4,2] +

1

4
𝑆(Γ4,2,3), −

1

4
[
4Γ4,2

𝑉
 + Γ4,2] +

1

4
𝑆(Γ4,2,4)}               (97) 

𝑀{Γ4,3}
= {−

1

4
[
4Γ4,3

𝑉
 + Γ4,3] +

1

4
𝑆(Γ4,3,1), −

1

4
[
4Γ4,3

𝑉
 + Γ4,3] +

1

4
𝑆(Γ4,3,2), −

1

4
[
4Γ4,3

𝑉
 + Γ4,3] +

1

4
𝑆(Γ4,3,3), −

1

4
[
4Γ4,3

𝑉
 + Γ4,3] +

1

4
𝑆(Γ4,3,4)}                (98) 

We suppose that 𝑆̇(𝛤4,𝑖,𝑗)  =  (−
1

4
[
4Γ4,𝑖

𝑉
 + Γ4,𝑖] +

1

4
𝑆(Γ4,𝑖,𝑗)) where 1 ≤  𝑖 ≤  3 and 1 ≤  𝑗 ≤  4 , in order to simplify the 

expressed values in (eq.96), (eq.97) and (eq.98). Thereby, we have three groups of values as potential solutions for sixth degree 

polynomial equation shown in (eq.48). These three groups are as shown in (eq.99), (eq.100) and (eq.101) where 𝛼(1,Γ4,𝑖) is as 

follow: 

𝛼(1,Γ4,𝑖) =
Γ4,𝑖
4  +

32Γ4,𝑖
4

𝑉2𝑏2
 −
8Γ4,𝑖
4

𝑉𝑏
 +
12𝑑Γ4,𝑖

2

𝑏2
 −
8𝑐Γ4,𝑖

2

𝑏
 −
𝑉2(𝑓−

𝑑2

4𝑏)

𝑏

4Γ4,𝑖
2

  

The expression of 𝛼(1,Γ4,𝑖) is an extending of the shown expression of 𝛼1 in (eq.82) by changing the value of Γ4, where Γ4,𝑖 

belong to the group {Γ4,1, Γ4,2, Γ4,3}. 

𝑁{Γ4,1} = {
1

2
[Ṡ(Γ4,1,1)
2

 − 𝛼(1,Γ4,1)] ,
1

2
[Ṡ(Γ4,1,2)
2

 − 𝛼(1,Γ4,1)] ,
1

2
[Ṡ(Γ4,1,3)
2

 − 𝛼(1,Γ4,1)] ,
1

2
[Ṡ(Γ4,1,4)
2

 − 𝛼(1,Γ4,1)]}     (99) 

𝑁{Γ4,2} = {
1

2
[Ṡ(Γ4,2,1)
2

 − 𝛼(1,Γ4,2)] ,
1

2
[Ṡ(Γ4,2,2)
2

 − 𝛼(1,Γ4,2)] ,
1

2
[Ṡ(Γ4,2,3)
2

 − 𝛼(1,Γ4,2)] ,
1

2
[Ṡ(Γ4,2,4)
2

 − 𝛼(1,Γ4,2)]}    (100) 

𝑁{Γ4,3} = {
1

2
[Ṡ(Γ4,3,1)
2

 − 𝛼(1,Γ4,3)] ,
1

2
[Ṡ(Γ4,3,2)
2

 − 𝛼(1,Γ4,3)] ,
1

2
[Ṡ(Γ4,3,3)
2

 − 𝛼(1,Γ4,3)] ,
1

2
[Ṡ(Γ4,3,4)
2

 − 𝛼(1,Γ4,3)]}    (101) 

We have twelve values as potential solutions for the sixth 

degree polynomial equation shown in (eq.48). However, 

many of them are only redundancies of others and there are 

only six official solutions to determine. The variables 

{Γ4,1, Γ4,2, Γ4,3} are the responsible of solution redundancies 

from one group to other. 

In order to avoid the complications of calculating the 

twelve values from the groups 𝑁{Γ4,1}, 𝑁{Γ4,2}and 𝑁{Γ4,3}, and 

then determining the six solutions for sixth degree polynomial 

equation shown in (eq.48), we propose the expressed values in 

(eq.102), (eq.103), (eq.104), (eq.105), (eq.106) and (eq.107) 

as the six official solutions for sixth degree polynomial equa-

tion shown in (eq.48). 

