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Abstract: The time-dependent Hamiltonians are a very important portion in the modeling of real systems. In fact, the dynamic
description of an entangled quantum systems is reflected in full coherence with the resolution of a wave function, solution
of the Schrödinger equation throughout the entire study path. In this regard, we specify in this paper the system of two-site
Bose-Hubbard model that obeys tunnel behavior, as two coupled harmonic oscillators, to examine quantum entanglement. The
dynamics of such a system is described by the Schrödinger equation have introduced to the solution, the non-linear Ermakov
equations as well as through a passage to the Heisenberg picture approach and the general Lewis and Riesenfeld invariant method
compute between coupled harmonic oscillators and the coupled Caldirola Kanai oscillators. We prove that a time exponential
increase in the mass of the system brings back to an exponential increase of entanglement and the Heisenberg picture approach
is the most stable method to quantum entanglement because, this last has reached very large values. Also, we specify a cyclic
time evolution, we find analytically the nonadiabatic Berry phases. In a particular case, such an entangled system acquired a
nonadiabatic Berry phases that exhibits the same behavior as the Schmidt parameter.
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1. Introduction
The study of the dynamic systems is an issue that

raises a large concern in the quantum mechanics and
quantum information fields [1-4] particularly, the quantum
entanglement [5-7]. From numerous applications, The
explanation of an entangled system is obtained in particular
thanks to the quantum communication tools, we speak here for
example of data processing on the basis of quantum physics;
the quantum computing and algorithms [8, 9]. The security
of the Internet communications opens thus the way on a
necessary parade: quantum cryptography, teleportation etc
[10-13]. In this context, an entangled system is a system
composed of two subsystems described in Hilbert space by
the Hamiltonian H = H1

⊕
H2. The dynamics analysis

of entangled systems using the Schmidt decomposition is
considerably more complicated than that of stationary systems.

In fact, we have to decompose a state vector on a stationary
basis to derive the Schmidt mode. However, the calculation
of the Schmidt mode for a dynamic state vector is performed
only in special cases. Furthermore, the Schmidt mode is
not available by a direct Schmidt decomposition of the time-
dependent Schrödinger equation (TDSE) solution through
the non-linear Ermakov equation. Another important aspect
that interests us; the analogy between the behavior of a state
vector and the Schmidt decomposition for a periodic evolution
leads to the definition of the Berry phases. These geometrical
phases have associated with various interesting quantum
phenomena: the theory of macroscopic polarization with the
King-Smith-Vanderbilt formula[14,15], the whole quantum
Hall effect (QHE) incarnated by the Thouless Kohmoto-
Nightingale-Nijs formula [16, 17] etc. The consequences of
the existence of the non-trivial Berry phases are the cyclical
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evolution of the system and the existence of the localized state
[18-20]. The Berry phases associated with the entanglement of
a Gaussian wave functions for a bipartite system is a question
to be discussed in this paper. We try to find some properties of
these two phenomena, entanglement and nonadiabatic Berry
phases for the system of two bosons undergoing the tunneling
effect under a full dynamicity.

2. Generalization of the Problem:
Two-site Bose-Hubbard Model
Hamiltonian

The central feature of the discussion is focused herein on the
two-site Bose-Hubbard model Hamiltonian. On the way back
from the ref [21], it is expressed as follows:

H = ωBH1(t)

(
a+

1 a1 +
1

2

)
+ ωBH2(t)

(
a+

2 a2 +
1

2

)
− J(t)

(
a+

1 a2 + a+
2 a1

)
. (1)

To describe the time evolution of (1), we need to solve the
(TDSE) following such a procedure i∂ψ∂t = Hψ. ak, a

+
k

in (1) are respectively the annihilation and creation operators
(k = 1.2). A direct analysis of the basic characteristics of the

system is not efficient. To start, we need to diagonalize the
Hamiltonian in consonance with the new operators positions
xk = 1√

2

(
a+
k + ak

)
and moments pk = i√

2

(
a+
k − ak

)
to get

the Hamiltonian with a form:

H =
ωBH1(t)

2

(
x2

1 + p2
1

)
+
ωBH2(t)

2

(
x2

2 + p2
2

)
− J(t) (x1x2 + p1p2) . (2)

We specify the coordinate system x1, x2; p1, p2, the rotation is performed by the algebraic matrix

