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Abstract: The combinatorial properties and invariants which includes transitivity, primitivity, ranks and subdegrees of direct
product of Alternating group and Cyclic group acting on Cartesian product of two set have been extensively studied. However, the
construction of suborbital graphs for this group action remains largely unexplored. As a result, this research paper addresses this
gap by constructing suborbital graphs involving direct product of the Alternating group and Cyclic group acting on the Cartesian
product of two sets where their respective properties such as connectivity, self-pairedness, girth and vertex degree are analyzed
in detail. First, the result shows that all suborbits are self − paired implies that the vertex sets are undirected to each other.
Secondly, the constructed suborbital graphs are classified into three parts for any value of n > 3. In part A, it is proven that the
constructed suborbital graphs Γ1, Γ2, Γ3,..., Γ(n− 1) are undirected, regular of degree (n−1), disconnected with n−connected
components and has a girth of 3. In part B, the constructed suborbital graph Γ(n−1)+1 is found to be undirected, regular of
degree (n − 1), disconnected with n − connected components and has a girth of 3. Lastly in part C, the graphs Γ(n−1)+2,
Γ(n−1)+3, Γ(n−1)+4,..., Γ(n−1)+n are found to be undirected, regular of degree (n − 1)2, disconnected with n2 − connected
components and has a girth of 3.
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1. Introduction
Suppose that G = An × Cn and StabG(x1, y1) be the

stabilizer of point x in G. Also, let ∆0 and ∆j be distinct

suborbits in set X × Y such that (x1, y1) ∈ ∆0 and
(xj , yj) ∈ ∆j ∀j = 1, 2, 3, ... Then the suborbital denoted
as O corresponding to ∆ is given as:

O = {g(x1, y1), g(xj , yj) : g ∈ StabG(x1, y1) , (xj , yj) ∈ ∆j and (x1, y1) ∈ ∆0}

Suborbital graph Γj corresponding to suborbital O is then
constructed when an edge is drawn from a point ∆0 to a
point ∆j such that the following conditions holds ∀(x1, y1) ∈
∆0, (xj , yj) ∈ ∆j :

1. When x1 = xj and y1 6= yj ∀j = 1, 2, 3, ...
2. When x1 6= xj and y1 = yj ∀j = 1, 2, 3, ...

3. When x1 6= xj and y1 6= yj ∀j = 2, 3, 4, ...
Note: Suborbit ∆0 has a null graph since it has trivial vertex
set. Instead, it forms a loop. Therefore in this case, it is not
considered.
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2. Notation and Preliminary Results

Definition 2.1. [1] A set G together with a binary operation
is said to be a group if it satisfies the axioms of closure,
associativity, identity and inverse.

Definition 2.2. [2] Let X be a non-empty set, then a
permutation is a bijective mapping from set X to itself. The
group is said to be Symmetric if it consist of all permutations
of a set X and is denoted as Sn. The subgroup of Sn that
consist all even permutations is referred to as the Alternating
group and is denoted by An whose order is |An| = n!

2 .
Definition 2.3. [3] A Cyclic group is a group that can be

generated by a single element g ∈ G such that G = 〈g〉. It is
denoted as Cn and has an order of n.

Definition 2.4. [4] Consider a suborbit ∆j = (xj , yj) and
g ∈ G. Then, ∆j is self − paired if {g(xj , yj) = (xi, yi)}
and {g(xi, yi) = (xj , yj) ∈ ∆j} such that ∆j = ∆∗j
∀i, j = 1, 2, 3, ....

Definition 2.5. [5] Suppose that G acts on X . Then the
stabilizer of point x in G is the set of elements of the group
which leaves elements of a set unchanged under group action.
It is denoted as StabG(x) and given by: StabG(x) = {g ∈
G : gx = x}.

Definition 2.6. [6] Suppose G acts on X . Then the
orbitsofpointx in G are the partitions under the group action
that represents the equivalence classes of elements of a set
when mapped by the elements of the group. It is denoted as
OrbG(x) and given by OrbG(x) = {gx : g ∈ G}.

Theorem 2.1. [7] (Sims Theorem). Let G acts transitively
on X . Then the suborbital graph is said to be undirected
if the suborbit is self-paired otherwise, it will be regraded as
directed. Group action is said to be primitive if all vertices set
points are connected together by the edges.

