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Abstract 

This paper presents the unification of Einstein's equations, Maxwell’s equation systems, and Dirac's equation for three 

generations of particles in the R1,3 pseudo-Riemannian space with torsion. The use of Dirac matrices as an orthonormal basis (in 

general, as a canonical basis) on the tangent plane permits the replacement of vectors with second-rank tensors. The symmetric 

component of the differential form DA (D•A, where D is the Dirac operator, A is the tensor field, and • is the inner product) 

represents the deformation of the field, while the antisymmetric one (DɅA, Ʌ is the outer product) denotes the torsion. The 

differentiation of DA (i.e., DDA) yields an equation from which both Einstein's equation and the two independent Maxwell 

systems can be derived. The differentiation of the field deformation D(D•A), that is, the gradient of the field divergence, yields a 

four-dimensional current. This four-current formulation results in nonlinearity in the inhomogeneous Maxwell's equations. In 

particular, the four-current J is not a constant in the inhomogeneous system of Maxwell's equations, D•F = J. In accordance with 

this definition, a field singularity is defined as a source of current, or alternatively described as a "hole," which is a necessary 

component for the existence of the field. The description of field inhomogeneity (DA) in the form of biquaternions through 

complex hyperbolic functions in R1,3 permits the decomposition of DA into three pairs of spinors–antispinors (spinor bundle). 

The differentiation of spinors and the subsequent determination of eigenvalues and eigenfunctions yield three pairs of Dirac-type 

equations that are applicable to both bosons and fermions, which describe the fundamental particles of the three generations. The 

solution of Dirac-type equations in pseudo-Euclidean space for massless particles (eigenvalues m = 0) unifies the photon and 

three generations of neutrinos (γ, νe, νμ, ντ) into a single entity, namely, a singlet (photon) + a triplet (three generations of 

neutrinos). 
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1. Introduction 

The use of new applications of algebra complements and 

expands the possibilities for describing physical processes. 

For example, the methods of Clifford algebra [1] unite fun-

damental fields into a single field in pseudo-Riemannian 

space. 

In this research, we will combine the homogeneous and 

inhomogeneous systems of equations of Maxwell, Einstein’s 

[2] and Dirac's equations [3] for three generations of particles 

using the generalized Clifford algebra method in R1,3 with 

torsion. In other words, we will create a single theoretical 

framework by combining the vector (electromagnetism), 

tensor (gravity), and spinor (fermions) fields into one field. 

This study extends and generalizes previous research on 

Clifford algebra applications in field theory. 

In contrast to the classical Clifford algebra, which is ap-

plicable to pseudo-Euclidean space (Minkowski [4]), the 

generalized Clifford algebra describes objects in 

non-Euclidean space, R1,3 [5]. The incorporation of torsion in 

the Riemannian manifold R1,3 is a necessary condition for the 

unification of Maxwell's and Einstein's equations. 

The representation of the differential form DA (D is the 

Dirac operator; A is a tensor field) in the form of generalized 

biquaternions [6] permits the expression of DA (inhomoge-

neity) as the sum of three pairs of independent spinors - an-

tispinors [6]. Subsequently, Dirac-type equations are derived 

by differentiating the spinors-antispinors. 

Using the Clifford product ab = a•b + a∧ b (outer         

a∧b = (ab – ba)/2 and inner a•b = (ab + ba)/2) instead of the 

usual scalar and vector products of vectors allows us to re-

consider many previous concepts. For example, the diver-

gence gradient D(D•A) is interpreted as a four-dimensional 

electromagnetic current, thereby expanding its physical and 

geometric meaning. 

2. Results 

2.1. Theoretical Basis 

Let be given a vector field A in a pseudo-Riemannian space 

R1,3: 

𝐴 = ∑ 𝑒𝑖3
𝑖=0 𝐴𝑖                (1) 

Formula (1) is the expansion of A in the basis {ei}. 

Clarification. In classical Clifford algebra, ei are called 

vectors, but in fact, ei are 4x4 matrices related to the Dirac 

matrices (γ0, γ1, γ2, γ3) through the transition functions       

X = Xi (q
j) by the formula: 

𝑒𝑖 = ∑ 𝛾𝑗3
𝑗=0

𝜕𝑋𝑗

𝜕𝑞𝑖
≡ ∑ 𝛾𝑗3

𝑗=0 𝜕𝑖𝑋𝑗           (2) 

The basis {γi} of Dirac matrices is referred to as canonical: 

γi γj + γj γi = ± 2Iδij            (3) 

δij is the Kronecker delta and I is the identity matrix. If i= 0 

and/or j = 0, then the sign “+” is used in (3). In other cases, the 

sign “-” is used. 

Mathematically, ei are second-rank tensors. The terms 

"second-rank tensor" and "vector" are equivalent because 

Dirac matrices are employed as the orthonormal basis, rather 

than ordinary vectors (unit vectors). 

