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Abstract 

The stabilization of the non-linear inverted pendulum system requires a robust control strategy, as this system is inherently 

unstable and sensitive to disturbances. This research utilizes Lagrangian mechanics, a powerful technique in analytical dynamics, 

to derive the mathematical representation of the system. By applying the principles of Lagrangian dynamics, we can accurately 

model the energies involved and derive the equations of motion that govern the pendulum’s behavior. Following this, state-space 

feedback is employed to determine the Proportional, Integral, and Derivative (PID) values essential for effective control. This 

control strategy is particularly useful due to its ability to minimize error over time and ensure stability. To further enhance the 

control process, a comprehensive mathematical model is developed to establish the transfer function that correlates the 

pendulum's angle with the displacement of the cart. This relationship is crucial for understanding how changes in the cart's 

position affect the pendulum's stability. To validate the proposed control law, extensive simulations are conducted, allowing for 

comparative analysis against an Integer Order Controller. These simulations not only highlight the effectiveness of the PID 

controller but also provide insights into the dynamic behavior of the system under various conditions. The results demonstrate 

significant improvements in settling time and overshoot, showcasing enhanced performance metrics for the selected objective 

functions. This research contributes to the broader field of control systems engineering, suggesting that advanced control 

strategies can effectively manage complex, non-linear systems. 
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1. Introduction 

The inverted pendulum problem represents a fundamental 

challenge in control theory, serving not only as a classic 

example of dynamic instability but also as a vital benchmark 

for the evaluation and development of innovative control 

algorithms across various applications. In an inverted pen-

dulum system, a pendulum is attached to a cart that can move 
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horizontally along a track. The goal is to keep the pendulum 

upright by moving the cart back and forth, while minimizing 

the movement of the cart. 

This problem has many practical applications, such as in 

robotics, aerospace, and offshore drilling. By studying and 

developing control strategies for inverted pendulum systems, 

researchers can gain insights into how to control other com-

plex systems with unstable dynamics. 

Moreover, the inverted pendulum problem is also used as a 

teaching tool in control theory courses, as it provides a simple 

and intuitive example to illustrate concepts such as stability, 

controllability, and observability. By studying this problem, 

students can gain a deeper understanding of control theory 

and its practical applications. 

The inverted pendulum system is a highly complex and 

challenging control problem due to its nonlinear dynamics, 

strong coupling, and instability. 

Over the years, researchers have devised a diverse range of 

advanced control strategies to tackle the inverted pendulum 

problem, including, but not limited to, traditional double-loop 

PID control, fuzzy logic systems, state feedback control, 

sliding mode variable structure control, genetic algorithms, 

and more sophisticated approaches such as model predictive 

control, adaptive control, and robust control, each offering 

unique advantages and insights into the system's dynamics. 

These methods have their strengths and weaknesses, and the 

choice of control strategy depends on the specific require-

ments of the control problem. Modern methods for controlling 

the inverted pendulum system primarily use traditional PID 

control, state feedback, fuzzy logic, genetic algorithms, and 

sliding mode control [1-9]. 

Fractional order control has been applied to the inverted 

pendulum control system in recent years, and it has shown 

promising results. The use of fractional calculus allows for 

more flexible and adaptable control strategies, which can 

better handle the nonlinear and uncertain dynamics of the 

system. 

Fractional order control can provide better performance in 

terms of stability, robustness, and disturbance rejection com-

pared to traditional integer order control methods. It also offers 

more degrees of freedom in the design of control laws, which 

can lead to more efficient and effective control strategies. 

Overall, the application of fractional order control to the 

inverted pendulum control system is an exciting development 

in control theory, and it has the potential to improve the per-

formance of this classic control problem [10-12]. The Integer 

Order PID (IOPID) controller is generalized to Fractional 

Order PID (FOPID) by introducing adjustable parameters λ 

and µ, where 0 < λ < 2 and 0 < µ < 2, which modify the orders 

of the integral and differential operators, resulting in the fol-

lowing mathematical model of the FOPID controller. 

The Fractional Order PID (FOPID) controller introduces 

two adjustable parameters, λ for the integral order and µ for 

the derivative order, compared to the Integer Order PID (IO-

PID) controller. This enhanced flexibility enables a broader 

adjustable range and improves control quality, resulting in 

superior performance for the control system [7, 13-19]. 

2. Inverted Pendulum System Modeling 

The physical representation of a first order inverted pen-

dulum system is shown in Figure 1. The inverted pendulum on 

a cart system is a classic example of a control problem that is 

commonly used to illustrate concepts in control theory. The 

system consists of a cart that moves along a horizontal track 

and a pendulum that is mounted on the cart and is free to rotate 

in the vertical plane. To model this system, we can use the 

principles of Newtonian mechanics. Let's assume that the cart 

has mass M and the pendulum has mass m. The cart is free to 

move in the horizontal direction and is subject to a force F. 

The pendulum is subject to the force of gravity and a torque τ 

that acts on it due to its angular acceleration. We can define 

the position of the cart along the track as x, and the angle of 

the pendulum with respect to the vertical as θ. Using these 

variables, we can write the equations of motion for the system 

as follows: 

2
..

