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Abstract 

Health informatics plays a crucial role in the early detection of lung cancer by enhancing the collection, analysis, and application 

of patient data in clinical settings. It enables the integration of data from electronic health records (EHRs), imaging, pathology 

reports, and even genomic information. Artificial Intelligence (AI) and Machine Learning (ML) technologies further support 

lung cancer detection by tracking disease progression over time, identifying changes that may suggest malignancy, and reducing 

false-positive and unnecessary procedures. A fundamental challenge, however, remains: many existing lung cancer prediction 

models report accuracy below 80%, emphasizing the need for more effective classification techniques. In this work, we introduce 

a novel approach that significantly improves predictive accuracy, achieving rates between 95% and 98% a notable advancement 

over current methods using the same dataset. This improvement is driven by a recently developed Generative AI technology, 

considered one of the most powerful tools for enhancing the performance of health informatics systems. 
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1. Introduction 

Recent advances in imaging and sequencing technologies 

have significantly propelled the clinical study of lung cancer. 

However, the human capacity to process and interpret the 

resulting vast and complex datasets remains limited. Machine 

learning (ML) plays a pivotal role in integrating and analyzing 

this wealth of data, offering multi-dimensional insights into 

lung cancer. In this review, we present an overview of 

ML-based approaches that enhance various aspects of lung 

cancer diagnosis and treatment, including early detection, 

auxiliary diagnosis, prognosis prediction, and immunotherapy. 

We also discuss current challenges and future opportunities 

for applying ML in lung cancer research and clinical practice. 

Lung cancer is among the most frequently diagnosed can-

cers and remains the leading cause of cancer-related deaths 

worldwide. Each year, approximately 2.20 million new cases 

are reported, with 75% of patients succumbing to the disease 

within five years of diagnosis. 

Over the past few decades, advancements in cancer re-

search technologies have driven numerous large-scale col-

laborative projects, resulting in extensive clinical, medical, 

and sequencing databases. These resources have empowered 

researchers to investigate lung cancer across the continuum of 

diagnosis, treatment, and clinical outcomes. 

Cancer studies are increasingly moving toward the inte-

gration of multi-dimensional, large-scale datasets. However, 

leveraging these diverse data types in clinical applications 
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remains a time-consuming and complex process. The rapid 

expansion of cancer-related databases further compounds the 

analytical challenge. 

As a result, machine learning (ML) has emerged as a crit-

ical approach for automatically extracting patterns from 

complex data to support clinical decision-making. ML, a 

subset of artificial intelligence (AI), uses mathematical algo-

rithms to identify patterns and make predictions based on data 

[1]. It has long played a supportive role in cancer phenotyping 

and therapy, and its applications have expanded to include 

early detection, cancer subtype classification, biomarker 

discovery, tumor microenvironment (TME) deconvolution, 

prognosis prediction, and drug response evaluation [2]. 

Early diagnosis plays a crucial role in reducing mortality 

associated with lung cancer. Chest screening using low-dose 

computed tomography (CT) is the primary method for mon-

itoring individuals at increased risk. To enhance diagnostic 

accuracy and efficiency, computer-aided diagnosis (CAD) 

systems have been developed to assist physicians in inter-

preting medical imaging data. These systems have proven to 

be valuable as a second opinion in clinical decision-making 

[3]. 

Traditional feature-based CAD typically involves three 

steps: nodule segmentation, feature extraction and selection, 

and clinical judgment inference (classification). Some meth-

ods utilize measured texture features of identified nodules in 

CT images, combined with patient clinical data, to train ma-

chine learning (ML) classifiers, such as logistic regression 

(LR) [4]. 

Commonly used features include nodule size, type, location, 

count, boundary characteristics, and the presence of emphy-

sema in CT scans. Clinical variables often include the pa-

tient’s age, gender, timing of specimen collection, family 

history of lung cancer, smoking exposure, and more. However, 

these features tend to be subjective and arbitrarily defined, 

often falling short in providing a comprehensive, quantitative 

characterization of malignant nodule appearances [5]. 

With advancements in deep learning (DL), particularly 

convolutional neural networks (CNNs), DL-based models 

have increasingly been integrated into computer-aided diag-

nosis (CAD) systems to enhance accuracy, reduce false posi-

tives, and improve execution time in lung tumor detection. 

Like traditional feature-based CAD systems, these DL models 

typically follow a three-step pipeline: nodule detection and 

segmentation, feature extraction, and clinical inference [6, 7]. 

However, DL-based systems surpass traditional ones by au-

tomatically extracting high-level features and capturing 3D 

characteristics of suspicious nodules. 

While machine learning (ML) can be incredibly powerful, 

poor accuracy is indeed one of its potential disadvantages, 

especially in certain scenarios. Here's a breakdown of why 

poor accuracy can be a significant issue and what might cause 

it: 

1) ML models are heavily reliant on the quality and quan-

tity of data. If the training data is noisy, incomplete, bi-

ased, or not representative of real-world scenarios, the 

model’s accuracy will suffer. 

2) Overfitting or Underfitting 

a) Overfitting: The model learns the training data too 

well, including the noise, and fails to generalize to 

new data. 

b) Underfitting: The model is too simple to capture the 

underlying trends in the data. 

3) Some problems are inherently difficult to model. For 

example, predicting human behavior or interpreting 

natural language with full nuance is extremely complex 

and often results in lower accuracy. 

4) Poor accuracy can be hard to fix because many ML 

models (like deep neural networks) operate as black 

boxes, making it difficult to understand why they’re 

making errors. 

5) In dynamic environments, the underlying patterns in 

data may shift over time, causing a once-accurate model 

to become less reliable. 

