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Abstract: Integrating Mean-sets theory employing generalized graph or group-theoretic tools and techniques into adaptive
graph filtering can lead to more effective resilient filtering processes, particularly in challenging environments with clutter or
uncertainty. In this paper, we show that under some crucial smoothing assumptions, the generalized Mean-sets theory
developped for negatively curved convex combination Polish metric spaces following the formal Means-sets probability
theory’s approach from Natalia Mosina, provides a new useful system for some secure adaptive graph filtering processes. We
use convex combination operations (in the sense of Terán and Molchanov) on both individual input graph signals and filters.
Individual adaptive graph filters being independently adapted by space (dataset)-valued random variables, while the
convexification operator on the underlying dataset acts as a flexible theoretical instrument for preserving some good features of
the standard scheme, like privacy of their informative trends, and looks more robust to changes. We exhibit a graph matrix
model from a system of convex combination of two adaptive finite impulse response (FIR) graph filters processing a
sampled-weighted mean-set (expectation) of some transversal graph signals with finite length N ≥ 2.
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1. Introduction
Graph filters are systems or information processing

architectures that process signals on graphs. These
computational devices attempt to model the relationship
between two or more graphs signals in real time but in an
iterative manner. In their processing, they almost always
preserved as much as possible the relevant content of known
labels commonly called input signals to predict unknown
labels called output signals, for the task at hand in domains
involving digital signals, where filtering is used to extract
relevant patterns from the data. This topic is well adressed in
[11]. Meanwhile lectures on tracking, clustering and filtering
in the conventional signal processing setting can be found
in [15] who adressed on tracking filters in heavily cluttered
environments with low target detection probabilities. [2, 3]
studied tracking performances of a convex combination of two
adaptive least mean-square (LMS) filters. For the same type of

filters, [6] dealt with adaptive filtering while [27] investigated
secure adaptive filtering.

The literature reveals that the first attempts to use mean-sets
theory arguments for adaptive filtering and Signal processing
are attributed to the Indian Engeneer called Choudhury D.
M. R., who established a mathematical framework for mean-
sets that emphasizes central tendencies and their statistical
properties and adaptability in continuous data. His researches
focussed on developing the mathematical concept of mean-
sets and exploring its utility in various scientific and
engineering domains including adaptive filtering and signal
processing. Mean-sets theory is shown to improve the
efficiency, effectiveness and robustness in adaptive filtering,
particularly in clutter environments with noise, variability and
uncertainties. But nowadays, clustering and filtering of graph
signals while preserving input data’s privacy are still some
fundamental problematics in both Graph data analysis and
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conventional Signal theory. And, they have been studied
extensively in the literature, even if clustering and filtering
theories that justify the use of several related algorithm models
proposed are still unsatisfactory.

In 2009, Mosina developped a new approach she also
called ”Mean-sets probability theory” (or ”Mean-sets theory”
to make short). This represented a significant contribution to
the construction of a solid mathematical basis in the setting
of Probability theory in general and on abstract structures,
such as graphs for finitely generated groups [16]. Also, the
features of this new theory include comparative framework, as
it offers a novel approach to comparing different probabilistic
models based on their mean-sets représentations. Indeed, she
developped her theory on locally finite graphs, and hence
(via Cayley graphs) on a finitely generated groups. Thas is,
she employed graph-theoretic and group-theoretic techniques
to analyse structures, relationships and connectivity between
graph elements. She focussed on combinatorial or discrete
structures and relationships, specially in graphs and groups,
within the context of algebraic and geometric properties,
making this approach more suited for graph signal processing,
network analysis and combinatorial optimization.

In 2024, Fotso et al. [7] proposed a generalization
of Mosina’s probabilistic approach to some general metric
spaces, notably negatively curved convex combination Polish
(NCCCP) metric spaces. In their work, they emphasized on
statistical properties of sets of outcomes valued in graphs
rather than individual probablities. This allowed a more
flexible interpretation of probabilistic models, accommodating
scenarios where conventional methods may fall short, such
as in high-dimensional contexts (e.g., the fields like machine
learning) or when dealing with uncertainties in data. This
advanced framework extended traditional probability theory
on combinatorial by emphasizing the idea of ”mean-sets”
in linear algebraic and geometric graphs structures. This
innovative approach on metric spaces provided a more
nuanced understanding of uncertainty and randomness,
especially in complex systems.

In the framework of metric spaces like in machine learning,
the development of clustering or filtering classic theory needs
specific conceptual works when adressing some fundamental
or technical questions. For general metric spaces particularly,
such questions among others concern: ”What is a cluster in
a set of data points?” or ”How do we find clusters and good
partitions of clusters under such a definition?” Fortunately,
Chang et al. recently attempted to tackle these two interesting
questions in [5].

In this paper, we show how generalized Mean-sets theory’s
approach formally developped for NCCCP metric spaces
can offer, under certain crucial conditions, a useful way to
improve the graph filtering process and target adjustment.
This approach based on k-means and convex combination
(CC) methods (in the sense of Terán and Molchanov) on
graphs provides a flexible instrument to explore the best
reference graph’s data from the spatial variables of the input
and output data. We study the filtering property of an average
(expectation) set, that is, a weighted empirical graph signal

of a finite number of undividually secured signal of lenght
N ≥ 2, that performs close to the best of its component signals
without degradation. Individual graph signals are adapted
independently by spatially valued random variables on which
the natural convexification operator acts to preserve the privacy
of their informative tendencies. While the empirical weighted
average objet obtained using a convexification function is
adapted to minimize the error graph signal of the global
structure.