I = Lij =

(
cos(α) − sin(α)
sin(α) cos(α)

)
,

and we choose

α =
1

2
tan−1

(
2J(t)

ωBH1(t)− ωBH2(t)

)
. (3)

It is thus possible to transmit our physical system from
one branch to another through these mathematical tools by
reformulating a new spatial phase denominated with position

coordinates xi, momenta pi, commutable between them and
satisfying the new transformation xi = Lijxj , pi = Lijpj ,
(i = +.−, j = 1.2), so we can be with the form

H =
ABH+(t)

2

(
x2

+ + p2
+

)
+
ABH−(t)

2

(
x2
− + p2

−
)
. (4)

Noticing that

ABH± = ωBH1 ± J(t) tanα, (5)

To generate a new Hamiltonian from (4) and better
described by two decoupled harmonic oscillators with

new frequency formalism, therefore, we define a scale
transformation reaching respectively, the position x̃1 =
4
√
µ−1x+, x̃2 = 4

√
µx− and momentum variables p̃1 =

4
√
µp+, p̃2 = 4

√
µ−1p− in order to obtain

H =
d

2

(
p̃2

1 + p̃2
2

)
+

1

2
d1x̃2

1 +
1

2
d2x̃2

2, (6)

where

d =
√
ABH+ABH−, d1 = ABH+

√
µ, d2 = ABH−

√
µ−1, (7)

and
µ =

ABH+

ABH−
. (8)

The formalism (6) is very useful for the analysis of
entangled states. Our concern is to examine the time-evolution
entanglement and the cyclic nonadiabatic Berry phases of
two-site Bose-Hubbard model in the tunnelling regime when

the Hamiltonian parameters have evolved with time. A
direct consequence is the solution of the (TDSE), it will
be generalized by the non-linear Ermakov equations [22, 23]
which asserts the existence of the Schmidt decomposition. In
that meaning, the solution of the non-linear Ermakov equations
is discussed by ref [24, 25] to examine entanglement. The
procedures followed by the references [22, 23] and the
Hamiltonian (6) give us the wave function
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ψn,m(x1, x2; t) =
1√

2n+mn!m!

(ε1ε2

π2

) 1
4

exp
[
− i[αn(t) + αm(t)]

]
× exp

[
−ε1

2

(
4
√
µ−1x1 cosα− 4

√
µx2 sinα

)2

− ε2

2

(
4
√
µ−1x1 sinα+ 4

√
µx2 cosα

)2
]

× exp
[
i
b
′

1(t)

2b1(t)

(
4
√
µ−1x1 cosα− 4

√
µx2x2 sinα

)2
+ i

b
′

2(t)

2b2(t)

(
4
√
µ−1x1 sinα+ 4

√
µx2 cosα

)2]
×Hn

[√
ε1

(
4
√
µ−1x1 cosα− 4

√
µx2 sinα

)]
Hm

[√
ε2

(
4
√
µ−1x1 sinα+ x2 cosα

)]
,

(9)

where αn, αm are defined by the relation:

αn(t) = Enτ1and αm(t) = Emτ2. (10)

En, Em are respectively the corresponding energies. They are given as

En = −
(
n+

1

2

)
d1and Em = −

(
m+

1

2

)
d2, (11)

with

τ1 =

∫ t

0

dι

b21(ι)
, τ2 =

∫ t

0

dι

b22(ι)
, (12)

and

ε1 =
d1

b21
, ε2 =

d2

b22
. (13)

The parameters b1, b2 satisfy the non-linear Ermakov equations b̈1 + d2
1(t)b1 =

d21(0)

b31
and b̈2 + d2

2(t)b2 =
d22(0)

b32
. They are

given in the ref [26], where

b1(t) =

(
∆d1

2d1(f)
cos(2

√
d1(f)t) +

∆d1

d1(f)

) 1
2

,

and

b2(t) =

(
∆d2

2d2(f)
cos(2

√
d2(f)t) +

∆d2

2d2(f)

) 1
2

. (14)

∆dk = dk(f) − dk(i), with dk(i) and dk(f) are respectively the frequencies at the initial and the final time. The initial
condition is defined by the time t = 0, the parameter bk(0) = 1 and the wave function

ψn,m (x̃1, x̃2; 0) =
1√

2n+mn!m!

