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Abstract: Cognitive radio (CR) is one of the compelling ideas to solve the spectrum scarcity problem for rapid developments
in wireless communication systems. In CR systems, signal detection for orthogonal frequency division multiplexing (OFDM)
systems in severe noise environments is a key challenge. The area of practical primary user detection has not been explored in
depth. The proposed method is an effective method for sensing OFDM applications, which are the practical primary users, for
low signal-to-noise (SNR) cases. In the proposed method, the parallel combination of the comb filter and the time-domain
autocorrelation function is exploited. The detection performance is measured for various OFDM system applications, including
the IEEE 802.11a wireless LAN (WLAN) radio interface, long-term evaluation (LTE), and digital audio broadcasting (DAB) for
various CP ratios under 16-quadrature amplitude modulation (16-QAM) and 64-quadrature amplitude modulation (64-QAM)
over multipath Rayleigh fading channels with additive white Gaussian noise (AWGN). Furthermore, the OFDM sensing is
possible in the presence of noise uncertainty and the sensing performance is compared under consideration with and without
noise uncertainty cases. The simulation results demonstrated that our proposed method undoubtedly improves the sensing
performances (up to 11 dB SNR gain) of practical primary users more than the conventional spectrum detection methods for
low SNR cases.
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1. Introduction
Cognitive radio (CR) is an effective and reliable solution

for the efficient use of the radio frequency spectrum [1].
CR is based on the premise that OnTheMove, environment-
aware computing, and related research will create innovative
applications that can use location and other aspects of
the environment to tailor services to users. Therefore,
CR incorporates machine learning methods that improve
robustness to rapidly changing external environments [2]. The
spectrum scarcity is a significant constraint because of the
rapid development of numerous multimedia applications using
advanced wireless communication systems over the previous
decade. In CR systems, signal detection plays an important
role in preventing spectrum scarcity by investigating spectrum
vacancies for future and modern wireless communication

systems. There are two types of spectrum sensing techniques:
cooperative spectrum sensing [3–7] and non-cooperative
spectrum sensing [8–10]. Numerous spectrum sensing
methods have been proposed during the last few years [11–
19]. Cyclostationary features were used for sensing the signal
[20]. Matched filter detection enables the most effective
sensing performance, when previous knowledge about the
primary user signal is available [21, 22]. An energy detector is
one of the most commonly used semi-blind spectrum sensing
methods, which does not require prior knowledge of the
primary user signal [23–25]. However, the performance of
the energy detector is not good in severe noise environments.
The blind spectrum sensing technique operates without prior
knowledge of the signal or noise power [26], yet it proves
ineffective in scenarios where the signal-to-noise ratio (SNR)
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is low.
Correlation-based spectrum sensing methods are highly

favored because they exhibit low computational complexity
and perform well over fading channels [27, 28]. Utilizing
the autocorrelation property in the time domain of cyclic
prefix (CP) based orthogonal frequency division multiplexing
(OFDM) signals enabled spectrum sensing [29, 30]. This
approach employed a particularly small fast Fourier transform
(FFT) for OFDM-transmitted signals. Furthermore, the
detection performance is not very good for low SNR cases. In
addition, this method was extended and used large FFT sizes
in [31]. In contrast, it is understood that the issue of carrier
frequency offset due to large FFT sizes disrupts orthogonality
in OFDM, thereby diminishing the spectrum sensing detection
performance [31]. Recently, Chin et al. [32] proposed a
spectrum sensing method for OFDM signals over multipath
fading channels considering noise uncertainty environments.
A very small size of FFT is considered in this method.
However, the detection performance is not very good for low
SNR cases. A signal detection approach was proposed for the
improvement of SNR in [33]. The detection performance is
good under quadrature phase shift keying (QPSK), but this
method did not consider 16-QAM and 64-QAM for the DVB-
T2 signal, which are very important parameters for DVB-T2
systems. Furthermore, in this method, the effect of noise
uncertainty, which is an unavoidable parameter for signal
detection in severe noise environments, was not investigated.
The suggested approach resolves the primary drawback of the
outcomes of the current spectrum sensing approaches.