The outline of this paper is organized in eight sections.
Section 2 is some general overview on signal theory and our
motivations. Section 3 presents the key contributions of our
approach. Section 4 is a recall on Graph signal processing and
some classical smoothing data association (SDA)’s method
and technics. Here, we provide some preliminaries and
general assumptions for a good matching to the extended
SDA’s technics. In Section 5, a complete description and
some illustrations of our approach is provided. The main
focused aspects being the privacy-preservation scenario en the
grap filtering processing. In Section 6, an implementation of
our approach is carried out. As result, a model is proposed
and grounded in a specific theoretical framework, therefore
provinding a mathematical tool for adaptive graph filtering
process. In section 7, a theoretical study of an adaptive convex
combination of two individual adaptive graph filters is carried
out. The last Section is devoted to our conclusion.

2. General Overview and Motivations

Some topics involving k-means method, which
operationally associates each observed data with the unique
closest cluster center of the k clusters in an appropriate sense,
tracking property or performance of adaptive filters, have been
used by Arenas-Garcı́a et al. in [2, 3]. Classical privacy
problems of adaptive filtering has been tackled in many
papers among which [27] looks more rich of informations
and where some relevant solutions have been proposed,
providing some guidelines for the privacy-preserving of
signals that are processed by untrusted agents or in cluterred
environments. On such environments, several authors have
designed variants of convex combination methods for solving
some nonlinear problems using different ways and means (see,
e.g., [12, 15, 29]). For example, Arenas-Garcı́a et al. showed
that convex combination approaches can help to improve
adaptive filters properties or performances [2, 3].

The complexity and the irregularity of such structured
systems and interactions mean that datas now reside on
complex and irregular graphs that do not lend themselves to
standard signal processing tools. Therefore, these tools and
concepts from the usual signal processing framework need to
be extended to graph signals, i.e., signals whose samples are
indexed by the nodes of arbitrary graphs. Let consider that
a graph signal consists of (possibly weighted) vertices, where
the data values are defined as objects residing on a set of nodes,
and the edges are the links connecting these vertices or nodes
[19]. One can find that graphs offer the ability to model such
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datas and their complex interactive links. Also, graphs exploit
some fundamental links between datas based on their relevant
characteristics. In graph signal processing, the first step is to
define the graph as a signal domain. If data sensing points
(graph vertices) are commonly well defined, that is not the case
with their connectivity (graph edges).

Nowever, considering the use of convex combination
methods for solving nonlinear problems in signal theory
and extended graph signal theory like in interconnected
environments, the following problematics arise: Is there
a possible connexion between the generalized Mean-sets
theory’s approach for metric spaces according to Fotso et al.
[7], which is essentially based on Terán and Molchanov’s
CC operation and the preserving privacy signals in cluttered
environments? If it’s the case, how can this approach help to
solve some nonlinear problems in these domains?

To effectively tackle the privacy problems involving graph
signal processing (GSP), an other research field called graph
signal processing in the Encrypted domain has arised. And by
the time, it has faced some challenges and applications like
looking by a cryptographic point of view to efficiently apply
privacy preserving technics to common signal processing
operations. The theoretical grounds of signal processing in
the Encrypted domain come from the field of secure function
evaluations [27] and more general support generic function
evaluations [22]. Remember that the existence of efficient
solutions for a secure execution of some generic functions is
still problematic. However, many efficient and secure technics
have been developed for specific applications in the past years,
building up a set of tools that foretell the potential of this
technology [27].

In general graph theory, the traditional weighted graph
consists of weights on edges only and in the classic setting of
Graph signal, the irregularity of datasets makes them be view
as signals represented by graphs, so that signal coefficients
are indexed by graph nodes and relations between them are
represented by weighted graph edges [13]. In this way, edge-
weighted graphs can be entirely described by their so called
adjacency matrix, denoted by A = (wij), where wij stands
for the weight of the edge i − j having as source vertex the
node indexed by i and target vertex the node indexed by j.
The cases of graphs that can be weighted on their vertices,
e.g., finite simple graphs or complete graphs, can also be
described by their so called vertex-adjacency matrix, having a
different definition, we shall give later. It is evident that graphs
offer the ability to model irregularly structured datasets and
their complex interactive connections. Also, graphs exploit
some fundamental links between datas based on their relevant
characteristics. Note that in graph signal processing, the first
step is to define the graph as a signal domain. While the
data sensing points (i.e., graph vertices) are commonly well
defined, that is not the case with their connectivity (i.e., graph
edges). In our setting where weights are focused on vertices
either than edges, a vertex-weighted graph signal is obtained,
looking like a doubly-weighted graph.

Now, being awared of the use of CC methods for solving
nonlinear problems in classic signal theory like in cluttered

environments, the following problematics arise: Is there
a possible connexion between the generalized Mean-sets
theory’s approach for metric spaces, which is essentially based
on Terán and Molchanov’s convex combination operation in
graphs, and the graph filtering signals coupled with privacy
problems in cluttered environments? If the case, how can
this approach help to solve some nonlinear problems in these
domains? A motivating element when looking for an answer
to these questions is that, the original Mean-sets theory’s
arguments are based on the general concept of vertex-weighted
graph, which is also of great importance in graph signal
processing theory.