6) Training highly accurate models often requires signifi-

cant computational resources. In resource-constrained 

environments, trade-offs may lead to the use of simpler, 

less accurate models. 

Low-quality or insufficient data, including small sample 

sizes, especially for certain cancer types, can significantly 

hinder model performance. This is why many ML algorithms 

fail to provide reliable results. In this paper, we present a 

novel algorithm that can dramatically enhance the accuracy of 

lung cancer detection. 

2. Data Description: Lung Cancer Data 

Set 

2.1. Lung Cancer Data Set 

This dataset consists of 5,000 records with 17 features re-

lated to lung cancer risk factors and prediction. It includes 

demographic information, lifestyle habits, medical history, 

and symptoms associated with pulmonary disease. The da-

taset is useful for predictive modeling, risk assessment, and 

medical research. The features are as follows: 
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Table 1. Features of the lung cancer dataset. 

Feature Description 

Age Age of patients 

Gender (GEN) Gender of patients (binary) 

Smoking (S) Smoking or not (binary) 

Finger Discoloration (F) 
Finger discoloration in lung cancer can occur due to several reasons, often related to poor oxygenation 

(binary) 

Mental Stress (M) 
Mental stress and "lung stress" are terms that refer to two different types of stress. Mental refers to anxiety 

and depression (binary) 

Exposure to Pollution (EXP) 
Exposure to pollution in lung stress" refers to how breathing in polluted air affects the lungs and causes 

physical stress or harm to lung tissues and respiratory function (binary). 

Long Term Illness (LONG) 
In the context of lung cancer, a long-term illness refers to the chronic and ongoing nature of the disease 

and its effects, even after initial treatment (binary) 

Energy Level (EN) 

In the context of lung cancer, "energy level" typically refers to a patient's overall physical stamina and 

fatigue, rather than a specific medical or biological measurement. It’s a common way to describe how 

much energy a person feels they have for daily activities. 

Immune Weakness (IMM) Immune weakness is commonly referred to as immunodeficiency (binary) 

Breathing Issue (BRE) This refers to low oxygen levels in the blood, often leading to breathlessness and fatigue (binary). 

Alcohol Consumption (ALC) 
Alcohol consumption in the context of lung cancer refers to the intake of alcoholic beverages and its 

potential relationship to the development or progression of lung cancer. 

Throat Discomfort (TH) 
Sensation of discomfort or distress related to the perceived threat of having lung cancer or the physical 

discomfort that arises due to symptoms of the disease (binary). 

Oxygen Saturation (OX) 
Lung cancer can obstruct airways or damage lung tissue, thereby reducing the lungs' ability to transfer 

oxygen into the blood. This can lead to lower oxygen saturation levels. 

Chest Tightness (CHEST) It is described as a feeling of pressure, heaviness, or difficulty breathing (binary). 

Family History (FH) 
Family history in lung cancer refers to the occurrence of the disease in a person's relatives, particularly 

first-degree relatives like parents, siblings, or children (binary). 

Smoking in Family (SMOK) 

Family history of smoking refers to the presence of smoking habits among family members, particularly 

parents, siblings, or extended relatives. In the context of lung cancer, family history can play a significant 

role in understanding an individual's risk of developing the disease, but it's important to distinguish 

between two key factors: genetic predisposition and environmental exposure (binary). 

Immune Stress (STESS) 

Immune stress in lung cancer refers to the complex interactions between the immune system and the 

tumor environment that can impact the body's ability to fight cancer. It involves a range of factors that 

affect the immune response, either impairing it or being influenced by the tumor's behavior (binary) 

Figure 1 illustrates the comparison between the number of healthy patients and those diagnosed with lung cancer. Figure 2 

displays histograms of oxygen saturation and energy levels. The histograms demonstrate normal distributions of these features. 
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Figure 1. The number of healthy patients (marked by „0‟ and with lung cancer “1”). 

 
                                    a)                                                           b) 

Figure 2. Histograms of oxygen saturation (a) and energy levels (b). 

2.2. Pre-Processing 

Pre-processing of data is a crucial step in any machine 

learning pipeline. It ensures that the raw data is transformed 

into a clean and structured format suitable for modeling. We 

used the following steps: 

1) Data Cleaning 

i) Handling Missing Values: 

a) Remove rows/columns with too many missing 

values 

b) Impute missing values (mean, median, mode, in-

terpolation) 

ii) Removing Duplicates 

iii) Fixing Structural Errors: 

Inconsistent capitalization, typos, incorrect labels (e.g., 

"male", "Male", "MALE") 

iv) Outlier Detection and Removal 

2) Data Transformation 

i. Normalization/Scaling: 

a) Min-Max Scaling: Brings values to a range (typically 

[0, 1]) 

b) Standardization (Z-score Scaling): Centers the data 

around 0 with unit variance 

ii. Encoding Categorical Variables: 

a) Label Encoding: Converts categories to integers 

b) One-Hot Encoding: Creates binary columns for each 

category 

iii. Binning: 

Convert continuous data into categorical bins (e.g., age of 

patient groups) 

Figure 3 shows the boxplot of the oxygen saturation fea-

ture, while Figure 4 is its violin plot, showing higher levels of 

oxygen saturation in the healthy population.
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Figure 3. Boxplot of oxygen saturation shows outliers (beyond the whiskers). 

 
Figure 4. Violin plot of the oxygen saturation. 