Theorem 2.2. [8] (Wielandt Theorem). Suppose G acts
transitively on X . Then there exists at least one self-paired
suborbit of G on X if and only if the order of the group is
even.

Theorem 2.3. [9] (Cameroon Theorem). Suppose G acts
on X transitively and for all g ∈ G. Then the number of
suborbits that are self-paired is given by: 1

|G|
∑
g∈G
|Fix(g)

2|.

Definition 2.7. [10] A graph is a diagram consisting of
a pair of ordered sets, namely vertices and edges, denoted
as G(V,E). The collection of connected vertices and their
adjacent edges is referred to as a walk.

Definition 2.8. [11] A path is a walk in which no vertex is
repeated, except for the first and last vertices. A path that starts
and ends at the same vertex, forming a closed loop, is called a
cycle.

Definition 2.9. [12] A graph in which every pair of vertices is
joined by a path is said to be connected. Conversely, a graph
that is not connected is termed disconnected.

Definition 2.10. [13] A graph is described as directed if its
edges have a specified direction, otherwise it is undirected. An
edge that connects a vertex to itself is called a loop.

Definition 2.11. [11] The shortest length of a cycle in a graph
is referred to as girth.

Definition 2.12. [12] A multigraph is a graph that contains
multiple edges between the same pair of vertices but has no
loops. In other words, two or more vertices can be connected
by multiple edges. In contrast, a simple graph is a graph that
has no loops and contains at most one edge between any two
vertices.

Definition 2.13. [14] Suppose G acts on X transitively and
StabG(x) is the stabilizer of points x in G. Then the suborbits
are the orbits of the stabilizers which arises when the elements
of the stabilizer act on the set. They are denoted as ∆0 and
defined given by: ∆i = {∆1,∆2, ...,∆i−1}. The total number
of suborbits is the rank and the size of these suborbits is the
subdegrees.

Theorem 2.4. [15]. Suppose that G = An × Cn acts on
X × Y . Then when n = 3, the stabilizer of (x1, y1) in G is an
identity. When n > 4, the size of the stabilizer of (x1, y1) in
G is given as |StabG(x1, y1)| = (n−1)!

2
Theorem 2.5. [15]. Suppose that G = An × Cn acts on

X×Y . Then when n = 3, the rank is 9 and the corresponding
subdegrees are 1, 1, .., 1 (9− times). When n > 4, the rank is
2n and subdegrees are 1, 1, ..., 1︸ ︷︷ ︸

n

, n− 1, n− 1, ..., n− 1︸ ︷︷ ︸
n

.

3. Main Results

3.1. Suborbital Graphs of A3 ×C3 Acting on X × Y

From theorem 2.5 when n = 3, the rank is 9 and the
corresponding subdegrees are 1, 1, 1, 1, 1, 1, 1, 1, 1. Therefore,
the suborbits are arranged as follows:

∆0 = OrbH(x1, y1) = {(x1, y1)} = 1 (Trivial Orbit)
∆1 = OrbH(x1, y2) = {(x1, y2)} = 1
∆2 = OrbH(x1, y3) = {(x1, y3)} = 1
∆3 = OrbH(x2, y1) = {(x2, y1)} = 1
∆4 = OrbH(x3, y1) = {(x3, y1)} = 1
∆5 = OrbH(x2, y2) = {(x2, y2)} = 1
∆6 = OrbH(x2, y3) = {(x2, y3)} = 1
∆7 = OrbH(x3, y2) = {(x3, y2)} = 1
∆8 = OrbH(x3, y3) = {(x3, y3)} = 1
Lemma 3.1. Let ∆j = {∆1,∆2,∆3, ...,∆8} be the

suborbits of A3 × C3 acting on X × Y . Then ∆j is self −
paired.

Proof . From the definition 2.4, consider ∆1 = {(x1, y2)}
and g = (ex, ey), then {(ex, ey)(x1, y2)} = {(x1, y2)} and
{(ex, ey)(x1, y2)} = {(x1, y2) ∈ ∆1}. ⇒ ∆1 = ∆∗1.
Therefore, it follows that all suborbits, ∆j are self − paired.
By theorem 2.1 (Sims Theorem), if the suborbits are self −
paired, then their graphs are said to be undirected.