(
d1(0)d2(0)

π2

) 1
4

exp

[
−d1(0)

2
x̃2

1 −
d2(0)

2
x̃2

2

]
Hn

(√
d1(0)x̃1

)
Hm

(√
d2(0)x̃2

)
. (15)

3. Non-cyclic State and Entanglement
We will try to decompose in the orthonormalization

time-dependent Schmidt basics, the vector ψn,m(x1, x2; t)
presented in the formula (9). Start by considering at time t = 0

a global system consisting with two separeted subsystems
(harmonic oscillator 1 and 2), leads to J = 0, and are described
by the ηi (x1) and σj (x2) wave functions. From the Schmidt
theorem [28, 29], now it is easy to decompose the considered
wave function into (15) as:

ψn,m (x̃1, x̃2; 0) =
∑
i,j

di,jn,mηi (x1)σj (x2) , (16)



30 Ahlem Abidi and Adel Trabelsi: The Schmidt Decomposition for Entangled System and Nonadiabatic Berry Phases

where di,jn,m is the coefficient of expansion. It is defined
throughout the orthogonality relation and is given as di,jn,m =

〈ψn,m (x̃1, x̃2; 0) |ηi (x1)σj (x2)〉. To calculate di,jn,m, we then

consider a less restrictive approximation such as J ' 0, leads
to d1 ' d2, d1 − d2 ≤ J and b1(t) ' b2(t). After these
simplifications, the parameter µ and the wave function in (15)
becomes respectively: µ = 1 and

ψn,m
(
x̃1, x̃2; 0

)
=

1√
2n+mn!m!

(ωBH1(0)

π

) 1
2 exp

[
− ωBH1(0)

2

(
x1 cosα− x2 sinα

)2
− ωBH1(0)

2

(
x1 sinα+ x2 cosα

)2]
×Hn

(√
ωBH1(0) (x1 cosα− x2 sinα)

)
Hm

(√
ωBH1(0) (x1 sinα+ x2 cosα)

)
.

(17)

Following similar problem that is developed in refs [29- 31], di,jn,m becomes

di,jn,m = (−1)n
tani+n(α)(

1 + tan2(α)
)m+n

2

√
m!n!

i!j!
P (−(1+m+n),m−i)
n

(
1 +

2

tan2(α)

)
. (18)

P
(−(1+m+n),m−i)
n

(
1 + 2

tan2(α)

)
is the Jacobi polynomial.

At this stage, we realize a given basic of the dynamic pure state ψn,m(x1, x2; t) in (9) by defining a set of unitary operators
able to describe this basic. When the system evolves from t = 0 to any t, based on the refs[27, 32], we define a unit evolution
depicted in the orthogonal base of the unbound system by:

u
′

i (x1; t) =

(
1

b21

) 1
4

e

i
2

(
b
′
1
b1

)
x2
1

=

(
1

b21

) 1
4

ui (x1; t)

and

v
′

j (x2; t) =

(
1

b22

) 1
4

e

i
2

(
b
′
2
b2

)
x2
2

=

(
1

b22

) 1
4

vj (x2; t) . (19)

So, the pure state defined in (9) can be reexpressed using the Schmidt decomposition in the original base of the initial state
(17) to give

ψ (x1, x2; t) =
∑
i,j

Ai,j(t)η
′

i

(
x1

b1
; t

)
σ
′

j

(
x2

b2
; t

)
, (20)

where

η
′

i (x1; t) = u
′

i (x1; t) ηi

(
x1

b1
; t

)
and σ

′

j

(
x2

b2
; t

)
= v

′

j (x2; t)σj

(
x2

b2
; t

)
. (21)

Due to the form of the wave function in (20), it is not
possible to derive the coefficient of expansion Ai,j(t) directly.
Suppose thus a new eigenstate alike to the time-independent

eigenstate of two decoupled harmonic oscillators and is given
as:

ψn,m(ξ̃1, ξ̃2; t) =
1√

2n+mn!m!