2.3. Feature Engineering 

Feature engineering in machine learning is the process of 

utilizing domain knowledge and data transformation tech-

niques to analyze and create features (input variables) that 

enhance the performance of machine learning models. It's a 

crucial step in the data preprocessing pipeline and often has a 

big impact on model performance. The first step in feature 

engineering is to analyze the correlation between features. For 

this reason, we compute a correlation (heatmap) that is shown 

in Figure 5. 
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Figure 5. The correlation matrix (heatmap) shows the correlation values between features and outcomes. 

The next step in feature engineering is to plot the impact of 

the features on the outcomes explicitly. Figure 6 shows that 

smoking plays the pivotal risk in lung cancer development. 

Figure 7 illustrates the features that have the most significant 

impact on the outcomes. 

 
Figure 6. The plot shows the impact of each feature on the outcome. 
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Figure 7. The plot shows the features which mostly impact the out-

come. These features are smoking, smoking in family, Throat dis-

comfort, Immune stress, Energy level, Immunodeficiency, and family 

history of lung cancer. 

Figure 8 shows the impact of smoking on lung cancer. 

Figure 9 depicts the relationship between finger decoloriza-

tion and patients with lung cancer. 

 
Figure 8. The number of smoking patients with lung cancer (1) is 

significantly higher than the number of nonsmoking patients (orange 

color in the “0” category). 

 
Figure 9. The number of patients with finger decolorization and lung 

cancer (1) is still significant. 

Figure 10 depicts the relationship between the number of 

patients with breathing difficulty and lung cancer and Figure 

11 shows that throat issues may be indicative for lung cancer. 

 
Figure 10. The number of patients with breathing difficulties and 

lung cancer (1) is significantly higher than the number of patients 

without breathing difficulties (orange color in the “0” category. 

 
Figure 11. The number of patients with throat discomfort and lung 

cancer (1) is significantly higher than the number of patients without 

throat complaints (orange color in the “0” category). 

3. Lung Cancer Prediction Algorithms 

Classification and Regression Problems 

Classification is the process of identifying or discovering a 

model or function that helps separate the data into multiple 

categorical classes, i.e., discrete values. In classification, data 

is categorized under different labels based on parameters 

provided in the input, and then the labels are predicted for the 

data. 

In a classification task, we are supposed to predict discrete 

target variables (class labels) using independent features. In 

the classification task, we are supposed to find a decision 
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boundary that can separate the different classes in the target 

variable. The classification process addresses problems where 

the data can be categorized into binary or multiple discrete 

labels. If we want to predict the possibility of a patient having 

lung cancer, then there would be two labels: Yes and No. 

A regression problem in machine learning is a type of su-

pervised learning task where the goal is to predict a continu-

ous output or value based on input features. 

Lung cancer, also referred to as lung carcinoma in the usual 

medical term, is originally a malignant tumor that grows in 

lung cells uncontrollably and can be identified by cell prolif-

eration. Recent advancements in computer vision have ena-

bled scientists to introduce various diagnostic methods using 

temporal image analysis. However, with the growth in clinical 

data repositories, not only image analysis but also text data 

played a vital role in diagnosis. 

Several lung cancer studies focus on detection using 

symptom data and treatment decisions based on artificial 

intelligence, image processing, and learning algorithms. 

Several researchers have applied neural networks, support 

vector machines, decision trees, convolutional neural net-

works, Random Forest, XGBoost, and logistic regression — 

machine learning algorithms—to clinical datasets to predict 

the recurrence of lung cancer and its survivability. A few 

comparative studies have also been presented such as en-

semble techniques of Bagging and Adaboost and K-Nearest 

Neighbors, Decision Tree, and Neural Networks on Surveil-

lance, Epidemiology and End Results (SEER) dataset, 

XGBoost, GridSearchCV, Logistic Regression, Support Vec-

tor Machine, Gaussian Naïve Bayes, Decision tree, and 

K-Nearest Neighbor classifiers to evaluate lung cancer pre-

diction through precision, recall, F1-Score parameters gener-

ated using confusion matrix and Area Under Curve (AUC) & 

Receiver Operating Characteristic (ROC) analysis. 

A few more machine learning classifiers such as Logistic 

Regression, Naïve Bayes and Random Forest, Support Vector 

Machine (SVM), Artificial Neural Network (ANN), 

k-Nearest Neighbors (KNN), Radial Basis Function Network 

(RBF), J48, MLP, Gradient Boosted Tree, Majority Voting, 

also tried for observing the performance of lung cancer pre-

diction. Specifically, some standard machine learning tech-

niques such as decision tree, boosting, random forest, neural 

network, naïve Bayes, KNN, and SVM are frequently in lung 

cancer prediction [8]. These machine learning algorithms 

demonstrated their applicability in a temporal, real-world, and 

larger dataset of lung cancer for risk prediction [9, 10]. 

In binary classification, while using various methods, es-

pecially in diagnostic, prognostic, and predictive research, the 

Receiver Operating Characteristic (ROC) and Area under the 

Curve (AUC) analyses are effective techniques usually uti-

lized to calculate measurements for the assessment of the 

differentiating ability of methods. The ROC curve is used to 

assess a test’s overall diagnostic performance and compare the 

performance of two or more diagnostic tests. 

In other words, the ROC is informative about performance 

over a series of thresholds and can be summarized by the 

AUC, which is a single numerical value. Additionally, a 

gender and age-based study for a lung cancer dataset has been 

conducted using machine learning, demonstrating the poten-

tial applicability of naïve Bayes, SVM, KNN, random forest, 

decision tree, AdaboostM1, and neural network. Apart from 

the above analysis, it is essential to interrelate patients’ habits 

and symptoms, thereby providing a more precise diagnosis 

and treatment for lung cancer. Moreover, it is equally im-

portant to find a suitable method of analyzing these datasets. 

