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Abstract: This study examines portfolio risk assessment in finance using advanced quantile and superquantile techniques. The
portfolio analyzed consists of widely recognized stocks, including Apple (AAPL), Microsoft (MSFT), Alphabet (GOOGL), and
Tesla (TSLA). The primary objective is to enhance the accuracy and robustness of financial risk evaluation for such a portfolio.
To achieve this, we developed innovative methods for computing quantiles and superquantiles, leveraging various probability
distributions. In particular, we explored the Exponential, Gumbel, Frchet, and α-stable distributions to model the returns of the
selected equities. The parameters of these distributions were estimated based on historical financial data over a defined time
horizon. By doing so, we aimed to better capture the statistical characteristics of asset returns and their tail behavior, which is
crucial for effective risk management. The findings reveal that these advanced quantile and superquantile approaches provide
deeper insights into the potential risks associated with the portfolio. Compared to traditional risk metrics, such as Value at
Risk (VaR) and Expected Shortfall (ES), the proposed methodologies offer a more refined evaluation of extreme losses and
downside risks. Additionally, the study highlights how different distributional assumptions impact risk estimates, demonstrating
the importance of selecting appropriate models for financial data analysis. Furthermore, we illustrate how these improved risk
assessment techniques can assist investors and portfolio managers in making more informed decisions regarding risk exposure.
By integrating these methods into risk management frameworks, financial professionals can enhance their ability to anticipate
and mitigate adverse market conditions. Ultimately, this research contributes to the ongoing efforts to refine quantitative finance
tools, ensuring more reliable and data-driven decision-making in portfolio management.

Keywords: Superquantil, Quantile, Portfolio Risk Assessment, Density Estimation, Financial, Probability Distributions,
Portfolio Optimization, Stable Distribution

1. Introduction
Financial risk assessment and management remain at the

forefront of concerns for investors, portfolio managers, and
finance researchers. Diversifying assets within a portfolio
is one of the most common strategies to mitigate risks.
However, precise risk measurement continues to be an ongoing
challenge, especially in an ever-evolving financial landscape.

When confronted with randomness and uncertainty, many of
the prevailing techniques used to address such unpredictability
follow a parametric approach. In the case of a real-valued
random variable X, the analysis becomes significantly more
straightforward by assuming that X can be categorized within a
specific parametric distribution family. Consider, for instance,
the Method of Moments, a straightforward and widely adopted
approach for parametric density estimation. Nonetheless,
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these techniques often necessitate that specific attributes of the
distribution family can be adequately represented through a
simple mathematical expression, ideally in a closed form. For
example, the traditional Method of Moments relies on having
closed-form expressions for the moments of the parametric
distribution family. Similarly, the Matching of Quantiles
procedure, as delineated by [11, 29], hinges on the utilization
of expressions for the quantile function. In the realm of
portfolio optimization, the availability of simple expressions
for the mean and variance of portfolio returns simplifies the
formulation of a Markowitz portfolio optimization problem.
To address various challenges, the application of parametric
methods is contingent upon the existence of a closed-form
expression for a specific characteristic of the parametric
distribution family.

Fortunately, closed-form expressions are accessible for
certain frequently used characteristics of various distributions.
These encompass features like moments, quantiles, and
the cumulative distribution function (CDF). Nevertheless,
in the past two decades, novel fundamental characteristics,
such as the superquantile, have surfaced from the field of
quantitative risk management, finding extensive applications
in disciplines like financial engineering, civil engineering,
and environmental engineering (as evidenced in works like
[6, 25, 27]). Additionally, closed-form expressions for
these features, designed to fit a broad range of commonly
used parametric distribution families, have not been widely
disseminated. While they initially emerged from specific
engineering applications, many of these features exhibit a
high degree of generality and can be viewed as fundamental
properties of a random variable, much like the mean or
quantile. Consequently, integrating these features into
parametric methods is a logical proposition. However, in order
to make their application more practical, we need to formulate
closed-form expressions.

Our primary objective is to formulate expressions for the
quantile and superquantile across a range of distribution
families. Recent advancements in financial risk theory have
placed a strong emphasis on measuring tail risk. The
concept of a coherent risk measure was introduced by [2],
and the superquantile, also known as Conditional Value
at Risk (CVaR) in financial literature, was introduced by
[25]. This measure has come to be regarded as a preferred
characterization of tail risk when compared to the quantile
or Value-at-Risk (VaR). While some closed-form expressions
exist for utilizing the superquantile in parametric procedures
(as seen in works such as [1, 15, 25]), the range of distributions
considered within each of these sources is restricted.

In this context, our study aims to push the boundaries
of portfolio risk measurement by proposing innovative
approaches to assess quantiles and superquantiles. We
consider a portfolio consisting of stocks from four technology
giants: Apple Inc. (AAPL), Microsoft Corporation (MSFT),
Alphabet Inc. (GOOGL), and Tesla, Inc. (TSLA). These
stocks represent major assets in the technology and automotive
sectors, and their performances significantly impact the
portfolios of investors worldwide.

The fundamental innovation of our approach lies in the
use of specific probability distributions to model the returns
of these stocks. We explore Exponential, Gumbel, Frechet,
and α-stable distributions for this modeling. By applying
these new methodologies, we seek to obtain a more accurate
assessment of the financial risks associated with such a
dynamic asset portfolio.
Our approach is based on the idea that understanding quantiles
and superquantiles is essential for anticipating risk scenarios
and making informed portfolio management decisions. The
new approaches we present allow for a better grasp of extreme
situations and potential shocks to which the portfolio may be
exposed.

In the remainder of this article, we will describe these new
methodologies in detail, highlighting their advantages over
conventional approaches. We will then present the results
of our application to the AAPL, MSFT, GOOGL, and TSLA
portfolio, illustrating how these approaches enhance financial
risk management. This study opens new perspectives for
investment decision-making and portfolio management in a
complex and ever-evolving financial environment.