The first four proposed values as solutions for sixth degree 

polynomial equation shown in (eq.48) are from the group 

𝑁{Γ4,1}, whereas the fifth and sixth values are expressed by 

deduction using the expressions of quadratic roots. The use-

less redundancies of solutions are from one group to other; 

therefore, we choose the first four solutions from the same 

group 𝑁{Γ4,1}. 
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In our six proposed solutions, we use the values Ṡ(Γ4,1,𝑗) =

−
1

4
 Γ4,1 +

1

4
𝑆(Γ4,1,𝑗)  where 1 ≤  𝑗 ≤  4  and 𝑆(Γ4,1,𝑗)  from 

𝐾{Γ4,1}. The variable 𝛼(1,Γ4,𝑖) is expressed as follow: 

𝛼(1,Γ4,𝑖) =
Γ4,𝑖
4  +

32Γ4,𝑖
4

𝑉2𝑏2
 −
8Γ4,𝑖
4

𝑉𝑏
 +
12𝑑Γ4,𝑖

2

𝑏2
 −
8𝑐Γ4,𝑖

2

𝑏
 −
𝑉2(𝑓−

𝑑2

4𝑏)

𝑏

4Γ4,𝑖
2

  

Γ4,1 is from the group 𝐺{Γ4} shown in (eq.88) which con-

tains the solutions for polynomial equation (eq.52). The 

values of Ṡ(Γ4,1,1), where 1 ≤  𝑗 ≤  4, are the solutions for 

quartic equation (eq.50) and they are determined by using 

Theorem 1. 

𝑆1 =
1

2
[Ṡ(Γ4,1,1)
2

 − 𝛼(1,Γ4,1)]         (102) 

𝑆2 =
1

2
[Ṡ(Γ4,1,2)
2

 − 𝛼(1,Γ4,1)]         (103) 

𝑆3 =
1

2
[Ṡ(Γ4,1,3)
2

 − 𝛼(1,Γ4,1)]         (104) 

𝑆4 =
1

2
[Ṡ(Γ4,1,4)
2

 − 𝛼(1,Γ4,1)]         (105) 

𝑆5 = −
𝑏+𝑆1+𝑆2+𝑆3+𝑆4

2
− √(

𝑏+𝑆1+𝑆2+𝑆3+𝑆4

2
)
2

−
𝑔

𝑆1𝑆2𝑆3𝑆4
 (106) 

𝑆6 = −
𝑏+𝑆1+𝑆2+𝑆3+𝑆4

2
+ √(

𝑏+𝑆1+𝑆2+𝑆3+𝑆4

2
)
2

−
𝑔

𝑆1𝑆2𝑆3𝑆4
 (107) 

4.3. Third Proposed Theorem 

In the second proposed theorem in this paper, we rely on 

reducing sixth degree polynomial equation to fourth degree in 

order to find proper roots for concerned equation. However, 

the fourth degree part of resulted quartic equation by reduc-

tion is dependent on the fifth degree part of concerned sixth 

degree polynomial. Thereby, the equation  𝐴𝑤6 + 𝐶𝑤4 +

𝐷𝑤3 + 𝐸𝑤2 + 𝐹𝑤 + 𝐺 = 0 𝑤𝑖𝑡ℎ 𝐴 ≠  0  where the coef-

ficient of fifth degree part is equal zero imposes a problem of 

reduction to fourth degree. 

Therefore, in this subsection, we present a third theorem to 

propose six formulary solutions for sixth degree polynomial 

equation in general form 𝐴𝑤6 + 𝐶𝑤4 + 𝐷𝑤3 + 𝐸𝑤2 +

𝐹𝑤 + 𝐺 = 0 𝑤𝑖𝑡ℎ 𝐴 ≠  0 , where coefficients belong to 

the group of numbers ℝ and the coefficient of fifth degree part 

equal zero. 

This third proposed theorem is based on the same logic and 

calculations of Theorem 2. However, it is distinguished by 

treating sixth degree polynomial where the fifth degree part is 

absent. First, we pass from equation expression 𝐴𝑤6 +

𝐶𝑤4 + 𝐷𝑤3 + 𝐸𝑤2 + 𝐹𝑤 + 𝐺 = 0 𝑤𝑖𝑡ℎ 𝐴 ≠  0 to the 

expression 𝑤6 +
𝐶𝑤4

𝐴
+
𝐷𝑤3

𝐴
+
𝐸𝑤2

𝐴
+
𝐹𝑤

𝐴
+
𝐺

𝐴
= 0 , and then 

we use the expression 𝑤 = √
−𝐶

15𝐴
+ 𝑥 to induce a fifth degree 

part whereas eliminating the fourth degree part of concerned 

sixth degree polynomial. 