Basis (3) greatly expands the concept of an orthonormal 

basis because it also includes ordinary (scalar and vector) 

vector products. This allows us to consider space not only 

with curvature (deformation) but also with torsion. 

The terms “vector, bivector, trivector” accepted in Clifford 

algebra are quite acceptable, since the internal structure of the 

Dirac matrices and their products γi, γiγj, γiγjγk does not change, 

and therefore the name has no principled importance. The 

main objective is to satisfy Condition (3). 

The movable (local) basis {ei} is connected to the canoni-

cal basis, which is drawn at the point of contact of the local 

tangent plane with the pseudo-Riemann surface. The basis 

vectors ei depend on the coordinates, that is, they change 

when moving “parallel to themselves” (in R1,3, along geo-

desic lines). Thus, ordinary differentiation must be replaced 

by covariant differentiation. 

ei ej = ei•ej + ei∧ej is the Clifford vector product [1]:  

ei•ej = (eiej + e ei)/2 is the inner product of vectors.  

ei∧ej = (eiej - e ei)/2 is the outer product of vectors or a 

bivector. 

In general, ei•ej is a symmetric second-rank tensor obtained 

by the contraction of the dyadic product of two second-rank 

tensors [7], and then by symmetrization: 

ei•ej = (e⊗e’ + e’⊗e)/2 = gkn (eik enj + ejn eki)/2 

In particular, ei•ej = I gij, where gij is a metric tensor. In 

other words, ei•ej is the curvature of the metric, that is, a 

measure of the difference from flat space, a measure of de-

formation. 

In general, ei∧ej is an antisymmetric tensor of the second 

rank, obtained by the contraction of the dyadic product of two 

tensors [7] and then by their antisymmetrization: 

ei∧ej = (e⊗e’ – e’⊗e)/2 = gkn (eik enj – ejn eki)/2 

ei∧ej denotes the torsion tensor [8]. Module |ei∧ej | is the 

area of the parallelogram constructed from vectors ei and ej. It 

is clear that ei∧ej = – ej∧ei.  

In 3-dimensional space, the geometric meaning of the tor-

sion tensor ei∧ej is more obvious: ei∧ej corresponds to the 

associated accompanying axial vector (dual, i.e., pseudovec-

tor) ek, which, like a screw, changes its direction depending on 
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the replacement of ei and ej. 

2.2. The Inhomogeneity of a Vector Field 

We consider the gradient from A to: 

DA = eiej Di Aj              (4) 

In accordance with Clifford's product, Equation (4) can be 

separated into symmetric and antisymmetric components: 

DA = ID•A + D∧A = Iei•ej Di Aj + ei∧ej Di Aj (5) 

where D = eiDi is the Dirac operator [9] and Di is the symbol 

of covariant differentiation [10]. 

We refer to this (5) as the field inhomogeneity (DA), which 

comprises the following: 

1) field deformations: 

I D•A = Iei•ej I Di Aj = Igij Di Aj = I Di A
i, 

where Di Aj = Di A
i
 = Div A is a 4-dimensional divergence, a 

true scalar, and the first invariant of the DA [11], because    

gij Di Aj is the contraction of the tensor DA. 

2) field torsion: 

D∧A = ei∧ej Di Aj = ei∧ej (Di Aj – Dj Ai) 

D∧A is an antisymmetric second rank tensor. F = D∧A is the 

electromagnetic field tensor. 

We again differentiate Equation (5). The DDA can then be 

written in two equivalent versions: 

D(DA) = D(D•A) + D•(D∧A) +D∧(D∧A)    (6) 

(DD)A = (D•D)A + (D∧D)•A +(D∧D)∧A    (7) 

Next, we will verify that (6) gives the system of Maxwell's 

equations and (7) gives Einstein's equation. 

2.3. Homogeneous System of Maxwell's 

Equations 

The last term in Equation (6) is equal to zero [12]: 

D∧(D∧A) = D∧F = 0             (8) 

(8) is a system of homogeneous Maxwell’s equations. We 

write (8) in coordinate form as 

D∧F = Eijkn Dk Fij = 0              (9) 

where Eijkn is a contravariant antisymmetric tensor of fourth 

rank or Levi-Civita symbol [13]. 

2.4. Four-dimensional Electromagnetic Current 

In Equation (6), the first term, D(D•A), is identified using 

the density of the four-dimensional electromagnetic current: 

j = D(D•A)                 (10) 

Then, the electric charge q and 3-dimensional current j are 

expressed as 

q = e0e0j0 = g00 D0 (D•A)                (11) 

j = e0∧eαjα = e0∧eα Dα (D•A)             (12) 

In a flat space, the charge and current have the following 

forms: 

q = γ0γ0j0 = σ0 j0,    j = γ0γαjα = σα jα, 

since γ0γi = σi. where σi is a Pauli matrix. 