Moreover, the generalized mean-set approach developped in
NCCCP metric spaces [7] provides a convexification function
that combines the Terán and Molchanov’s convexifiaction
operator and energy conservation arguments. And, the
generalized weighted mean-set (expectation), when it exists, is
always a convex combination of some convexified datas, which
then appears as limits for the law of large numbers. Also, the
negative curvature property of the underlying space assigns a
unique mean-set (expectation) to each space-valued random
variable [7, 24, 26].

Another motivating element when looking for an answer to
these questions is that, the formal Mosina’s Mean-sets theory
is based on the general concept of vertex-weighted graph,
which is also of great importance in graph signal processing
theory, where a signal (on a graph) is defined by associating
real (or complex) values to each vertex at a given time. As in
classical signal processing, graph signals can have properties
like smoothness (appropriately defined). Graph signals can
be weighted, filtered, sampled, averaged, or denoised. If the
graphs cannot be directly observed, we can model them and
learn their underlying structure from data. With GSP, one gains
access to principled tools mimicking the classical ones [19].
Moreover, in NCCCP metric spaces (like in separable Banach
spaces), the generalized mean-set approach developped in [7]
provides a convexification function that can allow, after the
Terán and Molchanov’s convexification operator, to use energy
conservation arguments. Moreover, the generalized weighted
mean-set (expectation) when it exists is always a convex
combination of some convexified datas, which then appears
as limits for the law of large numbers. Also, the negative
curvature property of the space in question assigns a unique
mean-set (expectation) to each space-valued random variable
[7, 24, 26].

3. Key Contributions of Our Approach

The novelties of our approach can be summarized in the
following three aspects:

First, this method can help to average graph datas where
the graph is directly observed as metrically weightable on
vertices, or if not, its underlying structure can be learned
from data in a NCCCP metric space. For this class of
geometric structures, this approach is performed by using
Terán and Molchanov’s CC method to obtain the so called
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weighted mean-set (expectation) overall graph secured signal
of a sample of mutually i.i.d. data signals indexed by nodes
in a vertex-weighted graph, the same like weighted mean-set
(expectation) for NCCCP metric spaces. More specifically,
for a practical application, this study proposes a novel CC
approach for vertex-weighted graph adaptive filtering while
preserving data privacies or characteristic properties. This
is a promising alternative to the existing CC approaches on
usual edge-weighted graphs. With this, we study the adaptive
graph filtering property of an empirical weighted mean-set
(expectation) ofN transversal individual adaptive filters (N ≥
2). The individual graph filters being independently shifted by
the natural convexification operator of the underlying metric
space acting for preserving privacy or normalizing their error
signals, while the empirical weighted mean-set (expectation)
obtained using convexification function is adapted to minimize
the error signal of the overall graph structure.

Second, this study proposes a novel convex combination
tool for efficient filtering while preserving data’s privacy or
characteristic properties. This is a promising alternative to the
existing approaches in the fields of Signal and Graph signal
processing. With this, we study the filtering property of an
empirical weighted mean-set (expectation) of N transversal
adaptive filters (N ≥ 2). Individual filters being independently
adapted by the natural convexification operator acting for
preserving privacy or normalizing their own error signals,
while the empirical weighted mean-set (expectation) obtained
using convexification function is adapted to minimize the error
signal of the overall structure. It is worth noticing that in
our setting, the output overall secured adaptive graph filter is
not simply a usual convex combination of indivduals input
adaptive filters, but it is that of the convexifiers of these
indivdual input secured graph signals. This means that, the
privacy action on each transversal input graph signal has been
executed before their fitting through a normalized convex
combination operation (where the sum of weights/parameters
equals to the total mass 1). Indeed, taking the Terán and
Molchanov’s convexification operateur K like a sort of secure
function/operator defined on the objects space, one can more
specifically see that, its algebraic and geometric properties of
this operator allow to act on adaptive filters as objects while
preserving certains characters.

Third, to the best of our knowledge, there is no study
extending the generalized Mean-sets theory approach based on
Terán and Molchanov’s CC method for tracking, filtering and
even fitting. Moreover, it is worth noticing that when analyzing
the filtering properties of least mean-squares (LMS) filters it
is customary to study the influence of the step-size on the
performance of the filter [2]. However, in this paper we show
that the generalized weighted mean-set(expectation) adaptive
filter which is the adaptive convex combination LMS filters is
able to improve over the fitting capabilities of its components
filters.

4. Recalls on Graph Signal Processing
and SDA’s Methods

4.1. Graph Signals and Filtering

Extending concepts from classical signal processing to
signal processing on graphs remains a great challenge, which
has been addressed in many paper among which [11, 13, 19].

In general, filtering, clustering or fusioning while preserving
input data’s privacy are some fundamental problematics in
Graph data analysis like in signal theory. And they have
been studied extensively in the literature, even if clustering
or filtering theories that justify the use of several related
algorithms proposed are still unsatisfactory. One of the
major difficulties in the application of conventional multitarget
tracking changes involves the problem of associating target
measurements with the appropriate tracks, especially when
there are missing measurements, unknown clusters or high
false alarm rates (clutter) [2]. But, for the case of singletarget
tracking, one can’t talk about data association as the problem
just looks like fitting a curve to a set of points [25]. However,
very often, some phenomena dealing with adaptive filter’s
tracking problems happen in a two-party setting where the first
party concerns multitarget tracking with input of individual
adaptive filters [6], and the second party is a singletarget
tracking of their combination, i.e., the overall adaptive filter.