This study improves the OFDM-based applications’
detection performance in low SNR scenarios. The current
wireless communication systems make extensive use of
OFDM. The CP is used to mitigate inter symbol interference
(ISI). For OFDM-based systems, various CP sizes (1/32,
1/16, 1/8, and 1/4), FFT sizes, and digital modulation
schemes are used. As a result, sensing performance
improvement in severe noise environments for OFDM-based
applications is a very important task in CR systems. In
the proposed method, the detection performance is evaluated
of various OFDM system applications, including wireless
LAN (WLAN) radio interface IEEE 802.11a, long-term
evaluation (LTE), and digital audio broadcasting (DAB) for
different CP sizes under higher-order digital modulation
schemes, 16-quadrature amplitude modulation (16-QAM)
and 64-quadrature amplitude modulation (64-QAM), over
multipath fading channels with additive white Gaussian
noise (AWGN). Furthermore, the OFDM systems sensing is

possible in the presence of noise uncertainty and the OFDM
sensing performance is compared under consideration with
and without noise uncertainty cases. The combination of comb
filter and time domain autocorrelation calculation is applied
in a parallel form for sensing OFDM transmitted signals. No
prior information about the primary users is essential in this
method, but noise variance is used for sensing. Therefore,
this method is semi-blind spectrum sensing. The detection
performance of spectrum sensing is increased by improving
effectively the SNR of the received signal. The proposed
method is compared with the conventional state-of-the-art
method over multipath Rayleigh fading channels [30, 32].
Simulation results demonstrated that our proposed spectrum
sensing method markedly improved the sensing performance.

The rest of the paper is organized as follows. Section II
describes the system model of spectrum sensing for OFDM-
transmitted signals. Section III provides a short description
of the use of OFDM-transmitted signals for spectrum sensing.
A detailed mathematical explanation of the proposed method
is presented in Section IV. Section V gives spectrum sensing
performance evaluation and compares it with the state-of-the-
art method. Finally, in Section VI, a conclusion of this paper
is drawn.

2. System Methodology
In the spectrum sensing model, the two hypotheses are

defined by the idle state, H0, and active state, H1. The
secondary user’s receiver evaluates a test statistic, Tf , based on
its observed signal and compares it with a specific threshold,
λ, to decide the situation between the two hypotheses. The two
hypotheses are given by

H0 : Tf < λ (1)

H1 : Tf ≥ λ . (2)

The probability of detection, Pd, indicates the primary user
correctly detects its active mode [21] as

Pd = P (H1;H1) = Pr{Tf > λ ‖H1 } . (3)

There are two types of errors: the probability of false alarm,
Pfa, and the probability of miss detection, Pm. These can be
given [21] as

Pfa = P (H1;H0) (4)

Pm = P (H0;H1) . (5)

Figure 1. Block diagram of OFDM systems.
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Figure 2. Block diagram of proposed spectrum sensing method.

3. OFDM Systems as Primary User

This method considers OFDM-transmitted signals as the
primary user. An OFDM signal received at the sensing
station serves as the primary user signal. The large FFT
size OFDM signal is assumed to be received by being passed
through a multipath Rayleigh fading channel. OFDM is a
multicarrier modulation in which the input data streams are
convolutionally encoded by a convolutional encoder of rated
1/2 and the interleaver is used to combat errors that occur
in bursts. Figure 1 shows a block diagram of the OFDM
systems. The encoded bits are digitally modulated, resulting
in a complex symbol stream X(0), X(1), ......, X(N − 1).
This symbol stream is converted to parallel subchannels,
which are the frequency components, and converted into time
samples taking the inverse fast Fourier transform (IFFT). The
IFFT gives the OFDM symbol consisting of the sequence
x(0), x(1), ......, x(N − 1) of length N as

IFFT {X(k)} = x(n) =
1√
N

N−1∑
k=0

X(k)ej2πkn/N (6)

The CP for x(n) can be defined by x(N − C), ..., x(N − 1)
where it consists of the last C samples of the x(n) sequence.
For each input sequence of length N , these last C samples are
appended at the beginning of the sequence. This gives a new
sequence, x̃(n), of lengthM = N + C of each OFDM symbol
that is converted by a parallel-to-serial converter.