2. Preliminaries and Notations

2.1. Value-at-risk and Conditional Value at Risk

When dealing with the optimization of tail probabilities, it
is common to encounter constraints or objectives related to the
probability of exceeding (POE) a certain threshold, P(X)

x =
P(X > x), or its associated quantile of order ψ (Value-at-risk
V aRψ(X) or q(X)

ψ ):

V aRψ(X) = q
(X)
ψ = min{x ∈ R | P(X ≤ x) ≥ ψ} (1)

with 0 < ψ < 1 which designates the probability level.
A notable breakthrough occurred in the work of [25,

26] when they introduced a new concept known as the
superquantile or Conditional Value at Risk (CVaR). The CVaR
serves as a measure of uncertainty akin to the VaR, albeit
possessing superior mathematical characteristics. In precise
terms, the Conditional value-at-risk (CVaR) or superquantile
for a variable X is defined as,

CV aRψ(X) = q̃
(X)
ψ = E[X | X > q

(X)
ψ ]

=
1

1− ψ

∫ +∞

qXψ

xf(x)dx

=
1

1− ψ

∫ 1

ψ

q(X)
p dp. (2)

Analog to q(X)
ψ , the superquantile (CVaR) can be employed

to evaluate the distribution’s tail. However, the CVaR
is notably more manageable within optimization scenarios.
Additionally, it possesses a crucial attribute by accounting for
the magnitude of events within the tail.

[27] has introduced the concept of buffered probability
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in the context of structural design and optimization, this
is often referred to as the Buffered Probability of Failure
(bPOF). Specifically, for a continuously distributed variable
X , bPOE at the threshold x is defined as follows, where
supX represents the essential supremum of X and threshold
x ∈ [E[X]; supX].

P̃(X)
x = {1− ψ | q̃(X)

ψ = x}. (3)

Much like the CVaR, bPOE serves as a more resilient metric
for assessing tail risk since it takes into account not only
the likelihood of losses/events surpassing the threshold x but
also the magnitude of these prospective events. Furthermore,
similar to the CVaR, bPOE can be expressed as the singular
minimum point of a one-dimensional convex optimization
problem, as described by [22] and [16] in the following
formulas, where [A]+ = max{0, A}.

P̃(X)
x = min

λ≥0
E[λ(X − x) + 1]+ = min

τ<x

E[X − τ ]+

x− τ
(4)

q̃
(X)
ψ = min

τ
τ +

E[X − τ ]+

1− ψ
. (5)

It’s important to emphasize that these formulas are
applicable to random variables with real values in a general
sense, not exclusively to those with continuous distributions.
Additionally, it’s worth mentioning that the argmin value
obtained from both the optimization formulas for bPOE and
superquantile corresponds to the quantile. In the formula used
to calculate bPOE, the argmin is given by τ∗ = q

(X)
ψ where

ψ = 1 − P̃(X)
x and λ∗ = 1

1−τ∗ for the other representation.
In the formula used to compute the superquantile, the argmin
corresponds to τ∗ = q

(X)
ψ where ψ was the desired probability

level for calculating the CVaR.

2.2. Characterization of a α -Stable Distribution

Definition 2.1. Let X be a random variable, X is called to
be a stable law or α−stable distribution random variable if
∀(a, b) ∈ R∗+ × R∗+, ∃c > 0 and k ∈ R such that:

aX1 + bX2
d
= cX + k. (6)

With X1 and X2 are two random independent variable
copies of X;

d
=: designates convergence in distribution.
If k = 0 then the distribution is strictly stable.
Definition 2.2. A random variable X is said to have a α-

stable distribution if and only if, for any integer n ≥ 1 and for
any family X1, X2, · · · , Xn of i.i.d random variables of the
same law as X , ∃(an, bn) ∈ R∗+ × R such that:

(X1 +X2 + · · ·+Xn)− bn
an

d
= X. (7)

Variables with a Levy-stable distribution have the
disadvantage of not having (except in three cases) explicit

forms for the probability density and the distribution function.
Definition 2.3. A random variable X with a α -stable law is

typically described by its characteristic function ∆X defined
on R by:

∆X(t) = E[exp(itx)] = exp(iµt− gα,β,σ(t)) (8)

where:

gα,β,σ(t) =

{
σα|t|α[1− iβsign(t) tan(πα2 )] if α 6= 1
σ|t|[1 + 2

π iβsign(t)(log |t|] if α = 1

with sign(t) =
t

|t|
=

 1 if t > 0
0 if t = 0
−1 if t < 0

and having several representations according to the different
parameterizations of the stable laws. The most famous of these
representations is given in [28] and [19].

The α−stable law is thus characterized by four real
parameters Ψ = (α, β, µ, σ). The parameter α, called
characteristic exponent or stability index, is an indicator of
the degree of thickness of the tails of the distribution: the
smaller it is, the thicker the tails are which corresponds to
very large fluctuations. It is the most important parameter,
it is between 0 and 2 (0 < α ≤ 2). Its maximum value
α = 2, corresponds to a particular stable law: the Gaussian
law or normal law. β is the parameter of dissymmetry, it
varies between -1 and 1 (−1 ≤ β ≤ 1) and when it is null,
the distribution is symmetrical with respect to µ. When α
approaches 2, β loses its effect leading to a trend towards
the normal distribution.The parameters µ ∈ R and σ >
0 represent the usual characteristics of position and scale
respectively with the remark that for the Gaussian distribution,
the standard deviation is σ

√
2. Finally, a random variable

X of stable distribution will be noted, according to [28], by:
X ∼ Sα(β, µ, σ).The three exceptions mentioned above are
the very famous Gaussian law S2(0, µ, σ). and the less known
Cauchy’s law S1(0, µ, σ). and Levy’s law S 1

2
(1, µ, σ).The

stable law has an additivity property according to which the
sum of two independent stable random variables of the same
stability index α is still stable with the same characteristic
exponent α. This very interesting property is used in finance
to study portfolios where two assets with the same value for
α can be considered together. One of the particularities of the
stable distribution is that it has infinite variance as soon as α
is strictly less than 2. In fact, the moments of order p ∈ N of
X ∼ Sα(β, µ, σ) are such that for α = 2, E|X|p < +∞, ∀p.

E|X|p =

{
<∞ if p < α > 0
=∞ if p ≥ α.