Given that ∆0 = {(x1, y1)}, ∆1 = {(x1, y2)} and
from theorem 2.4, StabG(x1, y1) = {(ex, ey)}. Then, the
suborbital O1 corresponding to suborbit ∆1 is given as:

O1 = {(ex, ey)(x1, y1), (ex, ey)(x1, y2)} =
{(x1, y1), (x1, y2)}. Therefore, a suborbital graph Γ1 is
constructed by drawing edges from vertex set (x1, y1) to vertex
set (x1, y2) such that any first components of ordered pairs are
the identical and the second components of ordered pairs are
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different.
The constructed suborbital graph Γ1 below is undirected,

regular of degree 2 and disconnected with 3 − connected
components of girth 3.

Figure 1. Suborbital graph Γ1 corresponding to ∆1 of A3 × C3 acting on X × Y .

Note: The suborbit ∆2 = {(x1, y3)}, falls to the same
category as that of ∆1. That is, the first components of the
ordered pairs are the identical and the second components of
the ordered pairs are different. Therefore, the structure of the
graph Γ2 is identical to that of Γ1. Hence, it has the same
properties as that of Γ1.

Given that ∆0 = {(x1, y1)}, ∆3 = {(x2, y1)} and
StabG(x1, y1) = {(ex, ey)}. Suborbital O3 corresponding to
suborbit ∆3 is given as:
O3 = {(ex, ey)(x1, y1), (ex, ey)(x2, y1)} =
{(x1, y1), (x2, y1)} From this equation, suborbital graph Γ3 is
constructed by drawing edges from vertex set (x1, y1) to vertex
set (x2, y1) such that the first components of the ordered pairs
are non-identical and the second components of the ordered
pairs are identical.

Figure 2. Suborbital graph Γ3 corresponding to ∆3 of A3 × C3 acting on X × Y .

The constructed suborbital graph Γ3 is undirected, regular

of degree 2 and disconnected with 3− connected components
of girth 3.
Note: The suborbit ∆4 = {(x3, y1)}, falls to the same

category as that of ∆3. That is, the second components of the
ordered pairs are the identical and the first components of the
ordered pairs are different. Therefore, the structure of graph
Γ4 is identical as that of Γ3. Hence, it has the same properties
to that of Γ3.

Given that ∆0 = {(x1, y1)}, ∆5 = {(x2, y2)} and
StabG(x1, y1) = {(ex, ey)}. Suborbital O5 corresponding to
suborbit ∆5 is given as:

O5 = {(ex, ey)(x1, y1), (ex, ey)(x2, y2)} =
{(x1, y1), (x2, y2)} Suborbital graph Γ5 is then constructed
by drawing edges from vertex set (x1, y1) to vertex set
(x2, y2) such that neither the first components nor the second
components of the ordered pairs are identical.

Figure 3. Suborbital graph Γ5 corresponding to ∆5 of A3 × C3 acting on X × Y .

The constructed suborbital graph Γ5 is undirected, regular
of degree 4 and disconnected with 6− connected components
of girth 3.
Note: The suborbits ∆6 = {(x2, y3)}, ∆7 = {(x3, y2)}

and ∆8 = {(x3, y3)} fall to the same category as that of
∆5. That is, neither the first nor the second components of
the ordered pairs are the identical. Therefore, the structures of
the graphs Γ6, Γ7 and Γ8 are identical to that of Γ5. Hence,
they have the same properties as that of Γ5.

3.2. Suborbital Graphs of A4 ×C4 Acting on X × Y

From theorem 2.5 when n = 4, the rank is 8 and the
corresponding subdegrees are 1, 1, 1, 1, 3, 3, 3, 3. Therefore,
the suborbits are arranged as follows:

∆0 = OrbH(x1, y1) = {(x1, y1)} = 1 (Trivial Orbit)
∆1 = OrbH(x1, y2) = {(x1, y2)} = 1
∆2 = OrbH(x1, y3) = {(x1, y3)} = 1
∆3 = OrbH(x1, y4) = {(x1, y4)} = 1
∆4 = OrbH(x2, y1) = {(x2, y1), (x3, y1), (x4, y1)} = 3
∆5 = OrbH(x2, y2) = {(x2, y2), (x3, y2), (x4, y2)} = 3
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∆6 = OrbH(x2, y3) = {(x2, y3), (x3, y3), (x4, y3)} = 3
∆7 = OrbH(x2, y4) = {(x2, y4), (x3, y4), (x4, y4)} = 3
Lemma 3.2. Let ∆j = {∆1,∆2,∆3, ...,∆7} be the

suborbits of A4 × C4 acting on X × Y , then, ∆j is self −
paired
Proof . Consider ∆5 = {(x2, y2), (x3, y2), (x4, y2)} and

g = ((x2 x3 x4), ey), then {((x2 x3 x4), ey)(x2, y2)} =
{(x3, y2)} and {((x2 x3 x4), ey)(x3, y2)} = {(x4, y2) ∈