In the related art, some topics like k-means method,
which associates each observed data with the unique closest
cluster center of the k clusters in an appropriate sense,
tracking properties/performances of adaptive filters have been
studied by Arenas et al. [2, 3]. Classical privacy problem
of adaptive filtering has been addressed by many papers
[27], where some relevant solutions have been proposed,
providing some guidelines for the privacy-preserving of
signals that are processed by untrusted agents or in cluterred
environments. On such environments, several authors have
designed variants of CC methods for solving some nonlinear
problems by using different ways and means [12, 15, 29].
For example, Arenas-Garcı́a et al. [3] showed that convex
combination approaches can help to improve adaptive LMS
filters properties/performances.

Similarly to the conventional signal processing, the
complexity and the irregularity of graph systems and
interactions mean that datas now reside on complex and
irregularly structured datasets, that do not lend themselves to
standard signal processing tools. Let consider a graph signal
consists of (possibly weighted) vertices, where data values are
defined as objects residing on a set of nodes and the edges
are the links connecting these nodes [19]. By graph filters
we mean systems which take a graph signal as an input and
produce another signal indexed by the same graph as the
output.

Our arguments may be used for averaging datas using
convex combination operation in some domain like Graph
signal theory through extended SDA methods and technics.
For the classic SDA topic, we recommand the reader to see,
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e.g., [2, 14, 15, 21, 25, 28] for some more details.

4.2. A Formal Introduction to Conventional SDA’s
Technics

We now present a brief mathematical description of SDA’s
technics for multitarget tracking which involved k-means
methods and τ -convergence arguments.

Let (X = Rn, ‖·‖) be a separable space which is
isomorphic to its topological bidual, with the norm ‖x −
y‖2 =

∑
i=1,...n

(xi − yi)
2. The problem of data association

by smoothing is traduced in this context by the question: How
can we do to smoothly associate spatial datas {(ti, zi)}`i=1 ⊂
[0, 1] × Rn to unknown trajectories ρj : [0, 1] −→ RN , for
j = 1, . . . , N ? In other words, what is the best strategy
to distribute a data set H` = {ξ1, . . . , ξ`} of values taken
by a X = RN -valued random variable ξ : Ω −→ X , in a
cluster of N targets, where each target has ρj as its center for
j = 1, . . . , N ?

Notice that, when N = 1, i.e., for the case of singletarget
tracking, this problem involves fitting a curve to a set of points.
Hereby, we are not yet talking about data association. But
when N > 1, we are in the case of multitarget tracking.
Therefore, both smoothing and data association problems are
coupled.

In general, the centers of clusters may take their values
in a space different from data’s space. If the case, certain
imperfections coming from tracking (true tracks and false
tracks can exist), signaling or recording, and globally grouped
within what is usually referred to as the ?noise phenomenon?,
are to be controlled [25].

In our context, let Γ be a vertex-weighted metric graph
where data points are indexed by nodes in space-time while
cluster centers are functions from space-time to the vertex-set.
We are concerned with the case where centers of component
clusters and nodes are in the same geometrical space and hence
keeping same dimensions.

Now consider ρj’s belong to X = RN and the distance-
function d, attached to the standard norm ‖·‖ is defined on(
[0, 1]× RN

)
×RN by: dΓ((ti, zi), ρj) = ‖ρj(ti)−zi‖2, i.e.,

the distance between the point zi and mean-trajectory ρj .
Using some notations for a variational approach, let A` =

{ξi}`i=1 ⊂ X = RN be a set of graph datas to be distributed
in a graph cluster ρ = (ρj)

N
j=1 of N component clusters ρj .

The energy function [25] necessary to choose cluster centers
of ρj’s of a given target trajectory ρ to which elements of H`

are to be assigned is the real valued function, denoted by f`,
and defined on XN by:

f`(ρ | H`) =
1

`

∑
i=1,...`

∧
j=1,...N

d(ξi, ρj) (1)

where
∧

j=1,...M

aj = min{a1, . . . , aN} for all N real variables

a1, . . . , aN (see, e.g., [25]).
The problem here is to operate an optimal choice of the

ρ = (ρj)
N
j=1 which minimizes the energy function f`(· | H`).

Since this energy function f`(· | H`) is lower bounded and
strictly decreasing, it converges absolutely to a local minimum
(see [14]). We then define the general term of the real sequence
of local minimum reached by f`(· | H`) on XN , by β` =
min
ρ∈XN

{f`(ρ | H`)}. Under certain regularity conditions and

with a probability equals to 1, this sequence converges weakly
for almost every sequence of observations H`.

The limit problem associated with this sequence can be
defined by β = min

ρ∈XN
f∞(ρ). Assuming that ξi’s are mutually

i.i.d. with the same distribution P, this allows to define the
limit energy function as

f∞(ρ) =

∫
X

∧
j=1,...N

d(x, ρj)P(dx). (2)

But, since β` −→
`→∞

β, for almost every sequence of

observationsH`, we also show that with a probability equals to
1 and up to a subsequence, then minimizers ρ` of f` converge
to minimizers ρ∞ of f∞, when `→∞.