Inducing the fifth degree part in polynomial equation 

shown in (eq.108), whereas eliminating the fourth degree part; 

help to reduce the amount of calculations comparing to the 

situation of having a fourth degree element to treat during the 

process of reduction from sixth degree polynomial equation to 

quartic equation. 

The shown equation in (eq.108) is resulted by replacing 𝑤 

with 𝑤 = √
−𝐶

15𝐴
 + 𝑥. The coefficients of equation (eq.108) 

are as expressed in (eq.109), (eq.110), (eq.111), (eq.112) and 

(eq.113). 

𝑥6 + 𝑏𝑥5 + 𝑑𝑥3 + 𝑒𝑥2 + 𝑓𝑥 + 𝑔 = 0      (108) 

𝑏 = 6√
−𝐶

15𝐴
                 (109) 

𝑑 =
8𝐶

3𝐴
√
−𝐶

15𝐴
 +

𝐷

𝐴
             (110) 

𝑒 =
−𝐶2

3𝐴2
 +

3𝐷

𝐴
√
−𝐶

15𝐴
 +

𝐸

𝐴
          (111) 

𝑓 = −
18𝐶2

5𝐴2
√
−𝐶

15𝐴
 −

𝐷𝐶

5𝐴2
 +

2𝐸

𝐴
√
−𝐶

15𝐴
 +

𝐹

𝐴
    (112) 

𝑔 =
−16𝐶3

3375𝐴3
−

𝐷𝐶

15𝐴2
√
−𝐶

15𝐴
 −

𝐸𝐶

15𝐴2
 +

𝐹

𝐴
√
−𝐶

15𝐴
 +

𝐺

𝐴
  (113) 

Theorem 3 

In order to reduce the sixth degree polynomial equation 

𝐴𝑤6 + 𝐶𝑤4 + 𝐷𝑤3 + 𝐸𝑤2 + 𝐹𝑤 + 𝐺 = 0 𝑤𝑖𝑡ℎ 𝐴 ≠

 0 to the quartic equation shown in (eq.114), where coeffi-

cients belong to the group of numbers ℝ we first replace 𝑤 

with 𝑤 = √
−𝐶

15𝐴
+ 𝑥. Then, the reduction from sixth degree to 

fourth degree is conducted by supposing 𝑥 = (𝑥0𝑥1 +

𝑥0𝑥2 + 𝑥0𝑥3 + 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3) , whereas supposing 

𝑧 = (𝑥0 + 𝑥1 + 𝑥2 + 𝑥3) is the solution for fourth degree 

polynomial equation in (eq.114) by using Theorem 1 and 

relying on the expression 𝑥3 = −
Υ3

4
. The variable Υ3  is 

defined as shown in (eq.115) where 𝛼3  is presented in 

(eq.119) and Υ4 is the solution for the polynomial equation 

(eq.120), which relies on the coefficients (eq.121), (eq.122), 

(eq.123) and (eq.124). The shown coefficients in (eq.121), 

(eq.122), (eq.123) and (eq.124) are expressed by using the 

constant 𝑉, which is defined in (eq.125). The coefficients Υ3, 

Υ2, Υ1 and Υ0 of quartic equation (eq.114) are determined by 

using calculated value of Υ4 and using the shown expressions 

in (eq.115), (eq.116), (eq.117) and (eq.118). The six proposed 

solutions for polynomial equation 𝐴𝑤6 + 𝐶𝑤4 + 𝐷𝑤3 +
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𝐸𝑤2 + 𝐹𝑤 + 𝐺 = 0 𝑤𝑖𝑡ℎ 𝐴 ≠  0 are as shown in (eq.136), 

(eq.137), (eq.138), (eq.139), (140) and (eq.141). 