Few attempts have been made to compare different ma-

chine-learning methods for predicting lung cancer. 

A comparison of different ML algorithms is demonstrated 

in [11]: 

Table 2. Accuracies of ML algorithms in processing lung cancer 

data. 

Method Accuracy 

Logistic Regression 
The accuracy of logistic regression is 

87.5%. 

Gaussian Naive Bayes 
The accuracy of Gaussian Naive 

Bayes is 91.07%. 

Bernoulli Naive classi-

fier 

The accuracy of Bernoulli Naive 

Bayes is 91.07%. 

SVM classifier 
The accuracy of the Support Vector 

Machine is 85.71%. 

Random Forest Classi-

fier 

The accuracy of the Random Forest 

Classifier is 85.71%. 

K Nearest Neighbors 

Classifier 

The accuracy of the K Nearest 

Neighbors Classifier is 92.86%. 

Extreme gradient 

boosting classifier 

The accuracy of the Extreme Gradient 

Boosting classifier is 89.29%. 

Extra tree classifier 
The accuracy of the extra tree classi-

fier is 89.29%. 

AdaBoost classifier 
The accuracy of the AdaBoost classi-

fier is 89.29%. 

Ensemble_1 with XGB 

and ADA Classifier 

The accuracy of Ensemble_1 with 

XGB and ADA Classifier is 89.29%. 

Ensemble_2 with Vot-

ing Classifier 

The accuracy of Ensemble_2 with 

Voting Classifier is 87.5%. 

MLP Classifier 
The accuracy of MLP Classifier is 

89.29% 

The comparative study [11] suggests that the accuracy of 

K-Nearest Neighbor is the highest, at 92.86%, while Bernoulli 

Naïve Bayes and Gaussian Naïve Bayes achieve 91.07%. 

Therefore, we can conclude that the K-Nearest Neighbor and 

Bernoulli Naïve Bayes models yield better results on the 

smaller dataset with binary characteristics. They are more 
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suitable when attributes or features are highly independent in 

the given dataset. Since other models rely on correlation and 

the splitting of the dataset into training and testing sets, they 

cannot be applied to this dataset. 

Let us consider the deep learning algorithm: 

Deep Learning represents a specialized area within ma-

chine learning, which itself is a branch of artificial intelli-

gence (AI). This field emphasizes algorithms designed to 

emulate the human brain’s processes for data analysis and 

pattern recognition in decision-making. Deep learning em-

ploys artificial neural networks to capture intricate patterns 

and data representations, particularly in unstructured formats 

such as images, audio, and text. 

In the realm of deep learning, Neural networks are com-

posed of layers of nodes, often referred to as "neurons," with 

each node executing a specific mathematical function. These 

networks are structured into various layers, including input 

layers (which accept data), hidden layers (where the compu-

tations occur), and output layers (which generate predictions). 

Weights and Biases: Within deep learning, weights and 

biases serve as parameters within a neural network that are 

adjusted throughout the training phase. Their significance is 

as follows: 

Weights: These coefficients are assigned to the inputs 

within the neural network. Each input is multiplied by a cor-

responding weight, indicating the input’s relevance to the 

prediction. During the training process, the model identifies 

the most effective weights by minimizing the error or loss 

function, which measures the discrepancy between predicted 

and actual outputs. 

Bias: These parameters are added to the weighted sum of 

inputs, enabling the model to produce predictions even when 

all inputs are zero. Bias facilitates adjustments to the output in 

conjunction with the weights. They enhance the network’s 

adaptability, allowing the activation function to be shifted for 

a better fit to the data. 

Weights and Biases: Weights & Biases (W&B) is a widely 

used tool for monitoring, visualizing, and refining machine 

learning experiments. 

In the context of deep learning, a batch is defined as a por-

tion of the training dataset utilized during a single iteration of 

the training process. Rather than employing the entire dataset 

to compute gradients and adjust weights, which would be 

computationally intensive, the data is segmented into smaller 

batches. This method accelerates the training process and may 

enhance the model’s ability to generalize. The term "batch 

size" denotes the number of training samples contained within 

a single batch. A mini-batch represents a smaller subset of the 

training data, allowing for training to occur across multiple 

mini-batches. The size of the mini batch is a hyperparameter 

that can be optimized. 

An epoch signifies a complete traversal of the entire train-

ing dataset. Throughout each epoch, the model processes the 

full dataset once, modifying its weights after each batch (or 

mini-batch). Typically, training is conducted over several 

epochs, with the model’s performance gradually im- im-

proving as training advances. The number of epochs is an-

other hyperparameter that can be fine-tuned. 

Overfitting is a phenomenon that arises when a model 

captures not only the fundamental patterns within the training 

data but also the noise and outliers, resulting in strong per-

formance on the training data but poor performance on new, 

unseen data (test data). This situation often occurs when the 

model’s complexity exceeds the amount of available data or 

when it undergoes excessive training across epochs. The oc-

currence of overfitting can be attributed to a model possessing 

an excessive number of parameters (for instance, an abun-

dance of layers or neurons in a neural network) and being 

trained for an extended duration. 

Consequently, the model may become overly tailored to the 

training data, effectively memorizing it rather than learning to 

generalize, which diminishes its efficacy when confronted 

with new data. In deep learning, we need to do data prepro-

cessing. First thing, we remove rows that contain blanks and 

outliers. The second step is to perform standardization or 

normalization, which is crucial for performing accurate deep 

learning algorithms. 

Deep learning is based on a linear transformation: 

z= Wx+b 

where W are weights, x stands for input, b is the bias, and z is 

a linear output. 