The transmitted signal is filtered by the channel impulse
response h(n) and corrupted by the additive noise w(n).
Consider the P order multipath channel and the channel tap
coefficients h(u), for u = 0, 1, ..., P − 1. Finally, the received
signal is given by

y(n) = x̃(n) ∗ h(n) + w(n)

=
∑P−1
u=0 h(u)x̃(n− u) + w(n)

= s(n) + w(n)

(7)

where the asterisk denotes convolution and s(n) =∑P−1
u=0 h(u)x̃(n− u) is used for simplicity.

4. Proposed Method

In the proposed method, OFDM-based applications are used
as primary user transmitters. In this paper, parallel comb
filters are employed to reduce the loss of orthogonality of
an OFDM signal, and the autocorrelation functions in each
parallel channel are averaged and enhanced for spectrum
sensing. Figure 2 shows a block diagram of the proposed
spectrum sensing method. In the proposed method, the
transmitted OFDM signal is considered as the primary user and
the received spectrum sensing is used as the secondary user.

For H0, OFDM transmitted signal is absent and the OFDM
transmitted signal is present for H1 which can be described by

H0 : y(n) = w(n) (8)

H1 : y(n) = s(n) + w(n). (9)

In the proposed method, finite impulse response (FIR) comb
filters are used whose frequency response constructs a series
of regularly spaced notches. The synchronization problems of
the OFDM symbol can be reduced by the comb filter [35]. The
filter output of the pth comb filter from the lth OFDM symbol
input, fp,l(n), is described [35], [36] by

fp,l(n) = yp,l(n) + gp yp,l(n−K) (10)

where 1 ≤ l ≤ S, K the delay length of the pth filter and gp is
the filter coefficient of the pth filter, given by

gp = e j2π p bN/Qc /N (11)

where b · c is a floor function andQ corresponds to the number
of comb filters used in a parallel form.

In (10), yp,l(n) represents the lth OFDM symbol input for
the pth comb filter can be described for H1
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H1 : yp,l(n) = sp,l(n) + wp,l(n). (12)
where sp,l(n) =

∑P−1
u=0 hp,l(u)x̃p,l(n− u) and wp,l(n) is the

additive noise of the pth comb filter.
Combining (10) and (12), fp,l(n) for H1 can be rewritten as

H1 : fp,l(n) = sp,l(n) + wp,l(n) + sp,l(n−K) + wp,l(n−K) (13)

where gp is set as 1 when p = 0 is considered in (11). This case is considered for a single filter. Here, this value is used for the
simplicity of the calculation.

The output signal of the pth comb filter for each OFDM symbol is used as the input to the time domain symbol autocorrelation
function. The autocorrelation function calculation of the lth OFDM symbol for the pth comb filter output, Rp,l(τ), is described
by

Rp,l(τ) =
1

M

M−1∑
n=0

fp,l(n)f∗p,l(n+ τ) (14)

where 1 ≤ p ≤ Q, τ is the lag number from 0 to (M − 1), M is the number of samples and (.)∗ denotes the complex conjugate
of the values. Combining (13) and (14), the Rp,l(τ) can be written for H1 as

H1 : Rp,l(τ) = 1
M

∑M−1
n=0 [{sp,l(n) + wp,l(n) + sp,l(n−K)

+wp,l(n−K)}{s∗p,l(n+ τ) + w∗p,l(n+ τ) + s∗p,l(n−K + τ) + w∗p,l(n−K + τ)}] (15)

Independence of channel taps h(u) and x̃(n) gives

Rss(τ) = 1
M

∑M−1
n=0 [sp,l(n)s∗p,l(n+ τ)]

= 1
M

∑M−1
n=0 [

∑P−1
u=0 (hp,l(u)x̃p,l(n− u))

∑P−1
u=0 (h∗p,l(u)x̃∗p,l(n− u+ τ))]

= 1
M

∑M−1
n=0

∑P−1
u=0 [hp,l(u)h∗p,l(u)] 1

M

∑M−1
n=0

∑P−1
u=0 [x̃p,l(n− u)x̃∗p,l(n− u+ τ)]

= δσ2
x.