𝑧4 + Υ3𝑧
3 + Υ2𝑧

2 + Υ1𝑧 + Υ0 = 0       (114) 

Υ3 =
4𝛼3

𝑏
 + Υ4             (115) 

Υ2 =
8Υ4
2

𝑉𝑏
−
6𝑑

𝑏2
+
(𝑓−

𝑑2

4𝑏
)𝑉2

2𝑏Υ4
2 −

8Υ4
2

𝑉2𝑏2
      (116) 

Υ1 =
5Γ4
3

𝑉𝑏
+

3𝑉𝑑2

4𝑏3Υ4
−
6𝑑Υ4

𝑏2
+

𝑒𝑉

𝑏Υ4
−
Υ4
3

4
−

8Υ4
3

𝑉2𝑏2
+
𝑓−

𝑑2

4𝑏

4Υ4𝑏
𝑉2 (117) 

 

Υ0 =
Υ4
4

2𝑉𝑏
−

𝑉2𝑑3

16𝑏4Υ4
2 +

3𝑉𝑑2

8𝑏3
−
3𝑑Υ4

2

4𝑏2
+
𝑒𝑉

2𝑏
−

𝑒𝑉2𝑑

4𝑏2Υ4
2 +

𝑔𝑉2

2𝑏Υ4
2 − (

Υ4
2

4
+ 𝑉2

𝑓−
𝑑2

4𝑏

4𝑏Υ4
2)(

Υ4
2

4
+

8Υ4
2

𝑉2𝑏2
−
2Υ4
2

𝑉𝐵
+
3𝑑

𝑏2
−
(𝑓−

𝑑2

4𝑏
)

4𝑏Υ4
2 𝑉

2)     (118) 

𝛼3 = −
Υ4

4(𝑓−
𝑑2

4𝑏)

𝑏
32𝑓

𝑏2
 +
40𝑑2

𝑏3
 +
64𝑒

𝑏

                                    (119) 

𝛽3Υ4
6  + 𝛽2Υ4

4  + 𝛽1Υ4
2  + 𝛽0 = 0                                 (120) 

𝛽3 = −
40960

𝑉4𝑏4
 +

16384

𝑉3𝑏3
 −

1536

𝑉2𝑏2
                                   (121) 

𝛽2 = −
24576𝑑

𝑉2𝑏4
 +

3072𝑑

𝑉𝑏3
 +

1024

𝑉
                                  (122) 

𝛽1 = −
512𝑑

𝑏
 +

1536𝑓

𝑏3
 +

28𝑉2𝑓

𝑏
 −

7𝑉2𝑑2

𝑏2
+
96𝑉𝑓

𝑏2
 −

168𝑑2𝑉

𝑏3
 −

192𝑉𝑒

𝑏
 −

3456𝑑2

𝑏4
 −

1024𝑒

𝑏2
                 (123) 

𝛽0 = −
64𝑉2𝑑3

𝑏4
 −

64𝑒𝑉2𝑑

𝑏2
 +

128𝑉2𝑔

𝑏
 +

192𝑉2𝑑𝑓

𝑏3
                            (124) 

𝑉 = −
32𝑓

𝑏2
 +
40𝑑2

𝑏3
 +
64𝑒

𝑏

4(𝑓−
𝑑2

4𝑏)

𝑏

                                        (125) 

4.4. Proof of Theorem 3 

Considering the sixth-degree polynomial equation 𝐴𝑤6 + 𝐶𝑤4 + 𝐷𝑤3 + 𝐸𝑤2 + 𝐹𝑤 + 𝐺 = 0 where the fifth degree part is 

absent, we divide the polynomial on 𝐴 and then we use the expression 𝑤 = √
−𝐶

15𝐴
+ 𝑥 in order to induce a fifth degree part and 

eliminate the fourth degree part. Then, by using the expression (eq.62), we reduce the resulted sixth degree polynomial (eq.108) 

to the quartic polynomial shown in (eq.126). 

𝜐4𝑧
4 + 𝜐3𝑧

3 + 𝜐2𝑧
2 + 𝜐1𝑧 + 𝜐0 = 0                                 (126) 

We rely on the expressions of {𝛼1, 𝛼2, 𝛼3, 𝛼4} in (eq.64), 𝑥 in (eq.65), 𝑥2 in (eq.66), 𝑥3 in (eq.67), 𝑥5 in (eq.69) and 𝑥6 in 

(eq.70) to express the fourth degree polynomial shown in (eq.126) where the values of coefficients are as follow: 

𝜐4 = 2𝑏𝛼3
2  

𝜐3 = 8𝛼3
3 + 𝑑𝛼3 + 2𝑏[𝛼2 + 6𝛼4]𝛼3  

𝜐2 = 12[𝛼2 + 6𝛼4]𝛼3
2 +

1

2
𝑏[(𝛼2 + 6𝛼4)