An artificial neuron will then be presented as: 

The algorithm works as follows: The loss function L itself 

is not directly updated; instead, it is used to update the model's 

parameters (weights) during training. The process generally 

follows these steps: 1. Forward Pass: 

1) The model makes a prediction based on input data. The 

predicted output is compared to the actual target using 

the loss function, which measures error. 

2) Computer Gradient (Backpropagation): 

The loss function is differentiated with respect to model 

parameters. Gradients are calculated using the chain rule 

to determine how each parameter contributed to the er-

ror. 

3) Update Parameters (Optimization Step): 

An optimizer (e.g., Stochastic Gradient Descent, Adam) 

updates the model parameters using the computed gradients. 

Parameters are updated using formulas (2)-(3). Steps 1-3 are 

repeated for multiple epochs until the loss function reaches an 

optimal or satisfactory value. 

𝑊𝑙 ≔ 𝑊𝑙 − 𝛼
𝜕𝐿

𝜕𝑊𝑙  

𝑏𝑙 ≔ 𝑏𝑙 − 𝛼
𝜕𝐿

𝜕𝑏𝑙  

For binary classification, the loss function is given by: 
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When solving a regression or classification problem, the 

last layer of a neural network typically contains only one unit. 

If the activation function of the last unit is linear, then the 

neural network is a regression model; if the activation func-

tion is a logistic function, the neural network is a binary 

classification model. The results of the lung cancer data are 

shown in Figure 12: 

 
Figure 12. Confusion matrix for conventional deep learning. 

The classification report is shown in Table 2: 

Table 2. The classification report shows an accuracy of 85%. 

precision recall   f1-score support 

0 0.86 0.84 0.85 511 

1 0.84 0.86 0.85 490 

accuracy   0.85 1001 

macro avg 0.85 0.85 0.85 1001 

weighted avg 0.85 0.85 0.85 1001 

In the next section, we will show a method to significantly 

boost the accuracy of classification. 

4. Accuracy Improvement 

4.1. Augmented Data and AI 

Dr. Philip de Melo [12] argues that the future of artificial 

intelligence (AI) lies in synthetic and augmented data. Many 

of the most significant technical and legal challenges associ-

ated with AI stem from the need to gather vast amounts of 

real-world data to train machine learning (ML) models. As of 

2024, the world generates approximately 147 zettabytes (ZB) 

of data annually, with projections indicating an increase to 

181 ZB by the end of 2025. This equates to approximately 

402.74 million terabytes (TB) of data created, captured, cop-

ied, or consumed daily. However, collecting such data is often 

difficult and very expensive, and it raises serious concerns 

about privacy violations, bias in automated decision-making, 

and widespread copyright infringement. The paradox is that a 

vast majority of the collected data is of poor quality. 

In addition to needing vast amounts of data, machine 

learning (ML) systems require high-quality data. Much of the 

data available in real-world settings tends to be incomplete or 

partially inaccurate. Data scientists work to address these 

issues by removing incomplete records, inputting missing 

values, and performing other data "cleaning" tasks, but these 

processes further add to the cost and complexity of collecting 

usable training data. One survey found that 96% of companies 

trying to deploy ML applications struggle with the challenge 

of obtaining high-quality data [13]. 

Poor-quality data can significantly degrade data science. 

Here are some significant impacts: 

1) Bad decisions: If the data is incorrect, incomplete, or 

outdated, any decision made using it can also be wrong, 

leading to lost money, missed opportunities, or even 

greater risks. 

2) Wasted resources: Teams spend extra time cleaning, 

verifying, and fixing bad data, pulling focus from more 

important work. 

3) Loss of trust: If customers or stakeholders notice errors, 

they might lose confidence in your product, service, or 

company. 

4) Compliance issues: In regulated industries, poor data 

quality can cause legal trouble if reporting is inaccurate. 

5) Poor customer experience: Think wrong addresses, 

wrong names, wrong recommendations — customers 

get frustrated quickly. 

6) Missed revenue: With inaccurate data, companies can 

miss upsell or cross-sell opportunities or target the 

wrong audiences. 

Poor data quality in healthcare can have huge and serious 

impacts, both immediately and long-term. Here are some 

major impacts: 

1) Patient Safety Risks: Incorrect or missing data (such as 

allergies, medications, or medical history) can lead to 

misdiagnosis, incorrect treatments, or even 

life-threatening errors. 

2) Delayed Care: Inaccurate or incomplete information 

means doctors may need to redo tests or spend extra time 

verifying facts, slowing down critical decision-making. 

3) Increased Costs: Errors led to repeat tests, incorrect 
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billing, insurance issues, and lawsuits — all of which 

can drive up healthcare costs for providers, insurers, and 

patients. 

4) Poor Research and Public Health Decisions: Healthcare 

research depends on reliable data. Poor data can skew 

studies, rendering public health policies, drug devel-

opment, and treatment guidelines less effective. 

5) Loss of Trust: Patients, insurers, and providers lose 

confidence in healthcare systems when mistakes happen 

due to bad data. 

6) Regulatory and Legal Consequences: Healthcare or-

ganizations are required to maintain accurate records 

(e.g., HIPAA, GDPR). Bad data can lead to compliance 

violations and substantial fines. 

7) Worsened Health Outcomes: Over time, populations 

suffering from chronic diseases may go unmanaged, 

outbreaks may not be detected early, and healthcare in-

equalities can deepen. 

Synthetic data brings a range of technical and legal ad-

vantages. It can significantly lower the cost of data acquisi-

tion, help avoid privacy violations, reduce bias in automated 

systems, and mitigate the risk of copyright infringement. 