(16)

where δ = 1
M

∑M−1
n=0

∑P−1
u=0 [hp,l(u)h∗p,l(u)] is used for

simplicity and σ2
x is the signal variance.

Similarly, sp,l(n) is not correlated with wp,l(n).
Furthermore,wp,l(n) are not correlated with each other, except
for τ = 0. From (15) and (16), the Rp,l(τ) can be written as

H1 : Rp,l(τ) = 2δσ2
x ; when (τ 6= 0) (17)

H1 : Rp,l(τ) = 2(Rss(τ) +Rww(τ))

= 2(δσ2
x + σ2

w) ; when (τ = 0)
(18)

where Rss(τ) and Rww(τ) are the autocorrelation function of
s(n) and w(n), and σ2

w is the variance of w(n).
In the conventional method, the autocorrelation coefficient

is expressed [30] by

ρ(τ) =
1
M

∑M−1
n=0 [y(n)y∗(n+N) ıH1]

1
M

∑M−1
n=0 [y(n)y∗(n) ıH1]

(19)

From (19), the conventional method autocorrelation
coefficient, ρc(τ), is expressed [30] by

ρc(τ) = C
N+C

δσ2
x

δσ2
x+σ

2
w

(20)

Similarly, from (19), the proposed method autocorrelation
coefficient, ρr(τ), can be written as

ρr(τ) =
1
M

∑M−1
n=0 [fp,l(n)f∗p,l(n+ τ) ıH1]

1
M

∑M−1
n=0 [fp,l(n)f∗p,l(n) ıH1]

(21)

Substituting (17) and (18) in (21), the ρr(τ) is rewritten as

ρr(τ) =
Rp,l(τ) ; when (τ 6=0)
Rp,l(τ) ; when (τ=0)

=
δσ2

x

δσ2
x+σ

2
w

(22)

From (20) and (22), the ρr(τ) can be written as

ρr(τ) = (N+C
C )ρc(τ) (23)

It can be seen from (23) that ρr(τ) > ρc(τ). In other
words, the autocorrelation coefficient of the proposed method
is greater than that of the conventional method. The detection
performance of the proposed method increases more than that
of the conventional method. The autocorrelation function
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is used to detect OFDM-transmitted signals in severe noise
environments.

In our proposed scheme, the autocorrelation calculation of
all OFDM symbols with 1 ≤ l ≤ S is used to select the
test statistic for the detection of the primary user. Each test
statistic, Tp, is measured by averaging each autocorrelation
function in each path can be obtained by

Tp =

S∑
l=1

R̄p,l(τ) (24)

where R̄p,l(τ) is the average value of autocorrelation function
of (14), given by

R̄p,l(τ) =
1

M

M−1∑
τ=0

‖Rp,l(τ)‖ (25)

The maximum value among all the Tps is used as the final
test statistic Tf can be expressed by

Tf = [Tp]max (26)

where [ · ]max is a maximum function.
The threshold value is obtained from the noise variance σ2

w

as a priori information from the channel, where the technique
in [34] is available for example. Calculate the threshold value
λ [36] as

λ =
√
− lnPfa · σ2

w. (27)

The noise uncertainty, ζ, is measured in dB [37] as

ζ = 10 log10 Ψ. (28)

where Ψ > 1 is a parameter that estimates the noise
uncertainty [37].

In our proposed spectrum sensing method, when the
influence of noise uncertainty is considered, the threshold
value λ is calculated from Eq. (27) using Ψσ2

w instead of σ2
w.