More precisely, it is shown that (see for example [28])

lim
t→∞

tαP(X > t) = Cα
1 + β

2
σα;

lim
t→∞

tαP(X < −t) = Cα
1− β

2
σα
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where Cα is a constant given by:

Cα =

(∫ ∞
0

x−α sinxdx

)−1

=

{
1−α

Γ(2−α) cos(πα2 )
if α 6= 1,

2
π if α = 1.

with Γ(θ) is the Euler gamma function defined for θ > 0, by:

Γ(θ) =

∫ +∞

0

xθ−1e−xdx. (9)

We can thus see that the stable law takes into account
the distribution tails which are often carriers of essential
information, whereas the Gaussian law neglects these tails thus
leading to an error which can be fatal for the investor. The
disadvantage of the characteristic function 8 is that it is not
continuous if α = 1 which makes it not adapted to numerical
calculations and for these reasons [31] proposed another

parameterization called S0
α which is usable for numerical

calculations. simulate stable laws, there is an algorithm
developed by [3]. This one allows to generate a law
Sα(β, 0, 1). To obtain a law Sα(β, µ, σ), with α ∈]0, 2] and
β ∈ [−1, 1]. The parameters α and σ for this generator are
very well estimated by the method of [17]. The parameters
µ and β are correctly estimated by the method of [17] for
small values of β, which is often the case for stock exchange
chronicles. A bibliography of methods for estimating the
parameters of a α-stable law has been compiled by [4, 5, 13,
14, 24, 30] etc...

Figure 1. Influences of the parameters of the α-stable distribution on its PDF.

The PDF of a standard random variable α-stable law in
the S0 representation (see [18] for more details) i.e. X ∼
S0
α(1, β, 0).
The figure 1 illustrates the influence of each parameter of the

α-stable distribution on its probability density function (PDF).

3. Main Results and Numerical
Simulation

In this section we present the key findings of our in-
depth study on portfolio risk measurement. We have
developed innovative approaches to assess quantiles (VaR) and
superquantiles (CVaR) using various probability distributions,
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including the Frechet distribution, exponential distribution,
Gumbel distribution, Logistic distribution and the α-stable
distribution.

Frechet’s distribution
Recall that X ∼ Fr(ε) then its CDF, PDF, expectation and

variance are given by respectively:

F (x) =

{
e−x

−ε
, for x ≥ 0

0, otherwise
;

f(x) =

{
− ε
x1+ε e

−x−ε
, for x ≥ 0

0, otherwise.

E[X] = Γ(1− 1

ε
) for ε > 1;

σ2[X] = Γ(1− 2

ε
)− (Γ(1− 1

ε
))2 for ε > 2.

Proposition 3.1. Let X be a random variable such that X ∼
Fr(ε) Frechet’s law of parameter ε > 0 then the quantile q(X)

ψ

and the superquantile q̃(X)
ψ of the random variable X are:

q
(X)
ψ = (− lnψ)−

1
ε ; q̃

(X)
ψ =

−1

1− ψ
ΓL(
−1

ε
+ 1,− lnψ),

with ΓL(u, v) =
∫ v

0
pu−1e−pdp: the lower incomplete gamma

function.
Proof. We have:

q
(X)
ψ = min{x ∈ R | F (x) ≥ ψ}

= min{x ∈ R | e−x
−ε
≥ ψ}

= min{x ∈ R | x ≥ (− lnψ)−
1
ε }

= (− lnψ)−
1
ε and

q̃
(X)
ψ =

1

1− ψ

∫ 1

ψ

qXp dp

=
1

1− ψ

∫ 1

ψ

(− ln(p))−
1
ε dp. (10)

Let: y−ε = ln(p) =⇒ −εy−1−εdy = 1
pdp

=⇒ dp = −pεy−1−εdy = −εey−εy−1−εdy

For p = 1 then y = +∞ and for p = ψ then y = (ln(ψ))
−1
ε .

Then we have:

q̃
(X)
ψ =

ε

1− ψ

∫ +∞

(ln(ψ))
−1
ε

y−εey
−ε
dy. (11)

Now let: t = −y−ε =⇒ dy = 1
ε t
−1− 1

ε dt. From equation
11 we have:

q̃
(X)
ψ =

−1

1− ψ

∫ − lnψ

0

t−
1
ε e−tdt

=
−1

1− ψ
ΓL(
−1

ε
+ 1,− lnψ). (12)

Proposition 3.2. If X is a random variable such that X ∼
FrG(s, ε,m) is a generalized Frechet distribution, then its
quantile and superquantile are:

q
(X)
ψ =

(− lnψ)−
1
ε

s
+m;

q̃
(X)
ψ =

−1

s(1− ψ)
ΓL(
−1

ε
+ 1,− lnψ) +m.

Proof. The distribution function of X ∼ FrG(s, ε,m) is
given by:

F (x) =

{
e−( x−ms )

−ε
, for x > m

0, otherwise.
(13)

We have:

q
(X)
ψ = min{x ∈ R | F (x) ≥ ψ}

= min{x ∈ R | e−( x−ms )
−ε
≥ ψ}

= min{x ∈ R | x ≥ (− lnψ)−
1
ε

s
+m}

=
(− lnψ)−

1
ε

s
+m.

And we find:

q̃
(X)
ψ =

1

1− ψ

∫ 1

ψ

qXp dp =
1

1− ψ

∫ 1

ψ

(
(− lnψ)−

1
ε

s
+m)dp

= m+
1

1− ψ

∫ 1

ψ

(− ln(p))−
1
ε dp. (14)

Using the same reasoning as for solving the equation 10, we find that the equation 14 is:

q̃
(X)
ψ = m+

−1

s(1− ψ)
ΓL(
−1

ε
+ 1,− lnψ). (15)
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Exponential distribution
If X ∼ exp(φ) with E(X) = σ(X) = 1

φ then its PDF and CDF are respectively given by:

f(x) =

{
φe−φx; if x ≥ 0

0, otherwise,

F (x) =

{
1− e−φx; if x ≥ 0

0, otherwise.

Proposition 3.3. LetX a random variable such thatX ∼ exp(φ) with φ > 0 then the quantile qψ(X), the superquantile q̃ψ(X)

and Buffered Probability of Exceedance (bPOE) P̃x(X) of X are given respectively by:

qψ(X) = − ln(1− ψ)

φ
;

q̃ψ(X) =
− ln(1− ψ) + 1

φ
;

P̃x(X) = e1−φx.