This paper examines the application of PM GenAI and 

synthetic data to significantly enhance the accuracy of classi-

fication and regression in various domains. 

With more data, deep learning models could learn more 

intricate patterns and generalize better to unseen data. Larger 

datasets help reduce the risk of overfitting, where the model 

becomes overly reliant on the training data and performs 

poorly on new data. However, more data requires more 

computational power and time to process. Training a model 

on large datasets can be computationally expensive and 

time-consuming, often requiring specialized hardware, such 

as Graphics Processing Units/ Tensor Processing Units 

(GPUs/TPUs) and optimized algorithms. 

When we have a large dataset, we can typically afford to 

use more complex models (larger networks with more layers 

and parameters), as there's enough data to prevent overfitting. 

Larger datasets allow deep learning models to fully utilize 

their potential. While large datasets are often sufficient, data 

augmentation techniques (such as rotation, flipping, cropping, 

etc.) can be beneficial for introducing variety and enhancing 

the model's ability to generalize. A larger dataset is more 

likely to cover a wider variety of scenarios, which can help the 

model learn a more diverse range of patterns. However, if the 

dataset is not representative of real-world conditions, it can 

still introduce bias. 

While large datasets are generally ideal for training deep 

models from scratch, transfer learning (using a pre-trained 

model) can still work effectively. In these cases, we can fi-

ne-tune a pre-trained model on the large dataset, saving time 

and resources. Large datasets enable better model accuracy, 

generalization, and the ability to use complex models but 

come with increased computational requirements and longer 

training times. 

When a dataset is small, the model might not learn enough 

to generalize well, leading to overfitting. The model may 

memorize specific features and fail to adapt to real-world 

variations, resulting in poor performance on tests or unseen 

data. Smaller datasets are faster to process, requiring less time 

and computational resources. This can be an advantage in 

cases where quick experimentation is needed, but it often 

leads to reduced model accuracy as mentioned. 

For smaller datasets, simpler models (with fewer parame-

ters and layers) are often more effective. If you use a too 

complex model with too little data, the model may learn to 

overfit the data, thereby reducing its ability to generalize. 

When dealing with small datasets, data augmentation is often 

used to artificially increase the dataset size. Additionally, 

synthetic data generation techniques (such as GANs or other 

simulation methods) can be employed to create more data, 

helping to mitigate the issue of overfitting. 

A smaller dataset may not capture the full variability of the 

problem space, resulting in a model that performs well under 

certain conditions but struggles when faced with variations 

not represented in the data. When dealing with smaller da-

tasets, transfer learning is particularly valuable. We can take a 

model pre-trained on a large dataset and fine-tune it for a 

specific task with far less data. 

Small datasets pose a risk of overfitting and often necessi-

tate data augmentation, simpler models, or transfer learning to 

perform adequately. The data set sources were considered in 

[14-17]. 

The prediction of lung cancer was discussed in [18-23] 

using socio-demographic and early clinical features in general 

practice to identify people with lung cancer earlier. A risk 

prediction model for lung cancer incidence was considered in 

[24-27]. 

Ardila discusses end-to-end lung cancer screening with 

three-dimensional deep learning on low-dose chest computed 

tomography [28]. [28] used morphological feature extraction 

and KNG‐CNN (Knowledge-Navigated Graph Convolu-

tional Neural Network) classification of CT images for early 

lung cancer detection. [29] developed an advanced lung 

cancer classification approach adopting modified graph 

clustering and whale optimization‐based feature selection 

technique, accompanied by a hybrid ensemble classifier. 

Yeh et al. developed a new artificial Intelligence-Based 

prediction algorithm for lung cancer risk using electronic 

medical records: a deep learning approach [30]. 

4.2. Augmented Data Generation 

Generating synthetic data can be a complex process that 

often requires specialized tools and software designed to 

create and manipulate datasets. Fortunately, several platforms 

and libraries are available that enable developers and re-

searchers to produce synthetic data efficiently. One of the 

most popular options is TensorFlow, an open-source platform 

developed by Google. TensorFlow offers a range of tools for 
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building and training neural networks, including Generative 

Adversarial Networks (GANs), which are commonly used for 

generating synthetic data. 

With its extensive community support and thorough doc-

umentation, TensorFlow is a favored choice among both 

newcomers and seasoned AI professionals. Another widely 

used tool is PyTorch, a deep learning library known for its 

flexibility and user-friendly design. PyTorch also supports the 

creation and training of GAN models and other sophisticated 

synthetic data techniques, making it a trusted solution in the 

scientific community. For specialized needs, such as gener-

ating synthetic data for healthcare applications, platforms like 

Synthea are available. 

Synthea is an open-source patient simulator that produces 

synthetic health records based on real-world clinical data, 

offering detailed information on fictional patients, their di-

agnoses, treatments, and outcomes. It is particularly valuable 

for projects that require realistic healthcare datasets. 

Generating synthetic medical data plays a vital role in 

clinical research. Rather than relying on real patient infor-

mation, which can be expensive and challenging to access due 

to privacy concerns, researchers can create synthetic datasets 

that replicate the patterns and features of actual medical data. 

This approach enables studies and analyses to be conducted 

without direct access to sensitive personal information. Ad-

ditionally, synthetic data can be utilized to train artificial 

intelligence (AI) models and machine learning algorithms for 

tasks such as disease prediction, identifying risk factors, and 

developing personalized treatments. One of the key benefits 

of synthetic medical data is that it supports research efforts 

when real data is unavailable, whether due to confidentiality 

issues, limited access, or legal barriers. It also enables the 

simulation of clinical trials and modeling of various scenarios 

without compromising patient privacy. 