We briefly outline the ideas of providing a conceptual link
that are involved in obtaining such a connection between
generalized mean-sets approach and extended SDA’s technics.
It is worth noticing that in a context devoid of turbulence
phenomena generally attributed to the so called ”noise”, the
energy function f`(ρ | .) (see [25]) and our (sampled) weight-
function θΓ,`, both share some similar properties under the
following three crucial conditions.

4.3. Smoothing Assumptions

(A1) Each graph’s sample signal H` = {(ti, h0,`
i )}

considered in the extended SDA’s problem is
isometrically attached to a data signal with finite
length having as values or at its nodes, the minimizers
HN,0,` = {h0,`

i , i = 0, . . . , N − 1}, for ` ≥ 1, of the
weight-function of the graph. And, there is no missing
or incomplete data.

(A2) Parameters ti = µ(i) = pi for i = 0, . . . , ` − 1 are
normalized such that

∑
i=0,...`−1

ti = 1, making each ti

a mixing scalar or weight parameter that lies between 0
and 1.

(A3) Consider ρj(ti) = h0,`
j iff

dΓ((ti, h
0,`
i ), ρj) = ‖ρj(ti)− h0,`

i ‖2 < ε, for all ε > 0,
where dΓ stands for the distance measure on the graph.
Cluster signal assigns ξj(ti) = ρj(ti) = h0,`

j for
i = 0, . . . , ` − 1 and j = 0, . . . , N − 1, meaning that
vertices h0,`

i and h0,`
j are nearest neighbors and therefore

assigned to the same center cluster ρj .
The next section present some challenges of providing a

conceptual link of our approach with the field of cluttered
environments through extended data association by smoothing
problems for target tracking [2] and secure adaptive filtering
[27].



6 Christophe Fotso et al.: A Matrix Model for Adaptive Graph Filtering Using a Generalized Mean-sets Theory’s Approach

5. Our Approach
Traditional k-means method is an algorithm that always

starts from an initial partition of data elements into k clusters
in the same observed data space [25]. It then repeatedly carries
out through the so called Lloyd’s iteration following two steps:
first, generating a new partition by assigning each data point to
the closest cluster center, and second, computing the next new
cluster centers. This iteration is known to reduce the sum of
squared distance of each data point to its cluster center in each
iteration and thus the k-means algorithm converges to a local
minimum. The new cluster centers can be easily found if the
data points are in an Euclidean space [5, 25].

5.1. Generalized Mean-sets Useful Tools for Graph Signal
Processing

In [7], Fotso et al defined the concept of chained
vertex-weighted metric (VWM) graph ΓX attached to the
NCCCP metric space X as an abstract triple denoted by
(V ΓX , EΓX , θΓX ), where θΓX is a weight-function on
the vertex set V ΓX . Such a graph typically represents
dependencies between the data points through its edges.
Consider N data points and let δE,dX be the attached distance
measure (e.g., Euclidean) to ΓX . Each data point is considered
as a node, described by a feature vector. Moreover, two data
points can be connected.

Like in the general signal processing, we formalize the
concept of graph signal by considering a chain (in its
mathematical sense) as a dataset of N points, write

H0,` = {ξi}`i=0

= {h0,`
j | j = 0, . . . , N − 1} ⊂ X = RN

of minimizers of the weight-function θΓX . That is, a finitely
many number of successive elementary minimizing nodes or
stages allowing to join any given two vertices in V ΓX .

We restrict ourselves to signals with a finite number N of
samples and to filters with finite impulse response (FIR filters).
We consider as different states of a signal, the end-vertices or
nodes h0,`

j , j = 0, . . . , N − 1, of elementary unweighted links
in that chain. We also consider graph data elements as the

points in space-time, the clusters as functions from time to the
vertex-set, and the cluster center as the curve of best fit.

We are now able to tackle our challenge using k-
means methodology on graphs, which is modeled on the
corresponding k-means methodology in conventional k-means
methods. In other words, a graph signal s(t) is given by the
vector

s(t) = h0,`(t) =
(
h0,`

0 (t), · · · , h0,`
N−1(t)

)
. (3)

But, using a formal variable z−1, called the shift or delay,
this signal of N -samples can take the formal polynomial
representation form as

s(z) =

N−1∑
j=0

sj(t)z
−j . (4)

Clearly, given s(z), we can recover the signal s through
a Fourier transform relationship. Indeed, the signal s is
recovered from its Fourier coefficients by the so called inverse
discrete Fourier transform [13, 19].

Let’s reinterprete the finite graph signals as vectors rather
than sequences or tuples as usual, and represente a graph filter
as a matrix A called vertex-adjacency matrix of the graph or
graph shift matrix. This matrix traduces the connectivities
among nodes and egdes in the graph and can therefore be
adopted as the shift for this entire graph. When it is defined for
a given set of vertices, the so called vertex-adjacency matrix
completely determined the graph, as it describes the vertices
weight and connectivity. Contrary to the only edge-weighted
graphs commonly involve in graph signal processing, we are
dealing with graphs that are weighted on their vertices.