Finally, the cognitive controller or receiver gives the final
output H0 or H1 from (1) and (2).

It is very important to ensure the sensing of the OFDM
signal in severe noise environments, which is accomplished
by the proposed semi-blind spectrum sensing method.

5. Simulation Results and Discussions

The performance is examined for many OFDM applications,
such as the WLAN radio interface IEEE 802.11a, LTE, and
DAB, in order to appraise the suggested technique. Through
MATLAB simulations, this approach is compared with the
traditional approaches. Table 1 contains the simulation
parameters that were utilized in the study, with the definition
of the CP ratio being Nc = C/N , unless otherwise indicated.
The five tap impulse response in the multipath Rayleigh fading
channel has a maximum delay of eight.

Table 1. Simulation parameters.

Parameters Types

OFDM Application WLAN, LTE, DAB

Digital Modulation 16-QAM, 64-QAM

FFT SizeN Depend upon OFDM Application

Number of OFDM Symbols S 140

Probability of False Alarm

Pfa

0.01, 0.05, 0.1, 0.2

CP RatioNc Depend upon OFDM Application

Channel Multipath Rayleigh Fading with AWGN

SNR Range -35 dB to 0 dB

Number of Comb FiltersQ 3

Number of Iterations 1500

5.1. Performance Evaluation

Figure 3. Spectrum Sensing of WLAN under 16-QAM.

Figure 4. Spectrum Sensing of LTE under 16-QAM.
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The probability of detection Pd of the WLAN system for
various probability of false alarm Pfa is shown in Figure 3.
Here, the size of FFT 64 and Nc 1/4 are considered for
sensing the primary user. When the Pfa increases, sensing
performance increases with SNR. It is shown that for very low
Pfa which is 1%, the maximum Pd is achieved at -19 dB.
Moreover, when Pfa is 20%, the maximum Pd is achieved at
-24 dB SNR. The maximum Pd in severe noise environments
is obtained for the WLAN system using the proposed method.

Figure 4. presents the Pd of the LTE system under 16-
QAM for different Pfa. The size of FFT is 512 and the CP
is chosen as 36 for the LTE system. The maximum Pd is
achieved at -19 dB for 1% Pfa, -21 dB for 5% Pfa, -22 dB
for 10% Pfa and -24 dB for 20% Pfa. The Pd increases with
SNR and Pfa. These findings demonstrate that the suggested
spectrum sensing strategy leads to a considerable improvement
in sensing performance as Pfa increases.

For the performance evaluation of the proposed spectrum
sensing, the Pd of the DAB system for Nc 1/32 is presented
in Figure 5. The fixed Pfa determines how gradually the Pd
grows with SNR. The maximum Pd (≥ 0.9 or 90%) is reached
in a very low SNR environment (-16 dB) with extremely low
Pfa, which is 1%. The maximum Pd is obtained at -18
dB SNR for 5% Pfa. In addition, when Pfa is 10%, Pd
increases. Here, the maximum Pd is achieved in a low SNR
environment (-19 dB), indicating a 3 dB SNR improvement
over 1% Pfa. Finally, the primary user detection performance
increases dramatically for 20% Pfa. It is highly observable
that the sensing performance with the suggested technique
improves dramatically with increasing Pfa.

The Pd of DAB system for Nc 1/16 is shown in Figure 6.
Here, sensing performance utilizing the suggested technique
grows with SNR as the Pfa increases. The detection
performance for the 20% Pfa outperforms the 1%, 5%, and
10% Pfa. It is clear that for very low Pfa which is 1%,
the maximum Pd (≥ 0.9 or 90%) is achieved in a very low
SNR environment (-16 dB). Figure 7 presents the Pd of DAB
system for Nc 1/8 for various Pfa. Spectrum sensing can
be accomplished in any scenario at a variety of SNRs. In
situations with low SNR, the Pd of CP-OFDM signals is
excellent for extremely low Pfa 1%.