On a global level, synthetic data enables significant 

breakthroughs in research, development, and public policy. 

For example, in the field of healthcare, synthetic data trans-

forms biomedical research by providing realistic clinical data 

to study diseases without compromising patient privacy. This 

data can be used to train AI algorithms in early disease de-

tection, improve medical treatments, and personalize care for 

patients. 

Data augmentation is about applying transformations to 

your data to create new, synthetic samples that are different 

but mathematically consistent with the original dataset. This 

helps prevent overfitting and improves generalization, espe-

cially in machine learning models. 

A dataset can be presented as: 

𝐷 =  * (𝑥𝑖 , 𝑦𝑖)+*𝑖=1+
𝑛

  

Where x is the input and y is the label. Given a data point (x, 

y), the augmented data can be expressed as: 

(𝑥′, 𝑦′) =  (𝑇(𝑥), 𝑦),  

Where the augmented data set is: 

𝐷𝑎𝑢𝑔 = ∑ (𝑇(𝑥𝑖), 𝑦𝑖)
𝑁
𝑖=1   

T is a map. It maps input back into input, preserving label y. It 

is essential to note that although synthetic data and data 

augmentation both aim to expand and diversify training da-

tasets, they are distinct approaches. Synthetic data is created 

entirely from scratch, whereas data augmentation modifies 

existing training examples to produce new ones. Synthetic 

data offers additional advantages, including enhanced privacy 

and security, as well as addressing data scarcity. However, if 

not carefully designed, it can introduce biases or lack realism. 

In contrast, data augmentation is constrained by the quality 

and diversity of the original dataset. Using both synthetic data 

and data augmentation together can help achieve optimal 

results in deep learning applications. 

Data augmentation can help mitigate overfitting, a common 

challenge in deep learning where a model becomes too spe-

cialized to the training data, leading to poor performance on 

new, unseen data. By creating additional augmented exam-

ples, data augmentation enables the model to generalize more 

effectively and improve its performance on new data. 

Data augmentation can also address class imbalance, a 

frequent issue in deep learning where some classes have sig-

nificantly fewer examples than others. By generating addi-

tional examples for underrepresented classes, data augmenta-

tion enables the model to learn more effectively and make 

more accurate predictions. 

Data augmentation can boost the diversity of the training 

data by generating additional examples with varied properties 

and characteristics. This helps the model learn more effec-

tively and prevents it from overfitting specific patterns in the 

training data. 

We will use a PM GenAI [12] approach to augment data for 

deep learning. Let us consider a data set, a subset of recorded 

data. Firstly, we need to specify a 17-dimensional vector X 

(where 17 is the number of features in the lung cancer dataset) 

and labels y (which are 0 and 1). We can then build a proba-

bilistic model for the classification problem: p(x| y = 0) and 

p(x| y = 1).  

This means that for each vector x, we assign a conditional 

probability (likelihood) corresponding to its label. In the case 

of Gaussian statistics, a multivariate probability density 

function is defined in [12] via the covariance matrix and its 

module.  

We can then generate augmented data within each batch, 

increasing its size (Figure 13b). 
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Figure 13. Original (a) and augmented data (b) for 2 classes (no lung cancer and lung cancer). 

The overall procedure consists of the following steps: 

1) The lung cancer data was explored and visualized using 

Pandas data frame. This included converting zeroes to 

NaN. 

2) The outliers were removed using the Z-score and IQR 

method (for non-normal distributions). 

3) Missing data was eliminated. 

4) The data was standardized by the Min/Max method. 

5) The data was divided into two categories: 80% for 

testing and 20% for training. We used a stratified split. 

6) PM GenAI was used to examine the data and present it 

in terms of clusters. 

7) Each cluster was examined in terms of its likelihood. 

Elements of low likelihood were dropped. 

8) To mitigate overfitting, we employed a combination of 

observed and synthetic data, utilizing a mini-batch ap-

proach. To avoid data leakage, we processed each 

mini-batch independently during forward and backward 

passes. The model updates its weight after each batch 

(or after accumulating gradients over several batches, 

depending on the optimizer settings). 

9) The selected high-quality data within each cluster was 

augmented. 

10) A deep learning algorithm was applied to the new data. 

Adam optimizer was used. We use the Adam optimizer 

to adjust the learning rate automatically for each pa-

rameter. 

11) The accuracy was then evaluated and compared with 

that of other technologies. 

Figure 14 illustrates the original data and the generated 

data. 

 
Figure 14. Original (blue) and generated data (orange). 

The choice of hyperparameters: 

The number of epochs is the number of full passes through 

the entire training dataset. More epochs can lead to better 

learning, but too many can result in overfitting (where the 

model memorizes rather than generalizes). To significantly 

reduce overfitting and increase the number of epochs, we use 

larger datasets that combine observed and synthetic data, as 

well as mini-batches. 

Batch size is the number of samples processed before the 

model’s internal parameters (weights) are updated. Small 

batch sizes use less memory, and more updates per epoch can 

lead to noisy gradients but may help generalization. 

Large batch sizes lead to smoother gradient updates but 

need more memory and might converge more slowly or to a 

less optimal solution. We start with a batch size of 64 and 50 

epochs with early stopping to prevent overfitting. We did not 

use dropout as the PM GenAI drops elements of the neural 

network with low likelihood. The original and produced data 

sets by PM GenAI are depicted in Figures 15a and 15b (for 

smoking) and 16a, b (for smoking in the family).
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Figure 15. a): PM GenAI generates 100 new (blue) samples b) 300 samples for the “smoking” feature. 