Proof. We have:

qψ(X) = min{x ∈ R | P(X ≤ x) ≥ ψ}
= min{x ∈ R | F (x) ≥ ψ}
= min{x ∈ R | 1− e−φx ≥ ψ}

= min{x ∈ R | x ≥ − ln(1− ψ)

φ
}

= − ln(1− ψ)

φ
.

Similarly,

q̃ψ(X) =
1

1− ψ

∫ 1

ψ

qp(X)dp

=
−1

φ(1− ψ)

∫ 1

ψ

ln(1− p)dp

=
−1

φ(1− ψ)

∫ 1−ψ

0

ln(y)dy

=
− ln(1− ψ) + 1

φ
. (16)

Because we have assumed that: y = 1− p and using the fact that:∫
ydy = y ln(y)− y + c.

We can then see that:

P̃x(X) = {1− ψ | q̃ψ(X) = x}

= {1− ψ | − ln(1− ψ) + 1

φ
= x}

= {1− ψ | ln(1− ψ) = 1− φx}
= {1− ψ | 1− ψ = e1−φx}
= e1−φx.
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Next, we establish a link between Buffered Probability of Exceedance (bPOE) and Probability of Exceedance (POE), as well
as between the superquantile and the quantile.

Proposition 3.4. Let X ∼ exp(φ), with mean µ = 1
φ . Then:

P̃x(X) = P(X > x− µ); and q̃ψ(X) = qψ(X) + µ.

Proof. We know that if X ∼ exp(φ) then its cumulative distribution function is given by: P(X ≤ x) = 1 − e−φx. From the
proposition 3.3, we know that:

P̃x(X) = e1−φx = e−φ( −1
φ +x).

Then, as µ = 1
φ it follows that:

P̃x(X) = e−φ(x−µ) = 1− P(X ≤ x− µ) = P(X > x− µ).

From the proposition 3.3, the equality of CVaR is obtained:

q̃ψ(X) =
− ln(1− ψ) + 1

φ
=
− ln(1− ψ)

φ
+

1

φ
= qψ(X) + µ.

Gumbel’s distribution
Since X ∼ G(a, b) then recall that its CDF and PDF are:

F (x) = exp(− exp(−x− a
b

));

f(x) =
1

b
exp(− exp(−x− a

b
)) exp(−x− a

b
)

E(X) = a+ bγ and σ2(X) = π3b2

6 with γ u 0.5772: Euler’s constant.
Proposition 3.5. Let X ∼ G(a, b) Gumbel’s law of parameters a and b then the quantile q(X)

ψ , the superquantile q̃(X)
ψ and the

probability of overshoot P̃ (X)
x of the random variable are given by respectively:

q
(X)
ψ = − ln(− ln(ψ))

b
+ a; q̃

(X)
ψ = a; P̃

(X)
ψ =

1

e
.

Proof. We have:

q
(X)
ψ = min{x ∈ R | F (x) ≥ ψ}

= min{x ∈ R | exp(− exp(−x− a
b

)) ≥ ψ}

= min{x ∈ R | − exp(−x− a
b

) ≥ ln(ψ)}

= min{x ∈ R | x ≤ − ln(− ln(ψ))

b
+ a}

= − ln(− ln(ψ))

b
+ a.

Then

q̃
(X)
ψ =

1

1− ψ

∫ 1

ψ

qXp dp

=
−1

b(1− ψ)

∫ 1

ψ

ln(− ln(ψ))dp+ a.

Let y = − ln p =⇒ p = e−y =⇒ dp = −pdy = e−ydy
For p = 1 =⇒ y = 0. and for p = ψ =⇒ y = − lnψ. Then we have:

q̃
(X)
ψ = a+

−1

b(1− ψ)

∫ 0

− lnψ

e−y ln(y)dp. (17)
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From equation 17 using the technique of integration by parts and remembering the primitive of ln:∫
ln(t) = t ln(t)− t+ C

then we find that:
q̃

(X)
ψ = a.

P̃X(x) = {1− ψ | q̃Xψ = x} = {1− ψ | a = x} = F (a) =
1

e
.

Logistic Distribution If X ∼ Logistic(θ, r) with parameters θ ∈ R, r > 0, where E[X] = θ and σ2(X) = r2π2

3 and its
cumulative distribution function (CDF) as well as its probability density function (PDF) are defined by:

F (x) =
1

1 + e−
x−θ
r

, f(x) =
e−

x−θ
r

r
(

1 + e−
x−θ
r

)2 .

Here, we derive an implicit expression for the superquantile of the logistic distribution and formulate a root-finding problem
to compute the bPOE. Additionally, we observe a correspondence between these quantities and the binary entropy function.

Proposition 3.6. Let X ∼ Logistic(θ, r), then

qψ(X) = θ + r ln

(
ψ

1− ψ

)
(18)

q̃ψ(X) = θ +
rH(ψ)

1− ψ
. (19)

Where H(ψ) is the binary entropy function

H(ψ) = −ψ ln(ψ)− (1− ψ) ln(1− ψ).

Furthermore, for all x ≥ θ, if ψ is a solution of the equation,

H(ψ)

1− ψ
=
x− θ
r

then p̃x(X) = 1− ψ. Furthermore, p̃x(X) = 1− ψ if ψ is the solution to the transformed system,

(1− ψ)ψ
ψ

1−ψ = e−( x−θr ).

Take note of both functions H(ψ)
1−ψ and (1− ψ)ψ

ψ
1−ψ are one-dimensional, convex, and monotonic in ψ ∈ [0, 1], consequently,

unique solutions exist and can be readily identified using root-finding methods.
Proof. To establish the expression of the quantile poses no problem, one simply applies the definition. As for the superquantile,

we have:

q̃ψ(X) =
1

1− ψ

∫ 1

ψ

qp(X)dp

=
1

1− ψ

∫ 1

ψ

θ + r ln

(
ψ

1− ψ

)
dp

= θ +
r

1− ψ

∫ 1

ψ

ln(p)− ln(1− p)dp

= θ +
r

1− ψ

(∫ 1

ψ

ln(p)dp+

∫ 1

ψ

− ln(1− p)dp
)
.