Formula (11) has a clear geometric interpretation: the 

electric charge can be understood as the time derivative of 

the divergence of the field D0 (D•A). Therefore, an electric 

charge has only two signs: “plus” or source, if D0 (D•A) > 0 

and “minus” or drain if D0 (D•A) < 0. 

The electric charge (±) can be represented as a "hole" in 

the field. Gauges, such as Lorentz and Coulomb gauges. [14] 

can be understood as a method of removing singularities or 

sources of the field (current) with the aim of simplifying 

calculations. 

2.5. Inhomogeneous System of Maxwell's 

Equations 

The third-rank tensor D(DA) or trivector, or more precisely 

its part D∧(D∧A), is dual to the pseudovector [12], which is 

equal to zero, i.e. D∧(D∧A) is equivalent to the homoge-

neous system of Maxwell's equations (9) [12]. 

The remaining part is equivalent to the vector: 

D(DA) = μT•A                 (13) 

The inner product T•A gives a vector, as does the right side 

of equation (6). T is a second-rank tensor; μ is the propor-

tionality coefficient. The properties of T and μ will be defined 

later. 

Considering (10), (13), and F = D∧A, we obtain an in-

homogeneous system of Maxwell's equations: 

D•F = μT•A – j = J             (14) 

When μT•A = 0, (14) has the classical form. For values of 

μT•A ≠ 0, the inhomogeneous system of Maxwell's equations 

is nonlinear, that is, the effective charge J (right-hand side of 

(14)) is not constant; it increases or decreases    depending 

on the growth of μT•A (charge screening). 

2.6. Continuity Equation 

The differentiation of (14) gives the continuity equation: 
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μ T• (DA) – D•j = 0,           (15) 

because D•(D•F) = 0 and (D•T) •A = 0 [15]. The inner product 

of the vectors is used in Eq. (15). 

Formula (15) in general is a differential form of the law of 

conservation of energy-momentum in an elementary volume, 

i.e., the law of conservation of 4-current. 

We write Equation (15) in the coordinate form and trans-

form the left side. 

μ Tk
n A

n
k = 0.5 μ (gnkgijTki▽n Aj + gnkgijTki Dj An) = 

= 0.5 μ gnkgijTki (Dn Aj + Dj An) = 0.5μ Tnj
 εnj 

Then, we obtain the continuity equation in the form [15]: 

0.5μ Tnj
 εnj – Dk j k = 0            (16) 

εnj = 0.5 (Dn Aj + Dj An) is the deformation tensor. 

The four-current jk consists of the sum of the positive and 

negative currents: 

jk = Σj+
k + Σj-

k              (17) 

Equation (16) represents the law of conservation of 

four-currents during field deformation. The deformation of 

electromagnetic and/or gravitational fields gives rise to the 

creation of pairs of positive and negative electric charges 

(particles + antiparticles), resulting in a constant total charge. 

From (16), it is clear that tensor T (13) is the energy 

-momentum tensor. 

2.7. Law of the Conservation of Eddy Currents 

or Electromagnetic Induction 

By differentiating (14), we obtain the law of conservation 

of the eddy current [15]: 

D∧J = 0                  (18) 

D∧(D• F) = 0, because D• F is “scalar”. 

Equation (18) represents the law of conservation of eddy 

currents, also known as Faraday’s law of electromagnetic 

induction (Faraday's law) [16]. Note that in (18), the outer 

product of the vectors is employed. 

Formula (18) in the usual 3-dimensional form looks like 

[15]: 

-▽ρ + ∂t j + rot j = 0             (19) 

where ρ is the electric charge density; ∂t j is a change in 

3-dimensional current over time; rotj  is the curl (rotor, vor-

tex) of the 3-dimensional current. Law (19) is explained in   

Figure 1.  

Let the current carriers be positive charges and ρ1 < ρ2. For 

simplicity, we let ▽ρ = const. Then, the change in current 

over time (in general, -▽ρ + ∂t j)  is compensated by the 

current vortex, that is, ∂t j and rot j will be directed opposite to 

other. Simply put, if ∂t j > 0, then the eddy current rotj  de-

creases, and if ∂t j < 0, rot j increases. 

Within the framework of generalized Clifford algebra, we 

combined two independent Maxwell system equations into a 

single equation: In addition, we derived conservation laws for 

the four-current. 

 
Figure 1. Eddy currents conservation.  

2.8. Einstein's Equations 

We now obtain Einstein's equation from Equation (7). 