Let ΓX = (V ΓX , EΓX , θΓX ) be an irregular and undirected
chained VWM graph attached to a dataset X (see [7]).
Remember that in graph signal processing, ordering the
samples corresponds to labeling the nodes of the graph, and
this labelling or numbering fixes the adjacency matrix of the
graph, and hence the graph shift. From a system of N given
vertices of the graph ΓX , the vertex-adjacency matrix of this
doubly-weighted graph is a matrix, denoted by A = (aij), of
order N ×N defined as:

aij =


θΓX (xj)

θΓX (V ΓX)
, if i = j and if the vertex xj is weighted,

1, if i 6= j and if vertices xi, xj are connected,
0, otherwise.

(5)

where θΓX stands for the weight-function defined in [7] and
θΓX (V ΓX) =

∑
x∈V ΓX θΓX (x) represents the total weight of

the finite graph.
Such that the output graph signal, denoted by sout(t), is

defined by
sout(t) = A sin(t) (6)

where sin(t) stands for the input graph signal.
Remark 5.1. Let denoted by D = diag (a11, · · · , aNN ),

the diagonal matrix where each diagonal element ajj is equal
to the relative weight of the vertex xj . If W stands for the
classical weighting matrix (with entries in {0; 1}) for the edge-
weighted graph, then A = W + D.

Let’s assign to the linear convexification operator K : X →
X of the underlying metric spaceX its matrix of orderN×N ,
denoted by K, called convexification matrix, relatively to a
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canonical base of N vectors. We simply write

K(x) = Kx = Kx (7)

for all x ∈ X , when there is no confusion.
In the setting of classical signal processing, convex

combination approaches are already known to help improve
tracking performance of adaptive filters. Indeed, Arenas-
Garcı́a et al. [2, 3] analyzed the tracking behavior of one
such approach, showing that a convex combination of two
adaptive LMS filters performs as close as desired to the best
of its components, and possibly, better than any of them. They
did it without carring about loss of input data’s changes in
terms of quality or quantity, i.e., the so called ”informative
deterministic behaviour” or ”informative structure” (see, e.g.,
[28]).

In our context, the setting (in terms of problem-situation)
and the process for filtering and clustering are different from
traditional cases of signal processing, and concerns data
indexed on nodes of graphs. The problem-situation here
concerns target graph clustering and filtering problems under
clutter with privacy.

Now, let’s present more clearly the framework of our
approach.

5.2. Framework of Our Approach

We consider a context where the smoothing assumptions
(A1), (A2) and (A3) stated in Section 5 are defined similarly
and are satisfied. Let’s denote the time parameter by t, while
noting that t = n for discrete time or discrete spatial index,
depending on the application.

As stated in [6], the conventional definition of an adaptive
filter is based on four aspects that follows: (i) signals are
processed by filters, (ii) the structure that defines how the
output signal of the filter is computed from its input signal,
(iii) parameters within this structure can be iteratively changed
to alter the filter?s input-output relationship, and (iv) the
adaptive algorithm that describes how the parameters are
adjusted from one time instant to the next. In the context of
graph signals, a direct extention of this concept to graphs is
not straightforward, because of some differences due to the
irregular nature of graphs [19].

Very often, besides signals, we also have filters. Being
focused on FIR filters, remember that a FIR filter can also be
represented by a polynomial in time delay or time shift denoted
by z−1, i.e.,

h(z) =

N−1∑
k=0

wkz
−k (8)

Below is an illustrative structure of an adaptive convex
combination of two transversal adaptive FIR filters, in the
setting of traditional signal processing.

In our case, two FIR filters with complementary capabilities
adaptively mix their output signals to get an overall filter of
better performance. The mixing process is carried on via a
convex combination operation with mixing scalar in λ(t).

Note that the regressor or signal vector s(t) of lenght N is
obtained from a random process as:

sT (t) = (s(t), s(t− 1), · · · , s(t−N + 1)) , (9)

where the super script (.)T denotes the transpose of a real
valued vector or matrix.

The theoretical grounds of conventional signal processing in
the Encrypted domain come from the field of secure function
evaluations [27] and more general support generic function
evaluations [22]. Remember that the existence of efficient
solutions for a secure execution of some generic functions is
still problematic. However, many efficient and secure technics
have been developed for specific applications in the past years,
building up a set of tools that foretell the potential of this
technology [27].

5.2.1. Privacy-preserving Scenario Using Our Approach
This concerns the first party of our approach which can

be alligned in the category of Data masking techniques.
Nonetheless, there are some other examples of privacy-
preserving techniques commonly used in the context of
Cryptography and Data processing. Without details, we have
Homomorphic encryption, Secure multi-party computation,
Differential privacy, Federated learning, Data masking, Zero-
knowledge proofs, etc. (see, e.g., [27]). In Graph signal
theory, convexification operation refers to techniques that aim
to transform a given graph signal into a convex form that
is easier to analyse and manipulate. This is particularly
useful in optimization problems by ensuring the convexity of
the objective function, signal denoising by enforcing convex
properties of signals or in graph-based learning by enhancing
algorithms for tasks like clustering and filtering.

Let H0,` = {ξi}`i=1} be a dataset to be clustered and {sj =

h0,`
j | j = 0, . . . , N−1} ⊂ X = RN a sample signals indexed

by nodes in the graph. Assume that the tracking is done in a
two-party setting. First party, a judicious partition is operate
by graph clustering and filtering through N clusters. Second
party, follows a special fusion by graph fitting the first party
outputs to a singletarget, i.e., an overall structure of a convex
combination of two adaptive FIR filters. We understand by
special fusion, a sort of fitting without a significant loss of
data’s qualities or properties. That is, in such a way that the
privacy of input element’s properties are preserved enough,
from the input partition up to the output fusion. At this level,
one might think at a conventional (vectorial) compression
problem as the situation only involves fitting a single curve
to a set of points (see 4.2).