The final step is to remove the data points with low likelihood. We will then apply deep learning to the augmented batches of 

data. The confusion matrix is illustrated in Figure 16, while the classification report displays the method's accuracy, precision, 

and recall. 

  
Figure 16. a): PM GenAI generates 100 new (blue) samples b) 300 samples for the “smoking in family” feature. 

 
Figure 17. The confusion plot of the PIMA data set with PM GenAI algorithm. 
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Table 3 presents the classification report, which shows a 

significant improvement in accuracy and sensitivity. 

Table 3. The classification report shows significantly improved 

accuracy, precision, and recall of the lung cancer classification. 

0.9731993299832495 (597,) 

precision recall  f1-score support 

0 0.97 0.98 0.97 285 

1 0.98 0.97 0.97 312 

accuracy   0.97 597 

macro avg 0.97 0.97 0.97 597 

weighted avg 0.97 0.97 0.97 597 

External validation: Statistical analysis of the results 

(p-value) shows that the comparison of previous methods 

(Figure 11) and the PM GenAI algorithm’s accuracy yields: 

P ~ 0.004 << 0.05 

And statistically significant. We can conclude that the PM 

GenAI algorithm significantly enhances the performance of 

classification algorithms for diabetes. 

The study [30] presented a model with AUC of 0.821 when 

the input image-like array included sequential diagnostic 

information only. By contrast, the AUC was 0.894 when the 

input features included sequential medication information 

only; when the sequential diagnostic and medication infor-

mation was simplified to binary variables, the model perfor-

mance decreased (AUC=0.827). When both sequential diag-

nostic and medication information were integrated, the model 

reached an AUC of 0.902 on prospective testing, with a sen-

sitivity of 0.804 and specificity of 0.837. The calibration of 

the model showed a median expected error of 0.125. 

The model's performance at different age cutoffs was then 

investigated. Screening using an age cutoff of 55 years 

yielded a superior AUC of 0.871 compared to those obtained 

with cutoffs of 50 or 60 years (0.866 and 0.863, respectively). 

The comparison presented in this paper demonstrates that the 

new AI algorithm can significantly enhance the accuracy of 

lung cancer classification. 

5. SWOT Analysis 

Although the algorithm presented in this paper gives 

high-accuracy results, a SWOT (Strengths, Weaknesses, 

Opportunities, and Threats) analysis will be beneficial. 

S - Strengths 

These are the internal factors or capabilities that give an 

advantage in lung cancer classification. 

1) High diagnostic accuracy of the algorithm. 

2) Integration of multi-modal data (e.g., CT scans, pa-

thology, genomics). 

3) Non-invasive techniques, such as radiomics or liquid 

biopsy. 

4) Early detection algorithms are improving prognosis. 

5) Growing datasets (e.g., NLST, LIDC-IDRI) enabling 

robust model training. 

W - Weaknesses 

These are internal limitations or challenges that hinder 

classification performance. 

1) Lack of labeled data and class imbalance (fewer positive 

cases). 

2) The black-box nature of many AI models limits inter-

pretability. 

3) Limited generalizability across populations or institu-

tions. 

O - Opportunities 

External factors or trends that can be leveraged for ad-

vancement. 

1) Advancements in AI/ML, particularly explainable AI 

(XAI). 

2) Integration with electronic health records (EHRs) for 

holistic analysis. 

3) Personalized medicine approaches using genomic and 

molecular data. 

4) Collaboration with healthcare providers and regulatory 

bodies. 

5) Growing interest and funding in cancer informatics and 

AI in the field of medicine. 

T - Threats 

External risks or challenges that could negatively affect 

classification systems. 

1) Data privacy and regulatory concerns (e.g., HIPAA, 

GDPR). 

2) Potential biases in AI models due to non-representative 

datasets. 

3) Rapidly evolving standards and technology obsoles-

cence. 

4) Integration issues with existing clinical workflows. 

6. Conclusion 

In conclusion, informatics plays a pivotal role in the man-

agement, research, and treatment of lung cancer. The integra-

tion of advanced technologies and data analytics has the po-

tential to significantly improve the lives of individuals with 

diabetes, empowering them to better manage their condition 

while also enhancing the efficiency and effectiveness of 

healthcare providers. However, for lung cancer informatics to 

reach its full potential, challenges such as data privacy, system 

integration, and education must be addressed. 

With continued advancements in technology and a com-

mitment to improving patient care, lung cancer informatics 

will undoubtedly play a crucial role in the future of lung 
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cancer management. In the healthcare industry, a wealth of 

patient data is available. Machine learning, both supervised 

and unsupervised, has the potential to convert this data into a 

valuable resource for predictive analysis. Deep learning al-

gorithms, based on the neural network concept, have become 

increasingly attractive. However, the accuracy of deep learn-

ing and other methods lacks the required accuracy. 

In this paper, we present a novel approach based on deep 

learning that utilizes mini-batches to augment the training 

dataset, thereby mitigating overfitting. We reached the accu-

racy of 97-98.5%. The method can be used to classify other 

diseases accurately [13]. 

We conducted an accuracy evaluation of nearly all machine 

learning algorithms. Our conclusion is that: 

1) The hybrid mini-batch method demonstrated in this 

paper yields better performance than any other ML al-

gorithms. 

2) Feature engineering identifies the most important fea-

tures that impact the development of lung cancer. 

3) Smoking is one of the first items that is tracked in pa-

tients at higher risk of lung cancer. 

Embedding this algorithm into EHR and other health sys-

tems is a significant challenge and can be a focus of future 

research. 
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