By utilizing the fact that
∫

ln(y)dy = y ln(y)− y + C, we find:
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q̃ψ(X) = θ +
r

1− ψ
(−1− ψ lnψ + ψ − (1− ψ) ln(1− ψ) + (1− ψ))

= θ +
r

1− ψ
(−ψ lnψ − (1− ψ) ln(1− ψ))

= θ +
r

1− ψ
H(ψ).

In deriving the bPOE, we adhere to its definition, aiming to
find ψ as a solution to θ + r

1−ψH(ψ) = x. The transformed
system emerges from the amalgamation of logarithms in
the superquantile formula and the application of exponential
transformations. Moreover, the minimization formula can
be employed for bPOE computation. This approach offers
the extra benefit of concurrently computing the quantile
q1−p̃x(X)(X).

Proposition 3.7. If X ∼ Logistic(θ, r), then

p̃x(X) = min
τ<x

r ln
(

1 + e−( τ−θr )
)

x− τ
,

which is a convex optimization problem over τ ∈ (−∞, x).
Furthermore, the minimum occurs at τ such that,

r ln
(

1 + e−( τ−θr )
)

x− τ
= 1− F (τ).

Proof. This stems from the expression E[X − τ ]+ =∫∞
τ

(1 − F (t))dt. Upon evaluating this integral for X ∼
Logistic(θ, r), we obtain E[X − τ ]+ = r ln

(
1 + e−( τ−θr )

)
,

which can be inserted into the bPOE minimization formula.
The second part of the proposition is deduced from the gradient
of the objective function with respect to τ :

r ln
(

1 + e−( τ−θr )
)

(x− τ)2
− e−( τ−θr )

(x− τ)
(

1 + e−( τ−θr )
) .

Setting this gradient to zero and simplifying, we obtain the
indicated optimality condition.
α-stable distribution
Proposition 3.8. Let X ∼ S1

α(β, µ, σ) 1-parameterization
then the quantile and superquantile are given by:

1. For 0 < α < 2 and −1 < β ≤ 1

q
(X)
ψ = exp

(
−α ln

(
2ψ

(1 + β)Cασα

))
; q̃Xψ =

2

α(1− ψ)

(
(1 + β)Cασ

α

2ψ

)α
.

2. For 0 < α < 2 and −1 ≤ β < 1

q
(X)
ψ = exp

(
−α ln

(
2ψ

(1− β)Cασα

))
; q̃Xψ =

2

α(1− ψ)

(
(1− β)Cασ

α

2ψ

)α
.

Proof. In [28] (page 18 Property 1.2.15) and [19] (page 13 Theorem 1.2) it is shown that:
For 0 < α < 2 and −1 < β ≤ 1 we have:

lim
x→∞

xαP(X > x) = Cα
(1 + β)

2
σα. (20)

For 0 < α < 2 and −1 ≤ β < 1 we have:

lim
x→∞

xαP(X < −x) = Cα
(1−β)

2 σα. (21)

It should be noted that there is not yet an explicit expression for the cumulative distribution function of the stable distribution,
but there are approximations available in some works, such as for example [19, 28]. Then from equations 20 and 21 one can
approximate the cumulative distribution function with:

For 0 < α < 2; −1 < β ≤ 1

F (x, α, β, µ, σ) u Cα
(1 + β)

2
σαx−α; (22)

For 0 < α < 2; −1 ≤ β < 1

F (x, α, β, µ, σ) u Cα
(1− β)

2
σαx−α. (23)
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As a result for 0 < α < 2 and −1 < β ≤ 1 we have:

q
(X)
ψ = min {x ∈ R | F (x, α, β, µ, σ) ≥ ψ}

= min

{
x ∈ R | Cα

(1 + β)

2
σαx−α ≥ ψ

}
= min

{
x ∈ R | x ≤ exp

(
−α ln

(
2ψ

(1 + β)Cασα

))}
= exp

(
−α ln

(
2ψ

(1 + β)Cασα

))
.

Since F is symmetrical about β so by analogy for 0 < α < 2
and −1 ≤ β < 1 the quantile is:

q
(X)
ψ = exp

(
−α ln

(
2ψ

(1− β)Cασα

))
.

Now we need to calculate the superquantiles. Let’s start
with the case for 0 < α < 2 and −1 < β ≤ 1 then we’ll
deduce the case if 0 < α < 2 and −1 ≤ β < 1.

q̃Xψ =
1

1− ψ

∫ 1

ψ

q(X)
p dp

=
1

1− ψ

∫ 1

ψ

exp

(
−α ln

(
2p

(1 + β)Cασα

))
dp

=
((1 + β)Cασ

α)
α

1− ψ

∫ 1

ψ

exp (−α ln (2p)) dp

=
2

α(1− ψ)

(
(1 + β)Cασ

α

2ψ

)α
so by analogy for 0 < α < 2 and −1 ≤ β < 1 the
superquantile is:

q̃Xψ =
2

α(1− ψ)

(
(1− β)Cασ

α

2ψ

)α
.

4. An Approach to Portfolio
Optimization Technique

Frequently, a parametric approach to optimizing portfolios
involves assuming a specific distribution for portfolio returns.
Particularly in a risk-averse context, having analytical
expressions for the superquantile and bPOE based on the
specified distribution facilitates the formulation of a practical
portfolio optimization problem. In this section, we illustrate
that our derived formulas for the superquantile and bPOE
unveil crucial properties concerning portfolio optimization
problems formulated under specific distributional assumptions
for portfolio returns.

While portfolio optimization with the superquantile is
widespread, we start by elucidating which analytical
expressions of the superquantile allow for the formulation
of feasible portfolio optimization problems. Conversely,
portfolio optimization with the bPOE is uncommon, and we
demonstrate its potential advantages over the superquantile

approach. Specifically, optimizing with the superquantile
necessitates fixing the probability level ψ. It becomes apparent
that, for a fixed ψ, the optimal superquantile portfolio may
vary depending on the chosen distribution to model returns.
We establish that assuming portfolio returns follow a Logistic
or Gumbel distribution results in identical minimal bPOE
portfolios for a fixed threshold x, irrespective of the selected
distribution. This implies a singular optimal portfolio in x-
bPOE for various distributional choices.