(
d1d2

π2

) 1
4

exp
[
− i[αn(t) + αm(t)]

]
× exp

[
−d1

2
ξ̃2
1 −

c2
2
ξ̃2
2

]
Hn

[√
d1ξ̃1

]
Hm

[√
d2ξ̃2

]
,

(22)
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where ξ̃k = x̃k
bk

. We put an analogy with the wave function of
the initial state assumed solution of the stationary Schrödinger

equation. In accordance with this, we rewrite our wave
function (20) from a new variables (x1

b1
, x2

b2
) as:

ψ (ξ1, ξ2; t) =
∑
n,m

bn,me
−i(αn(t)+αm(t))ψn,m

(
ξ̃1, ξ̃2; 0

)
. (23)

ψn,m

(
ξ̃1, ξ̃2; 0

)
is determined by expression (15) to

replace the variables (x̃1, x̃2) with (ξ̃1, ξ̃2).
We follow the same procedures as with the wave function of

(16), we obtain an integral similar to that given by di,jn,m with

a variables (x̃1, x̃2) where bn,m = di,jn,m. They are given by
expression (18). We can rewrite the wave function ψ (ξ1, ξ2; t)
in (23), according to eigenfrequencies ηi (ξ1) and σj (ξ2) of
the separated system as:

ψ (ξ1, ξ2; t) =
∑
i,j

Ai,j(t)e
−iαk(t)ηi (ξ1) e−iαp(t)σj (ξ2) . (24)

The coefficient of expansion Ai,j(t) is achieved by making
an analogy between the two expressions (23), (24) and using
the orthogonality condition. The nondegenerate eigenvalues

are expressed by setting the condition k + p = n + m, we
obtain

Ai,j(t) =

k+p∑
n=0

dk,pn,k+p−nd
∗i,j
n,k+p−ne

−i
[
αn+αk+p−n−αk−αp

]
. (25)

With particular report to the initial state basis vectors presented in (16) at an approximate factor, the time-dependent wave
function in (20) becomes:

ψ (x1, x2; t) =
∑
i,j

Ai,j(t)

(b21)
1
4 (b22)

1
4

u (x1, t) ηi

(
x1

b1
; t

)
v (x2, t)σj

(
x2

b2
; t

)
. (26)

When the condition k + p = i + j is fulfilled, the reduced density matrices corresponding to the wave function in (24) are
given as

ρA

(
ξ1, ξ

′

1

)
=

k+p∑
i=0

|Ai,k+p−i(t)|2ηi (ξ1) η∗i

(
ξ
′

1

)
, (27)

and

ρB

(
ξ2, ξ

′

2

)
=

k+p∑
i=0

|Ai,k+p−i(t)|2σk+p−i (ξ2)σ∗k+p−i

(
ξ
′

2

)
. (28)

Going back to the original variables (x1, x2), (20) becomes:

ψ (x1, x2; t) =
∑
i,j

Ai,j(t)

(b21)
1
4 (b22)

1
4

u (x1, t) ηi

(
x1

b1
; t

)
v (x2, t)σj

(
x2

b2
; t

)
. (29)

With the above, the corresponding reduced density matrices are denoted as:

ρ
′

A

(
x1, x

′

1

)
= ui (x1; t)

ρA

(
x1

b1
,
x
′
1

b1

)
(b21)

1
4 (b22)

1
4

u∗i

(
x
′

1; t
)
, (30)

and

ρ
′

B

(
x2, x

′

2

)
= vj (x2; t)

ρB

(
x2

b2
,
x
′
2

b2

)
(b21)

1
4 (b22)

1
4

v∗j

(
x
′

2; t
)
. (31)
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From expression (21) and its conjugate ψ∗
(
x
′

1, x
′

2; t
)

[33,
34], we define the Schmidt mode γk(t) and the entanglement
von Neumann entropy respectively as

γk(t) =

∣∣∣∣Ai,k+p−i(t)

(bl)
1
2 (b2)

1
2

∣∣∣∣2, (32)

and

S = −
∑
k

γk(t)lnγk(t). (33)

The Schmidt parameter is described following refs [35, 36]
as

Λ(t) =
1∑

k γ
2
k(t)

. (34)

If we consider a cyclic evolution around a closed circuit
during a period T , then in this context we can talk to a second
concept of quantum mechanics: the Berry phases. We focus in
the following section on the Berry phases in the nonadiabatic
context.

4. Cyclic State and Nonadiabatic Berry
Phases

This section is based on the discussion of the entangled
cyclic state to calculate the nonadiabatic Berry phases.
The adiabatic approximation of the topological Berry phase
extends to the nonadiabatic evolution case by the appropriate
choice of the initial state ψn,m (x1, x2; 0) [37].