Because  

(D∧D)∧A = 0,  (DD)A = μT•A,  (D•D)A = D2A = □A, 

where □ is the D’Alembert operator,  

(D∧D)•A = - Ric•A,  

where Ric is the Ricci tensor, we can write Equation (7) in the 

following form: 

μT•A = D•DA – Ric•A             (20) 

According to the Lichnerowicz formula [17, 18]: 

□A = □BA + 0.5 ℛic(A),           (21) 

where □A = ei•ejek Di Dj Ak is the action of the Lichnerowicz 

operator on vector A;  

□B A ≡ – tr (□A) = – ei•eiek DiDiAk is the action of the 

Bochner Laplacian [18] on Ak (on a scalar). This is the trace of 

□A, or the “rough” D’Alembertian; 

λk are the eigenvalues of each eigenfunction (scalar!) Ak of 

the operator ▽•▽:  

ℛic(A) = ei•ejek Rij Ak = gijek Rij Ak = ekAk R; 

R is the scalar curvature. 

Then, considering (21), from (20), we obtain the Einstein 

equation: 

Ric – 0.5 R + λ = – μT           (22) 

λk represent the eigenvalues of the Bochner operator: 
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– ei•ei Di Di A
k
 = δk

n λn A
k 

From (22), we can determine the coefficient μ.             

μ = – 8 π k/c4 [2]. 

Furthermore, it is assumed that all components of the vector 

Ak (without ek) are a scalar function, i.e., each scalar function 

Ak corresponds to its own number λk (there are four of them). 

Einstein's equation (22) can be derived by differentiating 

Eq. (20) [19]. The proof is provided in Appendix 1. 

Obtaining Einstein equation (22) by direct calculation from 

the inhomogeneous system of Maxwell equations in curvi-

linear coordinates proves the validity of the Lichnerowicz 

formula (21) for the case of a 4-dimensional pseudo 

-Riemannian space. Thus, from an inhomogeneous system of 

Maxwell equations, we obtain the Einstein equation. 

2.9. Biquaternions, Bispinors 

We square the field inhomogeneity (5), which consists of 

symmetric and antisymmetric parts, as follows: 

(DA)2 = (D•A + D∧A)2 

(DA)2 = (D•A)2 +2 (D•A) D∧A+(D∧A)2        (23) 

where D∧A = E + H             (24) 

E = eα∧e0Fα0 is the electric field vector [20];  

H = γ Eλμα0 e
α∧e0 Fλμ is the magnetic field vector [20];  

γ = γ0γ1γ2γ3 is the matrix analogue of the imaginary unit: 

(γ)2 = (γ0γ1γ2γ3)2 = – I. 

Substituting E and H into (23), opening the brackets, and 

simplifying, we see that (23)  consists of  scalar SR,  

pseudo-scalar SP, bivector VR, and pseudo-bivector VP [6]: 

(DA)2 = SR + SP + VR + VP          (25) 

where  

SR = (D•A)2I is scalar,  

SP = – 0.25 γ Eijkn F
ijFkn is pseudoscalar;  

VR = eα∧e0 Fα0 (D•A) is bivector;  

VP = γ (eα ∧e0) E
βλα0 Fβλ (D•A) is pseudobivector. 

Greek letters take the values 1, 2, 3. 

SR, SP, VR and VP are expressed using hyperbolic functions:  

SR = |τα0| |τβ0| cosh((ηα + ηβ)/2) cosh(γ (φα + φβ)/2);  

SP = |τα0||τβ0| sinh((ηα + ηβ)/2) sinh(γ (φα + φβ)/2);  

VR = τα0 |τβ0|(sinh((ηα + ηβ)/2) cosh(γ (φα + φβ)/2) – sinh((ηα – 

ηβ)/2) cosh(γ (φα – φβ)/2));  

VP = τα0 |τβ0|(cosh((ηα + ηβ)/2) sinh(γ (φα + φβ)/2) – cosh((ηα – 

ηβ)/2) sinh(γ (φα – φβ)/2)) 

where 

τα0 = eα∧e0, |τα0| = (g0α g0α – g00 gαα)
0.5, 

ηα is rapidity or angle of rotation on a hyperplane xα0t, 

φα is angle of spatial rotation around an axis xα. 

Substituting the new notations SR, SP, VR, and VP into (25), 

and simplifying and extracting the square root, we obtain: 

𝐷𝐴 = ∑ 𝑅𝛼
3
𝛼=1 = ∑ (3

𝛼=1 |𝜏𝛼0|𝑐𝑜𝑠ℎ
𝑧𝛼

2
+ 𝜏𝛼0𝑠𝑖𝑛

𝑧𝛼

2
)  (26) 

where zα = Iηα + γ φα. 

In (25), we change the order of multiplication of bivectors 

eα∧e0 = – e0∧eα, in general, for all even Clifford numbers: 

ei•ej, ei∧ej, ei∧ej∧ek∧en [6]. By repeating the procedure 

that we have already performed, we obtain: 

𝐷𝐴̃ = ∑ 𝑅̃𝛼
3
𝛼=1 = ∑ (3

𝛼=1 |𝜏0𝛼|𝑐𝑜𝑠ℎ
𝑧𝛼

2
+ 𝜏0𝛼𝑠𝑖𝑛

𝑧𝛼

2
)  (27) 

𝑅𝛼  and 𝑅̃𝛼  are referred to as generalized biquaternions 

and antibiquaternions, respectively. They described rotations 

on Riemann surfaces (on tangent planes x0y, z0y, y0z, t0x, t0y, 

t0z). 