It is noteworthy that in this section, we consider asset returns
C, as is customary in financial problems, where the loss is the
opposite of the return:

X = −C and qψ(X) = −q1−ψ(C).

The portfolio optimization problem aims to determine a
vector of asset weights C ∈ Rn for a set of n assets with
unknown random returns
C = [C1, C2, . . . , Cn] , solving the following optimization

problem,

max
δ∈Rn

H(δ, C)

s.t. f1i(δ, C) ≤ 0, i = 1, . . . , I

f2j(δ, C) = 0, j = 1, . . . , J (24)
δT 1 = 1

l ≤ δ ≤ u .

where:
1. H(δ, C) is a function to maximize;
2. The functions f2j(δ, C) and f1i(δ, C) impose inequality

and equality constraints, respectively;
3. And the vectors l, u impose upper and lower bounds on

the individual weights of the assets.
Consider a classic example of the Markowitz optimization

problem, aiming to maximize expected utility. This involves
a weighted blend of expected return and its variance,
incorporating a positive compromise parameter λ ≥ 0:

max
δ∈Rn

δT η − λδTΣδ

s.t. δT 1 = 1 (25)
l ≤ δ ≤ u.

A crucial aspect of the stochastic portfolio return δTC,
evident in the Markowitz problem and later utilized in this
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section, is that the expected value E
[
δTC

]
and the variance

σ2
(
δTC

)
can be expressed as δT η and δTΣδ respectively.

Here, η ∈ Rn denotes the vector of expected returns for the n
assets, and Σ ∈ Rn×n is the covariance matrix for the n assets.
This enables the representation of the expected value and
variance of the portfolio return as functions of δ, consequently
allowing the formulation of an optimization problem with the
decision vector δ.

4.1. Superquantile and bPOE Optimization with Qualified
Distributions

As we focus on asset returns instead of losses, it is necessary
to establish the superquantile using this notation. The

superquantile denotes the anticipated loss above the quantile,
signifying the conditional expected value of losses in the right
tail. Consequently, in the context of returns, it mirrors the
conditional expected value of returns in the left tail, delineated
by the left superquantile:

−q̃1−ψ(C) =
1

1− ψ

∫ 1−ψ

0

qp(C)dp.

Alternatively minimized when considering the negative
counterpart.

Utilizing the analytical formulas for the right superquantile
q̄ψ(C) derived in the previous sections, we can compute the
left superquantile q̃ψ(C) as follows:

ψq̃ψ(C) + (1− ψ)q̄ψ(C) =

∫ 1

0

qp(C)dp = E[C] =⇒ −q̃1−ψ(C) = − 1

1− ψ
(E[C]− ψq̄1−ψ(C)) .

Since −q̃1−ψ(C) = q̄ψ(X), the bPOE is defined as

p̄x(X) = {1− ψ | q̄ψ(X) = x} = {1− ψ | q̃1−ψ(C) = −x} .

4.1.1. Qualified Distributions for Portfolio Optimization
The optimization problems in portfolio management,

employing superquantile or bPOE, characterize their objective
function or constraints in terms of q̃1−ψ

(
δTC

)
or p̄x

(
δTC

)
.

To formulate such problems using a specified distribution,
we initiate the process by defining a set of qualified
distributions under consideration. These qualified distributions
adhere to a predefined set of conditions, ensuring their
coherence within portfolio theory. Additionally, they
support a superquantile/bPOE expression, facilitating their
representation with respect to the decision variable δ:

Definition 4.1. (Qualified Distribution) Qualified
Distribution B meets the following conditions:

1. (C1) δTC ∼ B =⇒ q̃1−ψ
(
δTC

)
= δT η −√

δTΣδζ(ψ,Θ), where ζ(ψ,Θ) is a function that

exclusively relies on ψ and potentially on a set of
constant parameters Θ that do not vary with δ. In
this context, η represents the vector of anticipated asset
returns, and Σ is the covariance matrix of asset returns.

2. (C1) The statistical parameters characterizing the
distribution B should be consistent with the descriptive
statistics of the real returns of the assets.

3. (C1) The shape of the Probability Density Function
(PDF) for the specified distribution B must match the
form of the empirical PDF of typical real asset returns.

Why should we establish these preconditions? Condition
(C1) ensures that the superquantile can be formulated in terms
of w. This is essential for formulating the superquantile
optimization problem.

Proposition 4.1. If we assume that δTC ∼ Logistic(µ, s)
then we have:

q̃1−ψ(C) = δT η −
√
δTΣδ

√
3(−ψ ln(ψ)− (1− ψ) ln(1− ψ))

π(1− ψ)
. (26)

Proof. Since µ = E
[
δTC

]
= δT η and δTΣδ = σ2

(
δTC

)
= s2π2

3 =⇒ s =
√
δTΣδ

√
3

π .
Recall according to the proposition 3.6 we have shown that:

q̃ψ(C) = µ+
sH(ψ)

1− ψ
=⇒ q̃1−ψ(C) = µ+

sH(1− ψ)

ψ

= µ+
s((1− ψ) ln(1− ψ)− (ψ) ln(ψ))

1− ψ
.

where H(ψ) is the binary entropy function:

H(ψ) = −ψ ln(ψ)− (1− ψ) ln(1− ψ).

Then we have:
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q̃1−ψ(C) =
1

1− ψ
(E[C]− ψq̄1−ψ(C)) =

1

1− ψ

(
µ− ψ

[
µ+

s

ψ
(−(1− ψ) ln(1− ψ)− ψ ln(ψ))

])
= µ− s

1− ψ
(−ψ ln(ψ)− (1− ψ) ln(1− ψ)) = δT η −

√
δTΣδ

√
3(−ψ ln(ψ)− (1− ψ) ln(1− ψ))

π(1− ψ)
. (27)

Proposition 4.2. If we assume that δTC ∼ exp(φ) then we have:

q̃1−ψ(C) = δT η −
√
δTΣδ

(−ψ ln(ψ))

(1− ψ)
. (28)

Proof. According to the proposition 3.3 we have shown that:

q̃ψ(C) =
− ln(1− ψ) + 1

φ
=⇒ q̃1−ψ(C) =

− ln(ψ) + 1

φ
.