Referring to (9), note that at t = 0, the system is in the state:

ψn,m(x1, x2; 0) =
1√

2n+mn!m!

(
d1d2

π2

) 1
4

exp
[
− i[αn(t) + αm(t)]

]
× exp

[
−d1

2

(
4
√
µ−1x1 cosα− 4

√
µx2 sinα

)2

− d2

2

(
4
√
µ−1x1 sinα+ 4

√
µx2 cosα

)2
]

×Hn

[√
d1

(
4
√
µ−1x1 cosα− 4

√
µx2 sinα

)]
Hm

[√
d2

(
4
√
µ−1x1 sinα+ x2 cosα

)]
.

(35)

When the parameters ωBHi(t) and bi(t) with (i = 1.2), evolves periodically throughout the period T , the system returns after
this period to the initial state to acquire the state

ψn,m(x1, x2;T ) = exp
[
− i[αn(T ) + αm(T )]

]
ψn,m (x1, x2; 0) , (36)

ψn,m (x1, x2; 0) is defined by expression (35). According to the stationary eigenstate in (16) and the Schmidt theorem,
ψn,m(x1, x2;T ) can be written as:

ψ (x1, x2;T ) =
∑
i,j

gi,jn,me
−i
[
αn(T )−iαm(T )

]
ψn,m (x̃1, x̃2; 0) . (37)

Expression (37) can be developed in the form of two unrelated subsystems as:

ψ (x1, x2;T ) =
∑
i,j

Bi,j(T )ηi (x1;T ) υj (x2;T ) , (38)

where

Bi,j(T ) = gi,jn,mg
∗k,p
n,m e

−i
[
αn(T )−αk+p−n(T )−αk(T )−αp(T )

]
. (39)

Following the same procedures used to derive the integral (18), we have gi,jn,m = di,jn,m. From t = 0 to t = T , the eigenstate in

(36) evolves with the dynamical phase φt = −i
∫ T

0
〈ψn,m(T )|ψ̇n,m(T )〉dt, herein it is given as

φt = −
(
n+

1

2

)
d1

∫ T

0

dt

b21(t)
−
(
m+

1

2

)
d2

∫ T

0

dt

b22(t)
. (40)

After studying the dynamic phase, the entangled state
accumulate a Berry phases expressed on the basis of the
Schmidt decomposition [38, 39] for a nonadiabatic cyclic
evolution by

β(T ) =
∑
k

φt

∣∣∣Bi,k+p−i(T )
∣∣∣2. (41)
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5. Applications
We can discuss on planar graphs our analytical results

previously found for entanglement (33), (34) and the
nonadiabatic Berry phases (41), taking into consideration the
influence of the number states |k, p〉 of harmonic oscillators
1, 2 and the tunnel parameter J . To facilitate the numerical
computing, we adjust expression ∆α = αn +αk+p−n−αk −

αp given in (25) to nΩ(t) = n
J(t)

(
ωBH2(t)−ωBH1(t)

J(t)

)
+tan(α)√

d1(t)+
√
d2(t)

that can be considered energy of the system and Ω(t) the
corresponding time-dependent frequency. α is determined by
Eq(3). Our objective is to show on particular cases how a

generalization of their formulations corresponds to the current
development of the entangled states and the nonadiabatic
Berry phases within the potential wells and then we discuss
how it develops for a solve from the general Lewis and
Riesenfeld and the Heisenberg picture approach methods.

5.1. Non-linear Ermakov Equations

Consider at this section two particular models using the
solution of the Ermakov equation given in (14). We begin with
a simple coupled harmonic oscillators with constant, masses 1

d

and angular frequencies
√
ddj . Only J is time-dependent, we

have

b1(t) =

√(
d1f − d1i

2d1f

)
cos
(

2
√
dd1f t

)
+

(
d1f − d1i

2d1f

)
, (42)

and

b2(t) =

√(
d2f − d2i

2d2f

)
cos
(

2
√
dd2f t

)
+

(
d2f − d2i

2d2f

)
. (43)

We have processed for the second model, a coupled Caldirola-Kanai oscillators with an increasing exponential masses e2νjt

d ,
and angular frequencies

√
ddj . It is a good example of an exact solution, (14) becomes

b1(t) =

√(
d1f − d1i

2d1f

)
cos

(
2
√
de−2ν1td1f t

)
+

(
d1f − d1i

2d1f

)
, (44)

and

b2(t) =

√(
d2f − d2i

2d2f

)
cos

(
2
√
de−2ν2td2f t

)
+

(
d2f − d2i

2d2f

)
. (45)