2 − 4𝛼3
2𝛼1] +

1

2
𝑑[𝛼2 + 6𝛼4] +

1

2
𝑓  

𝜐1 = 6[(𝛼2 + 6𝛼4)]
2𝛼3 − 2𝑏𝛼3𝛼1[𝛼2 + 6𝛼4] − 𝑑𝛼1 𝛼3 + 2𝑒𝛼3  

𝜐0 = [𝛼2 + 6𝛼4]
3 −

1

2
𝑏𝛼1[𝛼2 + 6𝛼4]

2 −
1

2
𝑑[𝛼2 + 6𝛼4]𝛼1 + 𝑒[𝛼2 + 6𝛼4] −

1

2
𝑓𝛼1 + 𝑔  
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We have the shown fourth degree polynomial in (eq.114) after dividing the polynomial (eq.126) on 𝜐4. The coefficients of 

polynomial (eq.114) are as follow: 

Υ4 =
[𝛼2+6𝛼4]+

𝑑

2𝑏

𝛼3
 ⇒  𝛼2 = 𝛼3Υ4  −

𝑑

2𝑏
−  6𝛼4  

Υ3 =
4𝛼3

𝑏
+ Υ4  

Υ2 =
6[Υ4𝛼3−

𝑑

2𝑏
]

𝑏
+
Υ4
2

4
− 𝛼1 +

(𝑓−
𝑑2

4𝑏
)

4𝑏𝛼3
2

  

Υ1 =
3[Υ4𝛼3−

𝑑

2𝑏
]
2

𝑏𝛼3
− Υ4𝛼1 +

𝑒

𝑏𝛼3

  

Υ0 =
[Υ4𝛼3−

𝑑

2𝑏
]
3

2𝑏𝛼3
2  −

1

4
𝛼1Υ4

2  +
𝑒[𝛼3Υ4−

𝑑

2𝑏
]

2𝑏𝛼3
2  +

𝑔−
𝑓𝛼1
2
+
𝑑2𝛼1
8𝑏

2𝑏𝛼3
2

  

We have the fourth degree polynomial 𝑦4 +𝑀𝑦2 + 𝑁𝑦 + 𝑂 = 0 by replacing 𝑧 with 
−Υ3+𝑦

4
 in the polynomial (eq.114). The 

coefficients 𝑀, 𝑁 and 𝑂 are as expressed in (eq.127), (eq.128) and (eq.129). 

𝑀 = −2Υ4
2  −

96𝛼3
2

𝑏2
 +

48Υ4𝛼3

𝑏
 −

48𝑑

𝑏2
 − 16𝛼1  +

4(𝑓−
𝑑2

4𝑏
)

𝑏𝛼3
2

                             (127) 

𝑁 =
512𝛼3

3

𝑏3
 −

384𝛼3
2Υ4

𝑏2
+
64𝛼3Υ4

2

𝑏
+
384𝑑𝛼3

𝑏3
+
128𝛼3𝛼1

𝑏
−

32𝑓

𝑏2𝛼3
−
96𝑑Υ4

𝑏2
− 32Υ4𝛼1 −

8Υ4(𝑓−
𝑑2

4𝑏
)

𝑏𝛼3
2 +

56𝑑2

𝑏3𝛼3
 +

64𝑒

𝑏𝛼3
    (128) 

𝑂 = −
768𝛼3

4

𝑏4
+ Υ4

4  +
768Υ4𝛼3

3

𝑏3
 +

16Υ4
3𝛼3

𝑏
 −

224Υ4
2𝛼3
2

𝑏2
 −

768𝑑𝛼3
2

𝑏4
 −

256𝛼3
2𝛼1

𝑏2
 +

64𝑓

𝑏3
 −

48𝑑Υ4
2

𝑏2
 − 16𝛼1Υ4

2  +
4(𝑓−

𝑑2

4𝑏
)

𝑏𝛼3
2 Υ4

2  +

384𝑑Υ4𝛼3

𝑏3
 +

128Υ4𝛼3𝛼1

𝑏
 +

32𝑓Υ4

𝑏2𝛼3
 +

40𝑑2Υ4

𝑏3𝛼3
 −

208𝑑2

𝑏4
 −

256𝑒

𝑏2
 +

64𝑒Υ4

𝑏𝛼3
 −

16𝑑3

𝑏4𝛼3
2  −

64𝑒𝑑

𝑏2𝛼3
2  +

128(𝑔−
𝑓𝛼1
2
 +
𝑑2𝛼1
8𝑏

)

𝑏𝛼3
2      (129) 

In order to reduce the expression of 𝑂  in (eq.129), and find a way to determine the value of Υ4 , we suppose that 

(
4Υ4
2(𝑓−

𝑑2

4𝑏
)

𝑏𝛼3
2  +

32𝑓Υ4

𝑏2𝛼3
 +

40𝑑2Υ4

𝑏3𝛼3
 +

64𝑒Υ4

𝑏𝛼3
) = 0 where 

Υ4

𝛼3
≠  0. As a result, we have the shown expression in (eq.130). 