∆5}. ⇒ ∆5 = ∆∗5. Therefore, it follows that all suborbits,
∆j are self − paired. By theorem 2.1 (Sims Theorem), if
the suborbits are self − paired, then their graphs are said to
be undirected.

Given that ∆0 = {(x1, y1)}, ∆1 = {(x1, y2)} and from
theorem 2.4, there are 3 elements of the stabilizers. They are:
StabG(x1, y1) = {(ex, ey), ((x2x3x4), ey), ((x2x4x3), ey)}.

The suborbital O1 corresponding to suborbit ∆1 is given as:

O1 = {(ex, ey)(x1, y1), (ex, ey)(x1, y2)} = {(x1, y1), (x1, y2)}
O1 = {((x2 x3 x4), ey)(x1, y1), ((x2 x3 x4), ey)(x1, y2)} = {(x1, y1), (x1, y2)}
O1 = {((x2 x4 x3), ey)(x1, y1), ((x2 x4 x3), ey)(x1, y2)} = {(x1, y1), (x1, y2)}
Therefore, a suborbital graph Γ1 is constructed by drawing an edge from vertex set point (x1, y1) to vertex set point (x1, y2)

such that any first components of ordered pairs are identical and the second components are different.

Figure 4. Suborbital graph Γ1 corresponding to ∆1 of A4 × C4 acting on X × Y .

The constructed suborbital graph Γ1 is undirected, regular
of degree 3, disconnected with 4−connected components and
has a girth of 3.
Note: The suborbits ∆2 = {(x1, y3)} and ∆3 = {(x1, y4)}

fall to the same category as that of ∆1. That is, the first

components of the ordered pairs are the identical but the
second components are not. Therefore, the structures of the
graphs Γ2 and Γ3 are identical to that of Γ1. Hence, they have
the same properties as that of Γ1.

Given that

∆0 = {(x1, y1)}, ∆4 = {(x2, y1), (x3, y1), (x4, y1)} and StabG(x1, y1) = {(ex, ey), ((x2 x3 x4), ey), ((x2 x4 x3), ey)}.
The suborbital O4 corresponding to suborbit ∆4 is given as:
O4 = {(ex, ey)(x1, y1), (ex, ey)(x2, y1), (ex, ey)(x3, y1), (ex, ey)(x4, y1)}

= {(x1, y1), (x2, y1), (x3, y1), (x4, y1)}
O4 = {((x2 x3 x4), ey) (x1, y1), ((x2 x3 x4), ey) (x2, y1), ((x2 x3 x4), ey) (x3, y1), ((x2 x3 x4), ey) (x4, y1)}

= {(x1, y1), (x3, y1), (x4, y1), (x2, y1)}
O4 = {((x2 x4 x3), ey) (x1, y1), ((x2 x4 x3), ey) (x2, y1), ((x2 x4 x3), ey) (x3, y1), ((x2 x4 x3), ey) (x4, y1)}

= {(x1, y1), (x4, y1), (x2, y1), (x3, y1)}
Suborbital graph Γ4 is then constructed by drawing edges from vertex set point (x1, y1) to vertices set points

{(x2, y1), (x3, y1), (x4, y1)} such that any second components of ordered pairs are the identical but the first components are
different.
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Figure 5. Suborbital graph Γ4 corresponding to ∆4 of A4 × C4 acting on X × Y .

The constructed suborbital graph Γ4 is undirected, regular of degree 3, disconnected with 4− connected components and has
a girth of 3.