Formula (27) means that the field inhomogeneity DA is the 

sum of three biquaternions (antibiquaternions). Mathemati-

cally, biquaternions are second-rank tensors. 

In the Minkowski space, where ei are replaced by Dirac 

matrices γi, biquaternions assume the  form of  a matrix 

exponential [21]: 

𝑅𝛼(𝑅̃𝛼) = 𝐼𝑐𝑜𝑠ℎ
𝑧𝛼

2
± 𝛾𝛼𝛾0𝑠𝑖𝑛

𝑧𝛼

2
= 𝑒𝑥𝑝⁡(±𝛾𝛼𝛾0

𝑧𝛼

2
) (28) 

Thus, it is difficult to overestimate the role of biquaternions 

in physics. Any transformations of a vector, including those in 

curvilinear coordinates, are performed by biquaternions [22]: 

𝑥′ = 𝑅𝛼𝑥𝑅̃𝛼/|𝜏0𝛼|
2              (29) 

Using Euler's formulas, we write the biquaternion Rα as: 

𝑅𝛼 = |𝜏𝛼0|
𝑒𝑥𝑝(

𝑧𝛼
2
)+𝑒𝑥𝑝(−

𝑧𝛼
2
)

2
+ 𝜏𝛼0

𝑒𝑥𝑝(
𝑧𝛼
2
)−𝑒𝑥𝑝(−

𝑧𝛼
2
)

2
    or 

 𝑅𝛼 = (|𝜏𝛼0| + 𝜏𝛼0)
𝑒𝑥𝑝(

𝑧𝛼
2
)

2
+ (|𝜏𝛼0| − 𝜏𝛼0)

𝑒𝑥𝑝(−
𝑧𝛼
2
)

2
 (30) 

where 

Ψ𝛼 = (|𝜏𝛼0| + 𝜏𝛼0)
𝑒𝑥𝑝(

𝑧𝛼
2
)

2
= (|𝜏𝛼0| + 𝜏𝛼0)Φ𝛼

  (31) 

Ψ̃𝛼 = (|𝜏𝛼0| − 𝜏𝛼0)⁡
𝑒𝑥𝑝(−

𝑧𝛼
2
)

2
= (|𝜏𝛼0| − 𝜏𝛼0)Φ̃𝛼

 (32) 

In general 

Φ𝛼(Φ̃𝛼) =
1

2
𝑒𝑥𝑝 (±

𝑧𝛼

2
) =

1

2
𝑒𝑥𝑝 (±

𝐼𝑋𝛼+𝛾𝑌𝛼

2
)  (33) 

𝑋𝛼(𝑞
𝑖) and 𝑌𝛼(𝑞

𝑖) are scalar functions. 

Ψ𝛼   and  Ψ̃𝛼   will be  called  generalized  bispinor - 

antibispinor [6]. 

According to the strict terminology of algebra, an ideal of a 
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ring K is a subring k for ∀𝑏 ∈ 𝐾 and ∀𝑆 ∈ 𝑘 the equality 

holds [23]: 

𝑏𝑆 = 𝑐𝑆  

where c is a real number. If c > 0, then S is a positive ideal, if   

c < 0, then S is a negative ideal. In physics, ideals  are  as-

sociated with spinors: if c > 0, then 𝑆 = Ψ𝛼 is a bispinor, if c 

< 0, then 𝑆 = Ψ̃𝛼 is an antibispinor. 

Really, 

𝜏𝛼0 • Ψ𝛼 = ((𝑒𝛼⋀𝑒0)|𝑒𝛼⋀𝑒0| + (𝑒𝛼⋀𝑒0)
2)Φ𝛼 = 

= |𝜏𝛼0|(𝜏𝛼0 + |𝜏𝛼0|Φ𝛼) = |𝜏𝛼0|Ψ𝛼, 

Since  𝑐 = |𝜏𝛼0| > 0,  then  Ψ𝛼   is  a  bispinor.  The 

anti-bispinor can be similarly checked: 

𝜏𝛼0 • Ψ̃𝛼 = ((𝑒𝛼⋀𝑒0)|𝑒𝛼⋀𝑒0| − (𝑒𝛼⋀𝑒0)
2)Φ̃𝛼 = 

= |𝜏𝛼0|(𝜏𝛼0 − |𝜏𝛼0|Φ̃𝛼) = −|𝜏𝛼0|Ψ̃𝛼 

It can be verified that all three ideals (α = 1, 2, 3) are 

two-sided (left- or right-hand multiplication of 𝜏𝛼0 is equal), 

since 𝜏𝛼0 commutes with Φ𝛼 and Φ̃𝛼. 