Υ4

𝛼3
= 𝑉 = −

(
32𝑓

𝑏2
 +
40𝑑2

𝑏3
 +
64𝑒

𝑏
)

4(𝑓−
𝑑2

4𝑏)

𝑏

                                       (130) 

We rely on the same used logic and processes of calculation in the proof of Theorem 2, in order to continue the proof of third 

proposed theorem. Thereby, the variables 𝛼1, 𝛼4 and 𝛼2 are as expressed in (eq.131), (eq.132) and (eq.133) respectively, 

whereas the resulted polynomial equation to determine the value of Υ4 is as shown in (eq.134). 

𝛼1 =
Υ4
4 +

32Υ4
4

𝑉2𝑏2
 −
8Υ4
4

𝑉𝑏
 +
12𝑑Υ4

2

𝑏2
 −
𝑉2(𝑓−

𝑑2

4𝑏)

𝑏

4Υ4
2  

                                  (131) 

2048𝛼4 =
2048Υ4

𝑉4𝑏4
−
1024Υ4

𝑉3𝑏3
−
128Υ4

𝑉2𝑏2
+
1536𝑑Υ2

𝑉2𝑏4
+
512Υ2𝛼1

𝑉2𝑏2
 −

128𝑓

𝑏3
−
32𝑉(𝑓−

𝑑2

4𝑏
)

𝑏2
+
224𝑑2

𝑏4
 +

256𝑒

𝑏2
+
64Υ4

𝑉𝑏
−
32𝑓𝑉

𝑏2
−
96𝑑Υ2

𝑏2
−

32Υ2𝛼1  −
8𝑉2(𝑓−

𝑑2

4𝑏
)

𝑏
+
56𝑑2𝑉

𝑏3
 +

64𝑒𝑉

𝑏

                                 (132) 
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1024𝛼2 =
1024Υ2

𝑉
 −

512𝑑

𝑏
 −

6144Υ4

𝑉4𝑏4
 +

3072Υ4

𝑉3𝑏3
 +

384Υ4

𝑉2𝑏2
 −

4608𝑑Υ2

𝑉2𝑏4
 −

1536Υ2𝛼1

𝑉2𝑏2
 +

384𝑓

𝑏3
 +

96𝑉(𝑓−
𝑑2

4𝑏
)

𝑏2
 −

672𝑑2

𝑏4
 −

768𝑒

𝑏2
 −

192Υ4

𝑉𝑏
 +

96𝑓𝑉

𝑏2
 +

288𝑑Υ2

𝑏2
 + 96Υ2𝛼1  +

24𝑉2(𝑓−
𝑑2

4𝑏
)

𝑏
 −

168𝑑2𝑉

𝑏3
 −

192𝑒𝑉

𝑏

                    (133) 

4Υ4
4 +

1024Υ4
2

𝑉
−
512𝑑

𝑏
−
6144Υ4

4

𝑉4𝑏4
+
4608Υ4

4

𝑉3𝑏3
−
128Υ4

4

𝑉𝑏
+
448Υ4

4

𝑉2𝑏2
−
5376𝑑Υ4

2

𝑉2𝑏4
−
2304Υ4

2𝛼1

𝑉2𝑏2
+
448𝑓

𝑏3
+
24𝑉2(𝑓−

𝑑2

4𝑏
)

𝑏
+
192𝑓𝑉

𝑏2
−
192𝑑2𝑉

𝑏3
−
192𝑒𝑉

𝑏
+

240𝑑Υ4
2

𝑏2
+ 48𝛼1Υ4

2  +
384𝑑Υ4

2

𝑉𝑏3
 −

128Υ4
2𝛼1

𝑉𝑏
 −

880𝑑2

𝑏4
 −

1024𝑒

𝑏2
 −

16𝑉2𝑑3

𝑏4Υ4
2  −

64𝑒𝑑𝑉2

𝑏2Υ4
2  − 256𝛼1

2  +
128𝑉2𝑔

𝑏Υ4
2  −

64𝑉2𝑓𝛼1

𝑏Υ4
2  +

16𝑉2𝑑2𝛼1

𝑏2Υ4
2 = 0            (134) 