Since 1
φ = E

[
δTC

]
= δT η and δTΣδ = σ2

(
δTC

)
= 1

φ2 =⇒ φ = 1√
δTΣδ

. Therefore:

q̃1−ψ(C) =
1

1− ψ
(E[C]− ψq̄1−ψ(C))

=
1

1− ψ

(
1

φ
− ψ

[
− ln(ψ) + 1

φ

])
=

1

φ
− 1

φ
.
(−ψ ln(ψ))

(1− ψ)

= δT η −
√
δTΣδ

(−ψ ln(ψ))

(1− ψ)
.

Remark 4.1. This satisfies (C1). Other examples that meet
this condition include the Gumbel and Frechet distributions.

Conditions (C2) and (C3) are straightforward checks of our
model assumptions. For instance, in the case of the exponential
distribution, where E[C] = 1

φ = σ(C), however, for real asset
returns, the sample mean is typically not equal to the sample
standard deviation.

4.1.2. Superquantile and bPOE Optimization
Another approach to the Markowitz problem is to identify

the portfolio with the lowest superquantile (29) or the minimal
bPOE (30).

min
δ∈Rn

−q̃1−ψ
(
δTC

)
s.t. δT 1 = 1 (29)

l ≤ δ ≤ u.

min
δ∈Rn

p̄x
(
δTC

)
s.t. δT 1 = 1 (30)

l ≤ δ ≤ u.

For qualified distributions, these problems can be
significantly simplified. Firstly, we observe that 29 simplifies

to 31:

max
δ∈Rn

δT η −
√
δTΣδζ(ψ,Θ)

s.t. δT 1 = 1 (31)
l ≤ δ ≤ u.

[12] establishes that the optimal solution for 31 aligns with
the optimal solution for a Markowitz optimization problem 25
when λ = ζ(ψ,Θ)

2σ(δTC)
. Consequently, the optimal superquantile

portfolio is concurrently optimal in terms of mean-variance
following Markowitz principles. Moving on to bPOE, we
discover that the scenario is notably simpler. In particular,
Proposition 4.3 outlines the following.

Proposition 4.3. If we assume that δTC ∼ D and that D is
a qualified distribution, then (30) reduces to (32).

max
δ∈Rn

δT η+x√
δTΣδ

s.t. δT 1 = 1 (32)
l ≤ δ ≤ u.

Proof. To begin with, it’s important to highlight that,
following the superquantile definition, ζ(ψ,Θ) is expected to
exhibit an increasing trend concerning ψ ∈ [0, 1].

Secondly, given that:

p̄x(X) = {1− ψ | q̃1−ψ(C) = −x} ; and

q̃1−ψ
(
δTC

)
= δT η −

√
δTΣδζ(ψ,Θ)

for qualified distributions, problem (30) can be reformulated
as follows:

min
δ∈Rn

1− ψ

s.t. −δT η +
√
δTΣδζ(ψ,Θ) = x (33)

δT 1 = 1

l ≤ δ ≤ u.
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which can then be written as follows:

max
δ∈Rn

ψ

s.t. ζ(ψ,Θ) = δT η+x√
δTΣδ

(34)

δT 1 = 1

l ≤ δ ≤ u.

Finally, considering that ζ(ψ,Θ) is a monotonically
increasing function with respect to ψ, and Θ is independent
of δ, we observe that we can express the maximization as (32)
without altering the argmin.

This proposition holds a crucial implication for portfolio
theory: the optimal bPOE portfolio for the qualified
distribution remains unaffected by the specific distribution.
Irrespective of the chosen distribution, the same portfolio
attains the minimum bPOE. The independence of bPOE
optimization from distribution assumptions enhances its

preference over superquantile optimization.

4.2. Numerical Simulation

This section presents the financial data of Apple (AAPL),
Microsoft (MSFT), Google (GOOGL), and TSLA stocks,
which will serve as the basis for our portfolio risk analysis.
We focus on the period from January 1, 2020, to October 25,
2023, to assess volatility and potential losses. Stock price
data was collected from [32] for the period from January 1,
2020, to October 25, 2023. These data are used to model stock
returns. The primary objective of this analysis is to measure
the potential risks of the portfolio consisting of AAPL, MSFT,
GOOGL, and TSLA stocks using simulation methods based
on the probability distributions we have developed in this
work. Figure 2 and Table 1 provide an overview of descriptive
statistics for the financial data of each stock during the study
period.
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Figure 2. Evolution, histogram and Daily rates of return of AAPL, MSFT, GOOGL and TSLA from january 01, 2020, to october 25, 2023.
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Table 1. Descriptive statistics of Stock price the period from January 01, 2020, to october 25, 2023.

Values

Data Min. 1st Qu. Median Mean 3rd Qu. Max S.d

AAPL 57.02 122.51 144.00 138.43 162.60 196.24 32.38971

MSFT 137.0 218.3 256.6 257.7 298.9 361.8 50.83856

GOOGL 52.82 87.28 106.81 106.59 128.67 151.25 25.10797

TSLA 24.98 149.81 222.69 207.98 266.32 411.47 87.77104

Table 2 contains a detailed list of parameters for the
stable distribution that were computed from the logarithmic
return data. These parameters were obtained using the
empirical characteristic function parameter estimation method
developed by [24]. An important observation is that the data

reveals a slight asymmetry; however, this subtle characteristic
is not accounted for in the fitting with other distributions
(Gumbel, Exponential, Frechet, Normal). In other words,
these distributions fail to fully capture the asymmetric nature
of the data.

Table 2. α-Stable law parameters extracted from the log-returns data.