Spinors and antispinors are independent [6]. The equality 

∑ (3
𝛼=1 𝜇𝛼Ψ𝛼 + 𝜇̃𝛼Ψ̃𝛼) = 0  

is satisfied if all real numbers (𝜇𝛼 , 𝜇̃𝛼) are equal to zero. 

From (30), it is evident that a biquaternion is the sum of a 

spinors and antispinors. In the general case, the field inho-

mogeneity DA (26) consists of three generalized biquaterni-

ons Rα, that is, three pairs of independent spinors and anti-

spinors [6]. Because DA is a second-rank tensor, we can say 

that biquaternions, bispinors, and antibispinors are also sec-

ond-rank tensors (Ψ𝛼0). In simple terms, a spinor field is a 

spinor bundle [24] of a tensor, that is, a DA inhomogeneity. 

2.10. Dirac Type Equations 

By differentiating bispinors (31) and (32), and finding the 

eigenvalues and eigenbispinors, we obtain Dirac-type equa-

tions in covariant form: 

𝐷(Ψ𝛼(Ψ̃𝛼)) = 𝑚Ψ𝛼(Ψ̃𝛼)           (34) 

We write Equation (34) in the coordinate form as: 

𝑒𝑖(𝐼|𝜏𝛼0| + 𝑒𝛼⋀𝑒0)𝐷𝑖Φ𝛼0 = 𝐼𝑔𝑗𝛼𝑚𝑗Ψ𝛼0  

or 

(|𝜏𝛼0|𝑒𝑖 + 𝑒𝑖 • 𝜏𝛼0 + 𝑒𝑖⋀𝜏𝛼0)𝐷𝑖Φ𝛼0 = 𝐼𝑔𝑗𝛼𝑚𝑗Ψ𝛼0 (35) 

|𝜏𝛼0| = |𝑒𝛼⋀𝑒0|  

Equation (35) is a Dirac-type equation expressed in the 

coordinate form. No summation for α, and 0. 

In Minkowski space, equation (34) assumes the form of 

classical Dirac equations: 

𝛾𝑖𝜕𝑖Ψ𝛼(Ψ̃𝛼) = −𝑚𝛼Ψ𝛼(Ψ̃𝛼)          (36) 

where 

Ψ𝛼(Ψ̃𝛼) = (𝐼 ± 𝛾𝛼𝛾0)Φ𝛼(Φ̃𝛼) =
𝐼±𝛾𝛼𝛾0

2
𝑒±

𝐼𝑋𝛼+𝛾𝑌𝛼
2   (37) 

3. Calculations 

Equation (36) was solved for massless particles [25]. Be-

low, we discuss several important aspects. 

Let α=3. 

3.1. Solutions for Neutrinos 

We consider (37) with only field torsion (without defor-

mation) as follows: 

𝛾𝑖𝛾3𝛾0𝑈𝑇𝜕𝑖 𝑒𝑥𝑝 ((𝐼 + 𝛾)
𝑝•𝑥

2
) = 0,       (38) 

where  

𝑈𝑇 = (𝑢0, 𝑢1, 𝑢2, 𝑢3)
𝑇 is a constant column vector;  

𝛾𝑖 are the Dirac matrices in the Weyl representation;  

𝑝 • 𝑥 = 𝐼𝑝𝑖𝑥
𝑖, 𝑝𝑖 denotes the four-vector energy momentum. 

In two-component (block) spinors, the solutions of (38) are 

given by: 

ψ31,2 = (|
−𝑝3

𝑝1 + 𝑖𝑝2
| + |

𝑝1 − 𝑖𝑝2
𝑝3

|)
𝑒
(𝐼+𝛾)

𝑝•𝑥
2

𝑝0
    (39) 

ψ33,4 = −(|
−𝑝3

𝑝1 + 𝑖𝑝2
| + |

𝑝1 − 𝑖𝑝2
𝑝3

|)
𝑒
(𝐼+𝛾)

𝑝•𝑥
2

𝑝0
   (40) 

 
Figure 2. Neutrino. 
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It is evident that the solutions ψ31,2 and ψ33,4 differ only 

in sign. Simply put, ψ31,2 and ψ33,4 describe the same par-

ticle. A change in helicity is observed when a particle transi-

tions from state ψ31  to ψ32  as well as from ψ33  to ψ34 . 

This phenomenon is illustrated in Figure 2. If the helicity was 

left-handed, then it would be right-handed in the opposite 

direction. Helicity is not a P-parity-invariant quantity. 

The particle is its own antiparticle, that is, solution (38) 

does not change if we change the 

𝑒𝑥𝑝((𝐼 + 𝛾)𝑝 • 𝑥/2) to the 𝑒𝑥𝑝(−(𝐼 + 𝛾)𝑝 • 𝑥/2). 

However, each state, ψ𝛼1 and ψ𝛼2 (also ψ𝛼3 and ψ𝛼4), 

behaves as independent, separate particles. 