The Pd of the DAB transmitted signals is presented for Nc
1/4 in Figure 8. The Pd increases with SNR as well as Pfa.
The maximum Pd is achieved at -15 dB for 1% Pfa, -17 dB for
5% Pfa, -18 dB for 10% Pfa, and -20 dB for 20% Pfa. For 16-
QAM modulation, the Pd increases with SNR as well as Pfa.
In extreme noise situations, Pd performs admirably across a
range of CP sizes, which is crucial for OFDM-based systems.
The Pd of 1/4 CP-based DAB transmitted signals for various
Pfa under 64-QAM is represented in Figure 9. For different
Pfa, the Pd increases at a wide range of SNR. Many OFDM-
based systems are using 64-QAM. The maximum Pd for low
SNR cases is very much important that is obtained using the
proposed method.

Figure 5. Spectrum Sensing of DAB under 16-QAM forNc 1/32.

Figure 6. Spectrum Sensing of DAB under 16-QAM forNc 1/16.

Figure 7. Spectrum Sensing of DAB under 16-QAM forNc 1/8.
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Figure 8. Spectrum Sensing of DAB under 16-QAM forNc 1/4.

Figure 9. Spectrum Sensing of DAB under 64-QAM.

Noise uncertainty is a very important parameter for the
evaluation of spectrum sensing performance. In the proposed
signal detection, the effect of noise uncertainty to detect
the primary user signal is analyzed at fixed Pfa 0.01 under
16-QAM for performance evaluation. Figure 10 shows the
detection performance of DAB signals for Nc 1/4 under
0.5 dB, 1 dB, and 1.5 dB noise uncertainty. It is clear
from Figure 10 that when the noise uncertainty increases,
the probability of detecting primary user signal Pd decreases
slightly with SNR. However, the proposed signal detection
method shows that maximum Pd (≥ 90%) is achieved at SNR
-20 dB and -19 dB with noise uncertainties of 0.5 dB and 1.5
dB, which is very important for signal detection in CR for
wireless communication systems.

In the proposed method, the CP ratios 1/8 and fixed Pfa
0.01 and 16-QAM are considered to analyze the effect of noise
uncertainty. The Pd of DAB signals in cases of 0.5 dB, 1 dB,
and 1.5 dB noise uncertainties are shown in Figure 11. The
plot shows that as the noise uncertainty rises, there is a slight
decrease in the probability of detecting the primary user signal

with respect to the SNR. On the other hand, the Pd of our
proposed method shows the satisfactory result with 0.5 dB, 1
dB, and 1.5 dB noise uncertainties for this method.

Figure 10. Spectrum Sensing of DAB forNc 1/4 with and without noise uncertainty.

Figure 11. Spectrum sensing of DAB forNc 1/8 with and without noise uncertainty.

Figure 12. Spectrum sensing of DAB forNc 1/16 with and without noise uncertainty.
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Figure 13. Spectrum sensing of DAB forNc 1/32 with and without noise uncertainty.

In Figures 12 and 13, the noise uncertainty 0.5 dB, 1
dB, and 1.5 dB are considered to detect the DAB for CP
ratio 1/16, and 1/32, respectively. All the graphs demonstrate
that the Pd of the proposed method decreases slightly with
increasing noise uncertainty relative to the SNR. However, the
satisfactory Pd of the primary user signal is sustained even for
1.5 dB noise uncertainty in highly noisy environments.

5.2. Performance Comparison

The proposed spectrum sensing scheme is compared with
the CP autocorrelation-based spectrum sensing method [30].
For the conventional method, the simulation parameters were
the size of FFT 32, the CP ratio 1/4, 16-QAM modulation, and
Pfa 0.05.

Figure 14 represents the effect of receiver operating
characteristics (ROC) curves for the proposed method and the
conventional method at different levels of signal strength. It is
demonstrated from this figure that for the proposed method, Pd
increases dramatically at SNR -10 dB, SNR -16 dB, and SNR
-21 dB relative to the conventional spectrum sensing scheme.
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Figure 14. Performance comparison using ROC curves under 16-QAM.