Given that
∆0 = {(x1, y1)}, ∆5 = {(x2, y2), (x3, y2), (x4, y2)} and StabG(x1, y1) = {(ex, ey), ((x2 x3 x4), ey), ((x2 x4 x3), ey)}.
The suborbital O5 corresponding to suborbit ∆5 is given as:
O5 = {(ex, ey)(x1, y1), (ex, ey)(x2, y2), (ex, ey)(x3, y2), (ex, ey)(x4, y2)}

= {(x1, y1), (x2, y2), (x3, y2), (x4, y2)}
O5 = {((x2 x3 x4), ey)(x1, y1), ((x2 x3 x4), ey)(x2, y2), ((x2 x3 x4), ey)(x3, y2), ((x2 x3 x4), ey)(x4, y2)}

= {(x1, y1), (x3, y2), (x4, y2), (x2, y2)}
O5 = {((x2 x4 x3), ey)(x1, y1), ((x2 x4 x3), ey)(x2, y2), ((x2 x4 x3), ey)(x3, y2), ((x2 x4 x3), ey)(x4, y2)}

= {(x1, y1), (x4, y2), (x2, y2), (x3, y2)}
Suborbital graph Γ5 is then constructed by drawing edges from vertex set point (x1, y1) to vertices set points
{(x2, y2), (x3, y2), (x4, y2)} such that neither the first nor the second components of ordered pairs are the identical.

Figure 6. Suborbital graph Γ5 corresponding to ∆5 of A4 × C4 acting on X × Y .
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Constructed suborbital graph Γ5 is undirected, regular of degree 9, disconnected with 16− connected components and has a
girth of 3.
Note: The suborbits ∆6 = {(x2, y3), (x3, y3), (x4, y3)} and ∆7 = {(x2, y4), (x3, y4), (x4, y4)} fall to the same category as

that of ∆5. That is, neither the first nor the second components of the ordered pairs are the identical. Therefore, the structures of
the graphs Γ6 and Γ7 are identical to that of Γ5. Hence, they have the same properties as that of Γ5.

3.3. Suborbital Graphs of A5 ×C5 Acting on X × Y

From theorem 2.5 when n = 5, the rank is 10 and the corresponding subdegrees are 1, 1, 1, 1, 1, 4, 4, 4, 4, 4. Therefore, the
suborbits are arranged as follows:

∆0 = OrbH(x1, y1) = {(x1, y1)} = 1 (Trivial Orbit)
∆1 = OrbH(x1, y2) = {(x1, y2)} = 1

∆2 = OrbH(x1, y3) = {(x1, y3)} = 1

∆3 = OrbH(x1, y4) = {(x1, y4)} = 1

∆4 = OrbH(x1, y5) = {(x1, y5)} = 1

∆5 = OrbH(x2, y1) = {(x2, y1), (x3, y1), (x4, y1), (x5, y1)} = 4

∆6 = OrbH(x2, y2) = {(x2, y2), (x3, y2), (x4, y2), (x5, y2)} = 4

∆7 = OrbH(x2, y3) = {(x2, y3), (x3, y3), (x4, y3), (x5, y3)} = 4

∆8 = OrbH(x2, y4) = {(x2, y4), (x3, y4), (x4, y4), (x5, y4)} = 4

∆9 = OrbH(x2, y5) = {(x2, y5), (x3, y5), (x4, y5), (x5, y5)} = 4
Lemma 3.3. Let ∆j = {∆1,∆2,∆3, ...,∆9} be the suborbits of A5 × C5 acting on X × Y . Then ∆j is self − paired
Proof . Consider ∆7 = {(x2, y3), (x3, y3), (x4, y3), (x5, y3)} and g = {((x2 x5 x4), ey)}. Then;
{((x2 x5 x4), ey)(x2, y3)} = {(x5, y3)}and{((x2 x5 x4), ey)(x5, y3)} = {(x4, y3) ∈ ∆7}.⇒ ∆7 = ∆∗7.
Therefore, it follows that all suborbits ∆j are self − paired. By theorem 2.1 (Sims Theorem), if the suborbits are self −

paired, then their graphs are said to be undirected.
Given that ∆0 = {(x1, y1)}, ∆1 = {(x1, y2)} and from theorem 2.4, there are 12 elements of the stabilizers when n = 5.