We now describe the role of the convexification operator K
in our method.

The convexification operator K as a data maskage operator.
For a graph signal s(t) attached to H0,`, such that sj(t) =

h0,`
j (t) are the signal values at the nodes indexed respectively
j = 0, . . . , N − 1, let’s define and denote the regressor vector
signal characterazing individual secured graph signal by,

s̄(t) = K s(t) = (s̄0(t), · · · , s̄N−1(t)) (10)
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where s̄j(t) = Khj,`(t) for j = 0, · · ·N − 1, denotes
the secured or masked individual input signals and K is the
convexification operator of the underlying dataset space X ,
with matrix K, standing for the secure function that ensures
the privacy preserving action on individual signals. Indeed, the
action ofK on individual graph signals can seen as bringing up
a sort of protection at each nodes of an input signal against
loosing of some informative deterministic behaviour during
the filtering process. To make simple in mathematical terms,
s̄(t) just represents the convexifier of s(t) (see, e.g., [7, 24]).

We are to study the secured weighted mean-set (expectation)
scheme which obtains the output overall secured graph signal,
denoted by S̄(t), as a convex combination mean [7] of
individual secured signals

S̄(t) = Es̄(t) = [pj(t), s̄j(t)]
N−1
j=0 (11)

such that the output of the j-th component secured adaptive
graph filter at time t is defined as

Ȳj(t) = W̄T
j (t)S̄(t) (12)

for j = 0, · · ·N − 1, where W̄T
j (t) is the transposed weight

vector characterazing individual secured adaptive graph filters.
Now, for general transversal secured schemes, we shall

assume that

W̄i(t+ 1) = f
(
W̄i(t), s̄(t), d(t), pi(t)

)
, i = 0, · · ·N − 1

(13)
where f represents a well-defined linear function referring to
the activation or adaptation function of the output data.

The a priori error signal component or the so called usual
noise of the individual graph filters is defined, compared to
the desired signal, as ei(t) =

(
d(t)− W̄i(t)

)T
s̄(t). While

the graph filter vectors (W̄1(t), · · · , W̄N (t)) have length N ,
so that the overall secured filter can also be thought of as a
secured filter with the weight vector defined as:

W̄ (t) =
[
λj(t), W̄j(t)

]N
j=1

. (14)

And the a posteriori error signal vector or the so called usual
noise of the overall secured filter is defined, compared to the
desired signal, as e(t) =

(
d(t)− W̄ (t+ 1)

)T
s(t).

Remember that, whatever the method used in
convexification operation, the process typically involves
altering the original signal, which can lead to loss of certain
informations about its original structure. Indeed, when
convexifying, one often lose the non-convex characteristics
that were present before. For instance, if the signal has
multiple local minima, its convexified version may only have
one global minimum, making it easier to optimize.

We are dealing with privacy-preserving of signals coming
from one party during their adaptive filtering by another
untrusted party. In such a way that, the result of each iteration
is either disclosed or given in encrypted form before the
next iteration. Indeed, we are focused on the case in which
component signals will be independently convexified and

filtered, using their own design rules and errors, the regressor
vector sT (t) = (1, . . . , 1) of lenght N , while the mixing
parameters, pi(t), will be constant and chosen to minimize the
quadratic error of the overall mean-set output signal.

Filter’s parameters wj are chosen to bring the error signal
ei(t) or e(t) to zero or make them become minimum, i.e., such
that the magnitude of the noise decreases over time.

Theoretical scheme of our processing. In our processing, we
assume that the partition is conducted with no noise. Note that
graph signals can be denoised. After partition by clustering
has been efficiently performed and the transversal filters tracks
match to targets, we then need to preserve as much as possible
the ”informative deterministic behaviour” or ”informative
structure” of these transversal filters (see, e.g., [28]). This is
done by including their quantitative and qualitative properties
before compressing or convexly combining them (datas) for
fitting to an input overall graph filter.

Hencefore, in order to avoid track loss in such a scenario,
a common approach is to use a predefined action to secure
the association. Fortunately, in our case, the interpretation
of the operation called data masking, data preservation or
normalization can be ensured by the convexification operator
K of the underlying data-space X .

Indeed, a cluster x ∈ X is normalized by the convexification
operatorK to become a so called convexified or masked cluster
Kx ∈ X of the same dimension with x according to the
linearity of K. By normalizing, one can also understand the
need and use of efficient smoothing methods that will allow
to retain (i.e., to secure through masking) informative trends
in the components signals or filters while disregarding noises
and other undesired non-deterministic components. To make
sure that the combination of input filters or graph’s datas from
different systems will be consistent, the input datas must first
be transformed in a common domain, hereby represented by
the underlying convexifiable domain, denoted by KX .