Figure 1. An example of entanglement entropies in expression (33); S(t) from simple coupled harmonic oscillators and S1(t) from the coupled Caldirola-Kanai oscillators by setting
ωBH1 = 0.3, ωBH2 = 0.7, J = 1.8, ν1 = 0.6, ν2 = 1.1 and different values of the quantum number (k, p) respectively (k, p)={(5,5) (black solid line), (5,10) (red solid
line), (10,10) (blue solid line)}..
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Figure 2. Same as Figure 1 but from results of expression (34); Λ(t) from simple coupled harmonic oscillators and Λ1(t) from the coupled Caldirola-Kanai oscillators.

5.2. General Lewis and Riesenfeld Method

Figure 3. Same as Figure 1 for S(t) and S1(t) but from the representation associated with the results of the general Lewis and Riesenfeld method solution and β(T ) in (41) to the
case of the simple coupled harmonic oscillators for different quantum number (k, p), respectively (k, p)={(0,2) (black solid line), (2,2) (red solid line), (2,4) (blue solid line)}.

Let us now see how this ignorance will lead to a general
treatment of Lewis and Riesenfeld method. We assimilate
the wave function in expression (27) of the ref [40] to that

given in (9). From the case of the first system; coupled
harmonic oscillators, we have ρj(t) in (27) of the ref [40] are
the solutions of the second order differential equations

d2

dt2
(ρj(t)) + γ(t)

d

dt
(ρj(t)) + ddjρj(t) =

d2

ρ3
j (t)

, (46)
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and they are denoted by ρj(t) =
√

d√
ddj

. Going back to (14), bj(t) becomes

bj(t) = (ddj)
1
4 . (47)

Next, consider the coupled Caldirola-Kanai oscillators. In basic terms, the ρj(t) are prepared as:

ρ1(t) =

√
de−2ν1t

Ω+
, (48)

and

ρ2(t) =

√
de−2ν2t

Ω−
, (49)

where

Ω2
± = de−2νjtdj −

ν2
j

4
. (50)

± correspond respectively to (j = 1.2).
Thus, bj(t) in (14) should be equal to

b1(t) =

√
d1
de−2ν1t

Ω+
, (51)

and

b2(t) =

√
d2
de−2ν2t

Ω−
. (52)

5.3. Heisenberg Picture Approach

To see this mathematical dependence, we formulate the expression of the wave function (3.6) solution of the ref [41] to that in
expression (9). From this, bj(t) becomes

bj(t) =

√
djg−j
ωIj

, (53)

where (j=1.2) and

g−j = c1jf
2
1j + c2jf1j(t)f2j(t) + c3jf

2
2j(t), (54)

are the solutions of the differentials equations given from same Lie algebra. clj are constant numbers and flj(t) are the solutions
of the second order linear differential equations. They are a differential equations of the form:

d2

dt2
(flj(t)) +

d

dt

(
d

dt
(flj(t))

)
+ ddjflj(t) = 0, (55)

(l = 1.2) and
ω2
Ij = g+jg−j − g2

0j . (56)

g+j and g0j have checked the system in the form

g0j(t) = − 1

2d

(
dg−j(t)

dt

)
, (57)

g+j(t) =
dj
d
g−j(t)−

1

d

(
dg0j(t)

dt

)
. (58)

To start, we use for the simple coupled harmonic oscillators model the ref [42]. We have c1j = d, c2j = 0 and c3j = dS4
j . Sj

are the Schrödinger operators and they are given from ref[43] by Sj = S0e
i
√
ddjt. The flj(t) in (5.14) becomes

f1j(t) = cos
√
dd1jt, (59)



36 Ahlem Abidi and Adel Trabelsi: The Schmidt Decomposition for Entangled System and Nonadiabatic Berry Phases

f2j(t) = sin
√
dd2jt. (60)

Using (5.18) and (5.19), expression (5.13) give

g−j(t) = dj

(
cos2

√
ddjt+ S4

j sin2
√
ddjt

)
. (61)

Consequently (5.16), (5.17) yield

g0j(t) =
(
S4
j − 1

)√
ddj cos

√
dd1jt sin

√
dd2jt, (62)

g+j(t) = dj

(
sin2

√
ddjt+ S4

j cos2
√
ddjt

)
, (63)

and

ωIj =

{
ωI1 =

√
dd1S

2
1

ωI2 =
√
dd2S

2
2 .