M   F  m sx ( )l in                (1) 

..
2ml   mlg u( sin )                 (2) 

Where x  and θ  represent the second derivative of x and θ 

with respect to time, respectively. 

These equations can be used to design a control system for 

the inverted pendulum on a cart. One approach is to use a 

feedback control strategy, where the position and velocity of 

the cart are measured, and the torque u is adjusted to keep the 

pendulum upright. This can be done using a proportion-

al-integral-derivative (PID) controller or other control algo-

rithms. 

Another approach is to use a state-space representation of 

the system, which allows for more advanced control strategies 

such as optimal control or model predictive control. In the 

state-space representation, the system is described by a set of 

differential equations that relate the state variables (x, θ, x  , θ ) 

to the input (F) and output (θ). The equations can be written as 

follows: 

. .

x   x                   (3) 

. .

                      (4) 

2
..

M   F  m sx ( )l in                (5) 

..
2ml   mlg u( sin )                 (6) 
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This representation can be used to design a control law that 

stabilizes the system by controlling the state variables. The 

control law can be designed using techniques such as pole 

placement, LQR control, or Kalman filtering. In summary, the 

modeling of an inverted pendulum on a cart system can be 

done using Newtonian mechanics, and a control system can be 

designed using feedback or state-space control strategies. The 

system is a classic example of a control problem and is 

commonly used to illustrate concepts in control theory. 

The pendulum angle θ(s) and displacement x(s) are repre-

sented by the following transfer function: 

 
 

   

2

2 2

s mls
P s

X s 1 ml s mg l


 

 
            (7) 

 
Figure 1. First-order inverted pendulum physical model. 

3. Designing PID & Fractional Order 

PID Controllers 

Based on the context, Figure 2 presents the block diagram 

of the entire controlled system, referred to as the Pendu-

lum-on-a-Cart (POAC) system. The controller is designed 

based on this overall configuration. In order to simulate the 

system, you consider the following parameters: 

Here, 

Cart mass (M) = 0.5 kg 

Pendulum mass (m) = 0.2 kg 

Acceleration due to gravity (g) = 9.8 m/s2 

Pendulum length (h) = 1 meter 

The open-loop characteristics of the inverted pendulum 

system, P(s), are marked by unstable poles in the right 

half-plane and open-loop zeros, indicating inherent instability 

[20-26]. Following stabilization, the transfer function of the 

generalized controlled object for the inverted pendulum sys-

tem is expressed as follows: 

 1
1 2

K
P s

(T s 1) (T s 1)


 
        (8) 

The system parameters are specified as follows: sampling 

time T = 0.005 s, cart mass M = 0.5 kg, pendulum mass m = 

0.2 kg, damping coefficient b = 0.1, pendulum length l = 0.3 m, 

moment of inertia I = 0.006 kg.m², time constants T1 = 0.1784 

and T2 = 7.008, gain K = 4.5455, cut-off frequency ωc = 1 

rad/s, and phase margin θm = 70°. 

 
Figure 2. POAC system's block diagram. 

3.1. Integer PID Controller: Design & 

Simulation 

The transfer function of an Integer Order PID (IOPID) 

controller can be represented as: 

  i
1 p d

K
C s K K s

s
                        (9) 

Based on the parameter tuning rules outlined in Section 2 of 

this paper, the following values can be obtained by solving the 

constraint equations of the controller Kp = 1.2, Ki = 0.4 and Kd 

= 0.01. 

Therefore, IOPID controller's transfer function C1(s) is: 

 1

0.4
C s 1.2 0.01s

s
                   (10) 

Figure 3 shows the integer order PID controller's step re-
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sponse for the inverted pendulum system, indicating that PID 

control is effective and meets design specifications. 

 
Figure 3. Integer Order PID Control System Simulation Results. 

3.2. Fractional FOPID Controller: Design & 

Simulation 

Fractional Order PID controller's transfer function is ex-

pressed as: 

  i
2 p d

K
C s K K s

s




           (11) 

where, 0 < λ < 2 and 0 < µ < 2. Based on the parameter tuning 

rules from Section 2 of the paper, the values can be obtained 

as Kp = 1, Ki = 0.3, Kd = 0.01, λ = 0.9 and µ = 0.9. The transfer 

function of the FOPID controller is expressed as: 

  0.9
2 0.9

0.3
C s 1 0.01s

s
          (12) 

Figure 4 displays the step response curve of the FOPID 

controller in the inverted pendulum system. 

 
Figure 4. Fractional Order PID Control System Simulation Results. 

4. Conclusion 

We successfully stabilized the POAC system using a Frac-

tional Order (FO) PID controller to control both the pendulum 

angle and cart position. Additionally, comparing the FOPID 

and Integer Order PID controllers revealed that the FOPID 

controller is more effective for stabilizing the inverted pen-

dulum on a cart system. Fractional Order PID controllers offer 

some distinct advantages over their integer order counterparts, 

including improved robustness and increased flexibility in the 

control design. However, they also require more complex 

mathematical models and can be more difficult to implement 

in practice. Overall, this work is an important contribution to 

the field of control engineering, and it will be interesting to 

see how these findings can be applied in other systems and 

applications. 
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