We use the shown value of 
Υ4

𝛼3
 in (eq.130) and we replace 𝛼1 and 𝛼2 with their shown expressions in (eq.131) and (eq.133), 

in order to pass from equation (eq.134) to polynomial expression 𝛽3(Υ4
2)4 + 𝛽2(Υ4

2)3 + 𝛽1(Υ4
2)2 + 𝛽0(Υ4

2) = 0 where coeffi-

cients are as presented in (eq.121), (eq.122), (eq.123) and (eq.124). 

Relying on the proof of Theorem 2, we calculate only the expression Υ4,1 shown in (eq.135) as a root for expressed equation 

in (eq.120), and then we determine the roots of quartic equation 𝑦4 +𝑀𝑦2 + 𝑁𝑦 + 𝑂 = 0. Therefore, we start by calculating the 

values of 𝛼1, 𝛼4 and 𝛼2 by replacing the variable Υ4 with the value of Υ4,1, then we calculate the values of 𝑀, 𝑁 and 𝑂, and 

finally we finish by using Theorem 1. 

We suppose that 𝑏; =
𝛽2

𝛽3
, 𝑐 ; =

𝛽1

𝛽3
 and 𝑑; =

𝛽0

𝛽3
, whereas using the expressions (eq.121), (eq.122), (eq.123) and (eq.124). We 

suppose also that 𝐷; = 27𝑑; + 2𝑏;3 − 9𝑐;𝑏; and 𝐶 ; = 9𝑐; − 3𝑏;2. The solution Υ4,1 for shown equation in (eq.120) is as fol-

low: 

Υ4,1
2 =

−𝑏;

3
 +

1

3
√−

𝐷;

2
+√(

𝐷;

2
)
2

+ (
𝐶 ;

3
)
3

 
3

+ 
1

3
√−

𝐷;

2
− √(

𝐷;

2
)
2

+ (
𝐶 ;

3
)
3

 
3

                  (135) 

As we mentioned in the proof of Theorem 2, the use of other roots of polynomial (eq.120) in the quartic polynomial 𝑦4 +

𝑀𝑦2 + 𝑁𝑦 + 𝑂 = 0 to calculate the values of 𝑀, 𝑁 and 𝑂 generates redundancies of roots for the sixth degree polynomial 

equation 𝐴𝑤6 + 𝐶𝑤4 + 𝐷𝑤3 + 𝐸𝑤2 + 𝐹𝑤 + 𝐺 = 0 . 

We determine the group 𝐾
{Υ4,1}
;

, which contains the four roots for quartic equation 𝑦4 +𝑀𝑦2 + 𝑁𝑦 + 𝑂 = 0, by using The-

orem 1. 

𝐾
{Υ4,1}
;  = {𝑆(Υ4,1,1), 𝑆(Υ4,1,2), 𝑆(Υ4,1,3), 𝑆(Υ4,1,4)}  

We present the group of roots for quartic equation shown in (eq.114) as 𝑀
{Υ4,1}
;

, which is determined by relying on the group 

𝐾
{Υ4,1}
;

. 

𝑀
{Υ4,1}
; = {−

1

4
[
4Υ4,1

𝑉
 + Υ4,1] +

1

4
𝑆(Υ4,1,1), −

1

4
[
4Υ4,1

𝑉
 + Υ4,1] +

1

4
𝑆(Υ4,1,2), −

1

4
[
4Υ4,1

𝑉
 + Υ4,1] +

1

4
𝑆(Υ4,1,3), −

1

4
[
4Υ4,1

𝑉
 + Υ4,1] +

1

4
𝑆(Υ4,1,4)}  

We present each root for quartic equation shown in (eq.114) 

as 𝜉(Υ4,1 ,𝑖)  = −
1

4
[
4Υ4,1

𝑉
 + Υ4,1] +

1

4
𝑆(Υ4,1,𝑖) , whereas 

𝑆(Υ4,1,𝑖) is from the group 𝐾 ;{Υ4,1}. 