Solutions (39) and (40) can be written in compact form as 

follows: 

ψ3 = (𝜎1𝑝1 + 𝜎2(±𝑝2) + 𝜎3(∓𝑝3))
𝑒𝑥𝑝((𝐼+𝛾)

𝑝•𝑥

2
)

𝑝0
   (41) 

The upper signs before the impulses refer to the solution 

ψ31,2, and the lower signs refer to ψ33,4. 

ψ𝛼  and ψ̃𝛼  are obtained from the torsion of the field 

(without deformation); thus, they must be antisymmetric 

functions. To verify this, we considered the wave function of a 

system comprising two identical non-interacting particles and 

performed a swap operation on them: 

ψ𝛼,𝛽 =
𝑝 𝑒𝑥𝑝((𝐼+𝛾)

𝑝•𝑥

2
)

𝑝0
⋀

𝑞 𝑒𝑥𝑝((𝐼+𝛾)
𝑞•𝑥

2
)

𝑞
=  

= −
𝑞 𝑒𝑥𝑝((𝐼+𝛾)

𝑞•𝑥

2
)

𝑞
⋀

𝑝𝑒𝑥𝑝((𝐼+𝛾)
𝑝•𝑥

2
)

𝑝0
= −ψ𝛽,𝛼

  

The wave function of the superposition of two identical, 

non-interacting particles changes sign when the particles are 

permuted. The particles described by the function ψ𝛼  are 

fermions. Equations (36) and (37) are equivalent to Dirac 

equations for fermions. 

Because ψ3 is a spinor and the mass of this fermion is zero, 

the particle itself is one of the three generations of neutrinos. 

The equations for the remaining generations can be solved 

similarly. 

3.2. Solutions for Photon 

Now, we consider (37) without field torsion, that is, only 

with deformation: 

𝛾𝑖𝑈𝑇𝜕𝑖 𝑒𝑥𝑝 ((𝐼 + 𝛾)
𝑝•𝑥

2
) = 0           (42) 

In two-component spinors, the solutions of (42) are as 

follows: 

χ31,2 = (|
𝑝3

𝑝1 + 𝑖𝑝2
| + |

𝑝1 − 𝑖𝑝2
−𝑝3

|)
𝑒𝑥𝑝((𝐼+𝛾)

𝑝•𝑥

2
)

𝑝0
     (43) 

χ33,4 = −(|
𝑝3

𝑝1 + 𝑖𝑝2
| + |

𝑝1 − 𝑖𝑝2
−𝑝3

|)
𝑒𝑥𝑝((𝐼+𝛾)

𝑝•𝑥

2
)

𝑝0
    (44) 

Solutions (43) and (44), that is, χ31,2 and χ33,4, differ only 

in terms of sign. 

Functions χ31,2  and χ33,4  describe the same particle. 

Moreover, the particle is its own antiparticle with a mass of 

zero. 

Upon transitioning from state χ31  to χ32  (and similarly 

from χ33 to χ34), the helicity of the particle remained unal-

tered, maintaining a right-handed polarization (Figure 3). 

There is no difference between particles and antiparticles. 

Solutions (43) and (44) can be written in compact form as 

follows: 

χ3 = (𝜎1𝑝1 + 𝜎2(±𝑝2) + 𝜎3(±𝑝3))
𝑒𝑥𝑝((𝐼+𝛾)

𝑝•𝑥

2
)

𝑝0
  (45) 

The upper signs before the impulses refer to the solution 

χ31,2, and the lower signs refer to χ33,4. 

It is clear that χ𝛼  and χ̃𝛼  are derived from field defor-

mation (without torsion), and they must be symmetric func-

tions. To verify this, we consider the wave function of a sys-

tem of two identical noninteracting particles and swap them as 

follows: 

χ𝛼,𝛽 =
𝑝𝑒𝑥𝑝((𝐼+𝛾)

𝑝•𝑥

2
)

𝑝0
•
𝑞 𝑒𝑥𝑝((𝐼+𝛾)

𝑞•𝑥

2
)

𝑞
=  

=
𝑞 𝑒𝑥𝑝((𝐼+𝛾)

𝑞•𝑥

2
)

𝑞
•
𝑝 𝑒𝑥𝑝((𝐼+𝛾)

𝑝•𝑥

2
)

𝑝0
= χ𝛽,𝛼  

The wave function of the superposition of two identical 

noninteracting particles remained unchanged when the parti-

cles were rearranged. The particles described by the function 

χ𝛼  are bosons. Equations (43) and (44) are equivalent to 

Dirac equations for bosons. 

Given that function (45) is an function χ3 for a boson, it 

can be inferred that the particle corresponding to it is a boson. 

The mass of this boson is zero, and there exist only two pos-

sible states. Based on these observations, it was concluded 

that the particle in question is a photon. 