α -Stable law parameters

Data α β σ µ

AAPL 1.583008914 -0.120136168 0.011551209 0.001105412

MSFT 1.6650635549 -0.1234907731 0.0112564190 0.0009459332

GOOGL 1.510423207 -0.028762124 0.011193913 0.001139006

TSLA 1.509520261 0.023024622 0.022976713 0.001835709

The results of our study demonstrate that the use of different
probability distributions, such as Exponential, Gumbel,
Frechet, and α-stable, in the calculation of VaR and CVaR
has a significant impact on portfolio risk assessment. By
comparing confidence levels of 1%, 5%, and 10%, we were
able to observe substantial variations in risk measures for
portfolios consisting of stocks from Apple Inc. (AAPL) (Table
3), Microsoft Corporation (MSFT) (Table 4), Alphabet Inc.
(GOOGL) (Table 5), and Tesla, Inc. (TSLA) (Table 6).
Traditional distributions used for VaR and CVaR calculations
provide classical risk estimates, but our novel approaches have
revealed significant nuances, especially in the distribution tails
where rare and extreme events reside. The results highlighted

that the parameters of these distributions have a substantial
impact on the measured risk levels. Our analysis demonstrated
that the α-stable approach, in particular, offers a better account
of heavy tails, which is crucial for assessing risk during
unexpected market shocks. This innovative approach provides
a better understanding of the risk scenarios to which a portfolio
could be exposed. By using different confidence levels (1%,
5%, and 10%), we obtained a comprehensive view of the
risks associated with these portfolios. Higher confidence
levels correspond to more extreme risk scenarios, and our
new methodologies provided more precise estimates for these
situations.

Table 3. Parametric Density Estimation of quantile (VaR) and Superquantile (CVaR) of AAPL stock price.

confidence levelsψ

AAPL 10%10%10% 5%5%5% 1%1%1%

Exponential VaR 0.002044284 0.002659674 0.004088567

Exponential CVaR 0.00799039 0.01686860 0.08789429

Normal VaR 0.03633901 0.04313052 0.05640414

Normal CVaR 0.0013350400 0.0003718334 0.0005761733

Gumbel VaR 0.01820652 0.02262876 0.02985461

Gumbel CVaR 0.01490864 0.01484083 0.01542274

Frechet VaR 0.004190899 0.004190899 0.004190899

Frechet CVaR 0.004190899 0.004190899 0.004190899

α-Stable VaR 0.001361574 0.0001313906 0.0007930745

α-Stable CVaR 0.002498214 0.00027120428 0.00048269686
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Table 4. Parametric Density Estimation of quantile (VaR) and Superquantile (CVaR) of MSFT stock price.

confidence levelsψ

MSFT 10%10%10% 5%5%5% 1%1%1%

Exponential VaR 0.001743903 0.002268870 0.003487807

Exponential CVaR 0.006816308 0.014389984 0.074979390

Normal VaR 0.03633901 0.04313052 0.05640414

Normal CVaR 0.001396619 0.000463257 0.000455376

Gumbel VaR 0.01774534 0.02203057 0.02903252

Gumbel CVaR 0.01454964 0.01448394 0.01504782

Frechet VaR 0.00416399 0.00416399 0.00416399

Frechet CVaR 0.00416399 0.00416399 0.00416399

α-Stable VaR 0.0002174864 0.0003076158 0.0012780612

α-Stable CVaR 0.0004447874 0.0006518319 0.0015555238

Table 5. Parametric Density Estimation of quantile (VaR) and Superquantile (CVaR) of GOOGL stock price.

confidence levelsψ

GOOGL 10%10%10% 5%5%5% 1%1%1%

Exponential VaR 0.001684959 0.002192183 0.003369919

Exponential CVaR 0.006816308 0.014389984 0.074979390

Normal VaR 0.03562591 0.04231070 0.05537575

Normal CVaR 0.0014561644 0.0005080928 0.0004250176

Gumbel VaR 0.01806254 0.02241530 0.02952760

Gumbel CVaR 0.01481648 0.01474974 0.01532250

Frechet VaR 0.004267148 0.004267148 0.004267148

Frechet CVaR 0.004267148 0.004267148 0.004267148

α-Stable VaR 0.0002164164 0.0003356518 0.0001620433

α-Stable CVaR 0.0005582853 0.0010540750 0.00018664069

Table 6. Parametric Density Estimation of quantile (VaR) and Superquantile (CVaR) of TSLA stock price.

confidence levelsψ

TSLA 10%10%10% 5%5%5% 1%1%1%

Exponential VaR 0.004908138 0.006385635 0.009816276

Exponential CVaR 0.01918420 0.04049997 0.21102616

Normal VaR 0.07383731 0.08757422 0.11442225

Normal CVaR 0.0023645164 0.0004162763 0.0015012195

Gumbel VaR 0.03648979 0.04543449 0.06004993

Gumbel CVaR 0.02981930 0.02968215 0.03085915

Frechet VaR 0.00814095 0.00814095 0.00814095

Frechet CVaR 0.00814095 0.00814095 0.00814095

α-Stable VaR 0.0011543708 0.00010684108 0.00016234935

α-Stable CVaR 0.001268730 0.0001574391 0.0003396768

5. Conclusion

In conclusion, our study falls within the realm of portfolio
risk measurement, shedding light on innovative approaches to
assess quantiles and superquantiles. Our primary objective
was to enhance the understanding of financial risks associated
with a portfolio consisting of technology giants such as Apple

Inc. (AAPL), Microsoft Corporation (MSFT), Alphabet Inc.
(GOOGL), and Tesla, Inc. (TSLA).

Through our research, we adopted a fresh perspective
by utilizing specific probability distributions, namely
Exponential, Gumbel, Frechet, and α-stable distributions, to
model the returns of these major assets. The results obtained
reveal that this innovative approach allows for a more accurate
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evaluation of financial risks, particularly in a swiftly evolving
financial landscape.

By examining quantiles and superquantiles, we were able
to anticipate more intricate risk scenarios, thereby providing
investors and portfolio managers with vital insights for
informed decision-making. This profound understanding of
extreme situations and potential shocks is crucial for devising
robust portfolio management strategies.

Our findings underscore the significance of innovation in the
field of risk measurement. Traditional portfolio management
tools can benefit from these novel methodologies for better
alignment with the realities of today’s financial market.

Ultimately, our study opens up new horizons for decision-
making in investment and portfolio management. In a complex
and ever-changing financial environment, the ability to assess
and anticipate risks is a valuable asset for investors and
portfolio managers. We hope that our work will inspire
further research in this domain, contributing to an improved
understanding and management of financial risks.
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