They are:
StabG(x1, y1) = {(ex, ey), ((x2 x4 x5) , ey), ((x2 x5 x4) , ey), ((x2 x3 x5), ey), ((x3 x5 x4) , ey), ((x2 x4 x3) , ey),

((x3 x4 x5) , ey), ((x2 x5 x3) , ey), ((x2 x3 x4) , ey), ((x2 x5) (x3 x4) , ey), ((x2 x3) (x4 x5) , ey), ((x2 x4) (x3 x5) , ey)}.
The suborbital O1 corresponding to suborbit ∆1 is given as:
O1 = {(ex, ey)(x1, y1), (ex, ey)(x1, y2)} = {(x1, y1), (x1, y2)}
O1 = {((x2 x4 x5), ey)(x1, y1), ((x2 x4 x5), ey)(x1, y2)} = {(x1, y1), (x1, y2)}
O1 = {((x2 x5 x4), ey)(x1, y1), ((x2 x5 x4), ey)(x1, y2)} = {(x1, y1), (x1, y2)}

...
O1 = {((x2 x4) (x3 x5) , ey)(x1, y1), ((x2 x4) (x3 x5) , ey)(x1, y2)} = {(x1, y1), (x1, y2)}

Figure 7. Suborbital graph Γ1 corresponding to ∆1 of A5 × C5 acting on X × Y .

Therefore, a suborbital graph Γ1 is constructed by drawing
an edge from vertex set point (x1, y1) to vertex set point
(x1, y2) such that any first components of ordered pairs are
identical and the second components are different.

The constructed suborbital graph Γ1 is undirected, regular
of degree 4, disconnected with 5−connected components and
has a girth of 3.
Note: The suborbits ∆2 = {(x1, y3)},∆3 = {(x1, y4)}

and ∆4 = {(x1, y5)} fall to the same category as that of
∆1. That is, the first components of the ordered pairs are the
identical but the second components are not. Therefore, the
structures of the graphs Γ2, Γ3 and Γ4 are identical to that of
Γ1. Hence, they have the same properties as that of Γ1.

Given that ∆0 = {(x1, y1)}, ∆5 = {(x2, y1), (x3, y1),
(x4, y1), (x5, y1)} and StabG(x1, y1) = {(ex, ey),
((x2 x4 x5) , ey), ((x2 x5 x4) , ey), ((x2 x3 x5), ey),
((x3 x5 x4) , ey), ((x2 x4 x3) , ey), ((x3 x4 x5) , ey),
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((x2 x5 x3) , ey), ((x2 x3 x4) , ey), ((x2 x5) (x3 x4) , ey),
((x2 x3) (x4 x5) , ey), ((x2 x4) (x3 x5) , ey)}. The suborbital

O5 corresponding to suborbit ∆5 is given as:

O5 = {(ex, ey)(x1, y1), (ex, ey)(x2, y1), (ex, ey)(x3, y1),(ex, ey)(x4, y1), (ex, ey)(x5, y1)}
= {(x1, y1), (x2, y1), (x3, y1), (x4, y1), (x5, y1)}

O5 = {((x2 x4 x5), ey)(x1, y1), ((x2 x4 x5), ey)(x2, y1),((x2 x4 x5), ey)(x3, y1), ((x2 x4 x5), ey)(x4, y1),

((x2 x4 x5), ey)(x5, y1)}
= {(x1, y1), (x4, y1), (x3, y1), (x5, y1), (x2, y1)}

O5 = {((x2 x5 x4), ey)(x1, y1), ((x2 x5 x4), ey)(x2, y1), ((x2 x5 x4), ey)(x3, y1), ((x2 x5 x4), ey)(x4, y1),

((x2 x5 x4), ey)(x5, y1)}
= {(x1, y1), (x5, y1), (x3, y1), (x2, y1), (x4, y1)}

...
O5 = {((x2 x4)(x3 x5), ey)(x1, y1), ((x2 x4)(x3 x5), ey)(x2, y1), ((x2 x4)(x3 x5), ey)(x3, y1), ((x2 x4)(x3 x5), ey)

(x4, y1), ((x2 x4)(x3 x5), ey)(x5, y1)}
= {(x1, y1), (x4, y1), (x5, y1), (x2, y1), (x3, y1)}

Suborbital graph Γ5 is then constructed by drawing edges from vertex set point (x1, y1) to vertices set
{(x2, y1), (x3, y1), (x4, y1), (x5, y1)} such that any second components of ordered pairs are identical but the first components
are different.

Figure 8. Suborbital graph Γ5 corresponding to ∆5 of A5 × C5 acting on X × Y .