The proposed six solutions for sixth degree polynomial 

equation 𝐴𝑤6 + 𝐶𝑤4 + 𝐷𝑤3 + 𝐸𝑤2 + 𝐹𝑤 + 𝐺 = 0 are as 

expressed in (eq.136), (eq.137), (eq.138), (eq.139), (140) and 

(eq.141). The expressions 𝜉(Υ4,1 ,1) , 𝜉(Υ4,1 ,2) , 𝜉(Υ4,1 ,3)and 

𝜉(Υ4,1 ,4)  present the calculated roots for quartic equation 

(eq.114) by using Theorem 1. Υ4,1 is calculated by using the 

shown expression in (eq.135). We use the expression (eq.131) 

to calculate the value of 𝛼(1,Υ3,1) ; thereby, its value is as 

follow: 

𝛼(1,Υ3,1)  =
Υ4,1
4 +

32Υ4,1
4

𝑉2𝑏2
 −
8Υ4,1
4

𝑉𝑏
 +
12𝑑Υ4,1

2

𝑏2
 −
𝑉2(𝑓−

𝑑2

4𝑏)

𝑏

4Υ4,1
2

  

𝑆1 =
1

2
[𝜉(Υ4,1,1)
2  − 𝛼(1,Υ4,1)]         (136) 

𝑆2 =
1

2
[𝜉(Υ4,1,2)
2  − 𝛼(1,Υ4,1)]         (137) 
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𝑆3 =
1

2
[𝜉(Υ4,1,3)
2  − 𝛼(1,Υ4,1)]         (138) 

𝑆4 =
1

2
[𝜉(Υ4,1,4)
2  − 𝛼(1,Υ4,1)]         (139) 

𝑆5 = −
𝑏+𝑆1+𝑆2+𝑆3+𝑆4

2
− √(

𝑏+𝑆1+𝑆2+𝑆3+𝑆4

2
)
2

−
𝑔

𝑆1𝑆2𝑆3𝑆4
 (140) 

𝑆6 = −
𝑏+𝑆1+𝑆2+𝑆3+𝑆4

2
+ √(

𝑏+𝑆1+𝑆2+𝑆3+𝑆4

2
)
2

−
𝑔

𝑆1𝑆2𝑆3𝑆4
 (141) 

5. Conclusion 

In the second section of this paper, we propose a list of en-

gineered requirements and techniques to solve polynomial 

equations of nth degrees where we identify specific formulas 

and expressions that allow solving these polynomial equa-

tions in general forms, whereas we present a structured logic 

of analysis and calculation to be followed during the process 

of equations solving. 

In the first presented theorem in this paper, we propose four 

formulary solutions for any quartic polynomial equation in 

general form, which enabled us to develop the formulary 

structures of six roots for any sixth-degree polynomial equa-

tion in general forms. 

The proposed expressions as solutions in the first theorem 

of this paper are enabling to calculate all the four roots of any 

quartic polynomial equation nearly simultaneously, whereas 

the proposed solutions in the second theorem and the third 

theorem are enabling to calculate the six roots of sixth degree 

polynomial equations in general forms nearly in parallel. 

The third proposed theorem is based on the same logic and 

calculations of Theorem 2 whereas proposing six roots for 

sixth degree polynomials. However, it is distinguished by 

treating the specific form 𝐴𝑤6 + 𝐶𝑤4 + 𝐷𝑤3 + 𝐸𝑤2 +

𝐹𝑤 + 𝐺 = 0 𝑤𝑖𝑡ℎ 𝐴 ≠  0 where the fifth-degree part is 

absent, which is essential to reduce sixth degree polynomial 

equation to quartic equation. The third theorem is also dis-

tinguished by eliminating the fourth-degree part of concerned 

sixth degree polynomial, in order to reduce the amount of 

calculations. 

The essential criteria of presented theorems in this innova-

tive paper is proposing new radical solutions for quartic equa-

tions and sixth degree polynomial equations to enable the 

calculation of all prospect roots of these equations nearly in 

parallel, whereas using the radical expressions of cubic roots 

and quadratic roots as subparts of each proposed solution. 

Furthermore, this paper is presenting a specific engineering 

methodology to solve nth degree polynomial equations in 

general forms by relying on a structured logic of analysis and 

calculation according to a list of engineered requirements and 

techniques which are built on precis formulas and expressions 

that allow identifying the values of all roots nearly in parallel. 

The presented engineering methodology in this paper is 

niched for further extension by using it to solve higher de-

grees of polynomial equations. In addition, we are preparing 

to scale this methodology on the area of numbers theory by 

projecting it on Collatz conjecture, in order to architect odd 

numbers according to a distributed structure of terms that may 

reveal further insights on prime numbers, which will be pub-

lished in further articles. 
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