(64)

From coupled Caldirola-Kanai oscillators model [44], we have

bj(t) =

√
dj
de−2νjt

ΩIj
, (65)

where

Ω2
Ij = g1j(t)g3j(t)− g2

2j(t), (66)

g1j(t) = de−2νjt, (67)

g2j(t) = νj , (68)

g3j(t) =
d2
j

de−2νjt
, (69)

and

ΩIj =

{
ΩI1 =

√
de−2ν1td1 − ν2

1

ΩI2 =
√
de−2ν2td2 − ν2

2 .
(70)

Figure 4. The same as Figure 1 and Figure 3 for S(t) and S1(t) but from the Heisenberg picture approach configuration.

This method is develloped by the works [45, 46] to examine
entanglement and some quantum physics notions.

5.4. Discussion

We represent on three particular cases Figures 1, 3 and 4;
the entanglement entropies linked to the positioned variation
of the quantum states |k, p〉 to show the effect of the classical
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functions solution of the differential equations used in the
treatement on the variation of entanglement. We prove that
the Heisenberg picture approach is the most efficient method
to examine entanglement, here the quantum entanglement
reaches a very large values. The unexpected feature is that an
exponential increase in the time of the mass of the harmonic
oscillator results in an exponential increase of the quantum
entanglement such that we have reached extremely important
values to the coupled Caldirola Kanai harmonic oscillators
with respect the simple coupled harmonic oscillators. A
very rapid increase in the Schmidt parameter dropped the
oscillatory behavior that is occurs in expression (3.19) and
we can discern only the linear behavior. The particles in
the Schmidt mode are distributed according to a conditional
probability so the increase of the Schmidt parameter with the
quantum numbers (k, p) means that when a pair of harmonic
oscillators is in a pure bipartite state |k, p〉, its probability of
being in another state |k′ , p′〉 is non-zero but in the particular
case where the system is at a time t1 in the state |k, p〉, its
probability of being in another state |k′ , p′〉 is thus zero. The
same behavior is repeated with the nonadiabatic Berry phases

because of expression
∣∣∣Bi,k+p−i(T )

∣∣∣2 so nonadiabatic Berry
phases represents the probability of capturing the system in
the states |k, p〉 when the particle remains confined in a closed
region.

6. Conclusion
The system of two-site Bose-Hubbard model in the

tunneling regime is interpreted in such a way as of two coupled
harmonic oscillators. The dynamics of entanglement and
the nonadiabatic Berry phases of the considered system is
studied based on the Schmidt decomposition employs the wave
function solution of (TDSE) to arbitrary quantum numbers.
As an important result, we make known the dynamics of
entanglement because it can be immense for an exponential
time growth of the mass. The Heisenberg picture approach
acts as a good investigator of quantum entanglement with
respect the solution via the non-linear Ermakov equations and
the general Lewis and Riesenfeld method. On a particular
case, it is possible now to recognize the properties of such an
entangled system by examining its nonadiabatic Berry phases
because it presents a similar behavior to that of the Schmidt
parameter.
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TDSE Time-dependent Schrödinger equation
QHE Quantum Hall effect
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I. Latorre, R. Tarrach: Generalized Schmidt
Decomposition and Classification of Three-Quantum-
Bits States, Phys. Rev. Lett. 7, 85 (2000),
https://doi.org/10.1103/PhysRevLett.85.1560.

[29] D. N. Makarov: High Intensity Generation of Entangled
Photons in a Two Mode Electromagnetic Field, Wiley-
Vch. 529, 10 (2017), https://doi.org/10.1002/andp.201600408

[30] D. N. Makarov: Coupled harmonic oscillators and their
quantum entanglement, Phys. Rev. E. 97, 042203 (2018),
https://doi.org/10.1103/PhysRevE.97.042203

[31] D. N. Makarov: Quantum entanglement of a harmonic
oscillator with an electromagnetic field, Sc. Rep. 8, 8204
(2018), https://doi.org/10.1038/s41598-018-26650-8
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