Figure 15. Performance comparison at fixed Pfa of 0.1.

The proposed method is compared with the conventional
spectrum sensing method [32] in Figure 15. The simulation
parameters of this sensing method are an FFT size (N) of
64, the CP ratio (Nc) 1/4, and Pfa 0.1. Here, CP-based
detectors are considered, namely the energy detector, log-
likelihood function (LLF), channel-independent generalized
log-likelihood ratio test (CI-GLRT) and autocorrelation
detectors. In our proposed method, we consider the CP ratio
(Nc) 1/4, and Pfa 0.1 for performance comparison. The Pd of
the suggested technique is significantly larger than that of the
traditional system, as seen in Figure 15.

Table 2 illustrates the detection performance of OFDM-
transmitted signals using both traditional and suggested
spectrum sensing approaches. The results presented in Table 2
demonstrate that the suggested spectrum-sensing scheme
outperforms the energy detection method by 5 dB, the LLF
by 8 dB, the CI-GLRT by 9 dB, and the autocorrelation based
spectrum-sensing scheme by 13 dB. It is clear from Table 2
that the proposed spectrum-sensing scheme provides a 5 dB
SNR improvement compared with that of the energy detection,
an 8 dB SNR gain compared with that of the LLF, a 9 dB SNR
gain compared with that of the CI-GLRT, and a 13 dB SNR
gain compared with that of the autocorrelation based spectrum-
sensing scheme respectively.

Table 2. Probability of detection (Pd) at fixed SNR for proposed and conventional
methods.

Spectrum-Sensing Method Pd SNR (dB)

Proposed 1 -15

Energy Detection 1 -10

LLF 1 -7

CI-GLRT 1 -6

Autocorrelation 1 -2

Figure 16 represents the performance comparison of the
proposed method and conventional method [32] in the
presence of noise uncertainty. The simulation parameters of
this sensing method are an FFT size (N) of 64, the CP ratio
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(Nc) 1/4, Pfa 0.1, and noise uncertainty 0.5 dB. Here, the
energy detector, LLF, CI-GLRT, and autocorrelation detectors
are considered. In our proposed method, we consider the CP
ratio (Nc) 1/4, Pfa 0.1, and noise uncertainty 0.5 dB for
performance comparison. The Pd of the proposed method
dramatically increases than that of the conventional scheme.

Figure 16. Performance comparison at fixed Pfa of 0.1 and noise uncertainty 0.5 dB.

Table 3. Probability of detection (Pd) at fixed SNR for proposed and conventional
methods in presence of noise uncertainty 0.5 dB.

Spectrum-Sensing Method Pd SNR (dB)

Proposed 1 -13

Energy Detection 1 -4

LLF 1 -5

CI-GLRT 1 -5

Autocorrelation 1 -2

Table 3 shows the maximum probability of detection for a
fixed value of SNR of the proposed and conventional spectrum
sensing methods in noise uncertainty for OFDM-transmitted
signals. The data presented in Table 3 makes it evident
that the suggested spectrum-sensing approach yields superior
signal-to-noise ratios (SNR) of 9 dB when compared to energy
detection, 8 dB when compared to the LLF, 8 dB when
compared to the CI-GLRT, and 11 dB when compared to the
autocorrelation based spectrum-sensing method.

6. Conclusion

Taking into consideration the poor sensing performance in
severe noise environments, the proposed spectrum sensing
is an effective scheme for OFDM-based applications. For
sensing OFDM transmitted signals, the parallel combination
of comb filter and autocorrelation function is exploited. The
proposed method is applicable to various OFDM system
applications such as DAB, LTE, and WLAN. This method
detects OFDM system applications for various CP ratios

under different higher-order digital modulation schemes in the
presence of noise uncertainty, which is very important in CR
systems. The proposed method improves the spectrum sensing
performance dramatically (up to 11 dB SNR gain) of OFDM
systems more than the conventional spectrum sensing methods
for low SNR cases.
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64-QAM 64-Quadrature Amplitude Modulation
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