We have considered a photon in a flat isotropic space. In 

such a space, all three "generations" of photons are identical. In 

a Riemannian, and even more so in the anisotropic space |𝜏𝛼0|, 

the photon (boson) will be different for each "direction" of α0. 
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Figure 3. Photon. 

4. Conclusions 

1) Clifford algebra in the pseudo-Riemannian space R1,3 

with torsion and spinor bundles can be employed to 

unify gravitational, electromagnetic, and spinor fields 

into a single structure. Field deformation is a prerequi-

site for gravity, and torsion is a prerequisite for elec-

tromagnetism. The existence of a spinor field is con-

tingent on the presence of deformation, torsion, and the 

spinor bundle. 

2) The tensor basis method and Clifford product of vectors 

permit the consideration of both deformation and torsion 

within the field, thereby facilitating the unification of the 

Einstein equation and Maxwell system of equations. 

Einstein and Maxwell's equations are equivalent. Ein-

stein's equations describe spatial quantities including the 

Ricci tensor and scalar curvature. Maxwell's equations 

describe field quantities such as the electromagnetic 

field tensor, 4-current, etc. 

3) The inhomogeneity of the DA field can be represented 

by the sum of the three biquaternions, each of which 

splits into a pair of bispinors. Differentiation of the 

bispinors yields three Dirac-type equations for the bos-

ons and fermions. So the solution of Dirac-type equa-

tions with deformation describes a boson, whereas the 

solution with torsion describes a fermion. 

In a four-dimensional space, there are only three bi-

quaternions: R10, R20, and R30. Consequently, there could 

only be three particle generations. 

Massless particles, photon, and three generations of 

neutrinos (γ, νe, νμ, ντ) were combined into a single 

structure: singlet (photon) + triplet (three neutrinos). 

4) The divergence gradient (D(D•A)) is a 4-dimensional 

electromagnetic current. This formulation of the 

four-current gives the nonlinearity of the inhomogene-

ous Maxwell system and the laws of conservation of the 

four-current and eddy currents. It also clearly shows the 

geometric meaning of singularities – field "holes," i.e., 

current sources and the need for calibrations such as 

Lorentz, Coulomb, and others. 
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Appendix 

D •(□A – Ric•A) = D•(μT•A) 

In coordinate form: 

en•ek Dn (□Ak – Ap R
p
k) = en•ek Dn (μ Ap T

p
k) 

By simplifying we get: 

gnkDn (g
ijDi Dj Ak) – gnkDn (Ap R

p
k) = μ gnkDn (Ap T

p
k) 

Dk (g
ijDi Dj A

k) – Dk (A
i Rk

i) = μ Dk (A
i Tk

i) 

We open brackets under differentiation: 

DkD
i
 Dj A

k – DkA
i Rk

i – AiDk R
k
i = μDkA

iTk
i + μ AiDk T

k
i (A-1) 

It is known that [2] Dk R
k
i = 0.5 Di R 

and according to formula (16) μ Dk A
i Tk

i = Dk j
k. 

Then, (A-1) takes the form: 

Dk D
i Dj A

k – Dk A
i Rk

i – 0.5Ai DiR = Dk j
k + μAiDk T

k
i (A-2) 

In the first term we change the differentiation order (k with 

i). 

Dn Di Dj A
k = Di Dn Dj A

k, 

because  

gij (Dk Di Dj A
k – Di Dk Dj A

k) = 

 =gij (Dp A
k Rp

jik – Dj A
p Rk

pik) = – Dp A
k Rp

k + Dj A
p Ri

p = 0. 

Now in Di Dk Dj A
k we change the order of differentiation (k 

with j): 

gij Di (Dk Dj A
k – Dj Dk A

k) = gij Di (– Ap Rk
pjk) = 

= Di (A
p Rj

p) = Di A
p Rj

p+ Ap Di R
j
p 
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or gij Di Dk Dj A
k = gij Di Dj Dk A

k + Di A
p Rj

p+ Ap Di R
j
p 

Considering that according to formula (10) 

ejDj Dk A
k = j is a four-dimensional electromagnetic current, 

from the last equality, we obtain: 

gijDk Di Dj A
k = Di j

i+ Di A
p Rj

p+ Ap Di R
j
p    (A-3) 

(A-3) substitute into (A-2): 

Dk j
k + Dk A

p Rk
p+ Ap Dk R

k
p – Dk A

p Rk
p – 0.5 Ai Di R = 

= Dk j
k + μ Ap Dk T

k
p 

Now, we reduce the four currents and simplify: 

Dk R
k
p – 0.5 δk

i Dk R = μ Dk T
k
p 

“Getting rid” of differentiation, we obtain Einstein’s equation: 

Rk
p – 0.5 δk

i R + δk
i λ i = μ Tk

p        (A-4) 

λi are the cosmological constants or eigenvalues of the 

Bochner operator. 
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