Constructed suborbital graph Γ5 is undirected, regular of 4 degrees, disconnected with 5 − connected components and has a
girth of 3.

Given that
∆0 = {(x1, y1)}, ∆6 = {(x2, y2), (x3, y2), (x4, y2), (x5, y2)} and StabG(x1, y1) = {(ex, ey), ((x2 x4 x5) , ey),

((x2 x5 x4) , ey), ((x2 x3 x5), ey), ((x3 x5 x4) , ey), ((x2 x4 x3) , ey), ((x3 x4 x5) , ey), ((x2 x5 x3) , ey),
((x2 x3 x4) , ey), ((x2 x5) (x3 x4) , ey), ((x2 x3) (x4 x5) , ey), ((x2 x4) (x3 x5) , ey)}.

The suborbital O6 corresponding to suborbit ∆6 is given as:
O6 = {(ex, ey)(x1, y1), (ex, ey)(x2, y2), (ex, ey)(x3, y2),(ex, ey)(x4, y2), (ex, ey)(x5, y2)}

= {(x1, y1), (x2, y2), (x3, y2), (x4, y2), (x5, y2)}
O6 = {((x2 x4 x5), ey)(x1, y1), ((x2 x4 x5), ey)(x2, y2),((x2 x4 x5), ey)(x3, y2), ((x2 x4 x5), ey)(x4, y2),

((x2 x4 x5), ey)(x5, y2)}
= {(x1, y1), (x4, y2), (x3, y2), (x5, y2), (x2, y2)}



Engineering Mathematics 2024; 8(1): 8-17 15

O6 = {((x2 x5 x4), ey)(x1, y1), ((x2 x5 x4), ey)(x2, y2),((x2 x5 x4), ey)(x3, y2), ((x2 x5 x4), ey)(x4, y2),

((x2 x5 x4), ey)(x5, y2)}
= {(x1, y1), (x5, y2), (x3, y2), (x2, y2), (x4, y2)}

...
O6 = {((x2 x4)(x3 x5), ey)(x1, y1), ((x2 x4)(x3 x5), ey)(x2, y2), ((x2 x4)(x3 x5), ey)(x3, y2),

((x2 x4)(x3 x5), ey)(x4, y2), ((x2 x4)(x3 x5), ey)(x5, y2)}
= {(x1, y1), (x4, y2), (x5, y2), (x2, y2), (x3, y2)}

Suborbital graph Γ6 is then constructed by drawing edges from vertex set point (x1, y1) to vertices set points
{(x2, y2), (x3, y2), (x4, y2), (x5, y2)} such that neither the first nor the second components of ordered pairs are identical.

Figure 9. Suborbital graph Γ6 corresponding to ∆6 of A5 × C5 acting on X × Y .

The constructed suborbital graph, Γ6 is undirected, regular
of degree 16, disconnected with 25 − connected components
and has a girth of 3.
Note: The suborbits ∆7,∆8 and ∆9 fall to the same

category as that of ∆6. That is, neither the first nor the second
components are identical. Therefore, the structures of the
graphs Γ7, Γ8 and Γ9 are identical to that of Γ6. Hence, they
have same properties as those of Γ6.

3.4. Suborbital Graphs of An ×Cn Acting on X × Y

From the graphs constructed, it is noted that suborbital
graphs are classified into three categories:

Part A. Suborbital graphs are constructed by
drawing edges from vertex set (x1, y1) to vertices
set {(x1, y2), (x1, y3), ..., (x1, yn)} such that any first
components of ordered pairs are identical but the second
components are different.

Therefore, suborbitals O corresponding to the suborbits ∆
are given as:

O1 = {(g)(x1, y1), (g)(x1, y2)} = {(x1, y1), (x1, y2)} :g ∈ G, (x1, y2) ∈ ∆1

O2 = {(g)(x1, y1), (g)(x1, y3)} = {(x1, y1), (x1, y3)} :g ∈ G, (x1, y3) ∈ ∆2

O3 = {(g)(x1, y1), (g)(x1, y4)} = {(x1, y1), (x1, y4)} :g ∈ G, (x1, y4) ∈ ∆3

...
O(n−1) = {(g)(x1, y1), (g)(x1, yn)} = {(x1, y1), (x1, yn)} :g ∈ G, (x1, yn) ∈ ∆(n−1)
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Constructed suborbital graphs Γ1,Γ2, Γ3, ...,Γ(n− 1) have
identical structures showing that they have same properties.
That is, the graphs are undirected, regular of degree (n − 1),
disconnected with n− connected components and has a girth
of 3 for n > 3.
Part B. Suborbital graph is constructed by

drawing edges from vertex set (x1, y1) to vertices set
{(x2, y1), (x3, y1), ..., (xn, y1)} such that any second
components of ordered pairs are identical but the first
components are different. The suborbital O corresponding
to suborbit ∆ is given as:

O(n−1)+1 = {(g)(x1, y1), (g)(x2, y1), (g)(x3, y1), (g)(x4, y1), ..., (g)(xn, y1)

= {(x1, y1), (x2, y1), (x3, y1), ..., (xn, y1)} : (g) ∈ G, (x2, y1), (x3, y1), ..., (xn, y1) ∈ ∆(n−1)+1

Constructed suborbital graph Γ(n−1)+1 is undirected,
regular of degree (n − 1), disconnected with n − connected
components and has a girth of 3 for n > 3.
Part C. Suborbital graphs are constructed by
drawing edges from vertex set (x1, y1) to vertices set

(x2, y2), (x3, y2), (x4, y2), ..., (xn, y2) such that neither the
first nor the second components of the ordered pairs are
identical. The suborbitals O corresponding to the suborbits
∆ are given as:

O(n−1)+2 = {(g)(x1, y1), (g)(x2, y2), (g)(x3, y2), (g)(x4, y2), ..., (g)(xn, y2)}
= {(x1, y1), (x2, y2), (x3, y2), (x4, y2), ..., (xn, y2)}
: g ∈ G, (x2, y2), (x3, y2), (x4, y2), ..., (xn, y2) ∈ ∆(n−1)+2

O(n−1)+3 = {(g)(x1, y1), (g)(x2, y3), (g)(x3, y3), (g)(x4, y3), ..., (g)(xn, y3)}
= {(x1, y1), (x2, y3), (x3, y3), (x4, y3), ..., (xn, y3)}
: g ∈ G, (x2, y3), (x3, y3), (x4, y3), ..., (xn, y3) ∈ ∆(n−1)+3

O(n−1)+4 = {(g)(x1, y1), (g)(x2, y4), (g)(x3, y4), (g)(x4, y4), ..., (g)(xn, y4)}
= {(x1, y1), (x2, y4), (x3, y4), (x4, y4), ..., (xn, y4)}
: g ∈ G, (x2, y4), (x3, y4), (x4, y4), ..., (xn, y4) ∈ ∆(n−1)+4

...
O(n−1)+n = {(g)(x1, y1), (g)(x2, yn), (g)(x3, yn), (g)(x4, yn), ..., (g)(xn, yn)}

= {(x1, y1), (x2, yn), (x3, yn), (x4, yn), ..., (xn, yn)}
: g ∈ G, (x2, yn), (x3, yn), (x4, yn), ..., (xn, yn) ∈ ∆(n−1)+n

Constructed suborbital graphs Γ(n−1)+2, Γ(n−1)+3,
Γ(n−1)+4,..., Γ(n−1)+n have identical structures showing that
they have same properties. That is, the graphs are undirected,
regular of degree (n− 1)2, disconnected with n2− connected
components and has a girth of 3 for n > 3.
Corollary 3.1. The group action of An × Cn acting on

X × Y is imprimitive.
Proof . All suborbital graphs constructed for this group
action, are disconnected. Therefore, by theorem 2.1, the group
action is imprimitive.

4. Conclusion

In this paper, suborbital graphs of An × Cn on X × Y for
n > 3 were constructed where their respective properties were
analyzed. It is proven that all suborbital graphs constructed are
undirected, disconnected and each has a girth of 3.

Abbreviations

An Alternating group of degree n whose order
Is n!

2

Cn Cyclic group of order n
ex An identity element of alternating group
ey An identity element of cyclic group
V = X × Y Cartesian product of SET X and set Y
StabG(x) Stabilizer of a point x in G
OrbG(x) The orbit of a point x in G
∆ Suborbit of G on Set V
∅ An empty set
An × Cn Direct product of alternating and cyclic

groups
∆∗ Suborbit which is self-paired with ∆
O Suborbital of G on the set V
Γ Suborbital graph which corresponds to

suborbital O
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