Next, the interpretation of the fusion or compression
action for a suitable fusioning can be facilitated by our
convexification function Ψµξ , to get the reference point data,
i.e., the reference cluster properties of the input and output
clusters. Then, this reference graph data point is used as
the input data in the regression model [2]. This operation
is done by using a data’s convex combination approach,
which consists of treating the subject as a problem of convex
combination in a graph by using the generalized weighted
mean-set approach. With this method, individual clusters like
component signals that have been masked, i.e., convexified,
in a previous step to become what we can call transversal
convexified signals are convexly combined to obtain a new
single-cluster (i.e., the overall transformed signal) represented
by our so called ”generalized weighted mean-set”, which is
then used to making the final devoted use, that is filtering.

In other words, by our approach, the individual or the so
called transversal clusters are independently adapted using
their own error or properties, thank to the convexificaton
operator K. While the convex combination is adapted by
mean-sets of a stochastic gradient procedure in order to
minimize the error of the overall structure [3], thank to our
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convexification function Ψ, defined as follows:
Definition 5.1. ([7]) The convexification function of X with

N X-valued entries attached to a measure µ ∈ ProbN with
µ(i) = pi for i = 0, . . . N − 1, is defined to be the continuous
function Ψµ : XN −→ X as

Ψµ(x0, . . . , xN−1) = [pi,Kxi]N−1
i=0 . (15)

It is worth noticing that, our so called convexification
function combines multiple points to create a new point within
their convex hull, preserving the convex nature of the original
set, i.e., in a way that retains their convexity. We could have
just call this function, the convex-combination operator on X
of lenghtN . Meanwhile, the commonly called convexification
operation transforms a non-convex structure (function or
signal) into a convex one, often altering the original structure
for optimization purposes. In essence, convexification focuses
on function transformation, while convex combination deals
with point aggregation within a convex space.

In general, the inverse operation of the so called
convexification does not exist in a straightforward manner,
because the process generally involves altering and loss of non-
convex informations about the original structure. But, one
can sometimes approximate, reconstruct features or recover
aspects of the original structure by using some techniques like
deconvexification or regularization adjustments within specific
contexts.

When building a connection of our approach to SDA’s
technics, we dont really care about true or false tracks (see,
e.g., [5, 15]) nor the optimizing choice operation of cluster
centers. We just take into account the finiteness length
of clusters and assumed that, as time runs forward, the k-
means method favors the partition by smoothing that correctly
matches tracks to clusters.

A rough illustration of how our approach shows that it
theoretically matches in a two parties with data clustering and
filtering processes. The first party is illustrate by the following
incidence diagram (see Figure 1).

Figure 1. Connection of our approach to graph signal processing (Part 1).

To well understand the proposed method, we provide a short
description of this Part 1 Incidence diagram, which is based on
three fundamental steps.

5.2.2. Description of the Incidence Diagram (Figure 1)
In this diagram, we proceed to a sort of private data

processing before filtering in the second party. Here, we
have the known data (input signal) in the first step called
Step 1. The middle step called Step 2 is a hidden step in
which the input signal received the first transformation under

the convexification operator, and the last step called Step 3
is subject of the last transformation to have the signal mean-
sets (expectation) form via convex the convex combination
operation. These three steps are labelled as follow:

Step 1: Data tracking and clustering (DTC) by extended
SDA’s technics on graphs. In this step, we start with a
distribution of rough datas in an auxiliary cluster of N
components using the so called moving average, which is the
most popular method of smoothing a series of datas. This is
a problem of smoothing data association which leads to the
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distribution of a finite number of data sub-groups according to
the distances to cluster’s centers [5], and which are easier to
handle.

This first step can be consider as the step for track, partition
and filtration, i.e. identifying and good partitioning of clusters,
and this can be modelized by the following convergence of
minimizing sets sequence:

HN,` −→
minimizing

HN,0,` −→
`→∞

HN,0,1. (16)

At this level, both the convergence and continuity properties
of energy functions to carry on the smoothing partition ensure
that the following equation holds

f`(µ` | HN,0,`) −→
`→∞

f∞(µ∞ | HN,0,1). (17)

Step 2: Data normalization (DN) via convexification on
graphs. At this level, one wants to pass the N data subgroups
through a single cluster, i.e., a singletarget, while preserving
the informative deterministic behaviour carried on by each
datas subgroup. That is, in such a way that in the output of the
final track, we obtain datas capable of providing informations
on the entire input sample (from the component filters). A
condition that the generalized weighted mean-set concept for
NCCCP metric spaces is up to satisfy.

At this moment, we speak of data normalization by
convexification. The action we called normalizing the
informative deterministic behaviour involves the use of the
convexification operator K and after this, the convergence of
set-convexifiers sequences.

Note that by Fatou’s lemma, θΓ,` is a lower semicontinuous
function on EN that reaches its minimum on compact subsets
of EN (see, e.g. [14]). Under some good convergence
conditions allowing to obtain strong convergence of a
minimizing sequence from τ -convergence, and the continuity
property of the linear operator K, we have the convergence of
adaptive secured clusters

KHN,0,` −→
`→∞

KHN,0,1. (18)

Therefore, this step can then be modelized by the following
formula

θΓ,`(KHN,0,`) −→
`→∞

θΓ (KHN,0,1) (19)

since θΓ,` is continue, and where the convexifier of the set
{ai}N−1

i=0 is defined to be the set

K{ai}N−1
i=0 = {Kai}N−1

i=0 . (20)

In the next step, we move from multitarget to singletarget
tracking.

Step 3: Data fitting (DF) via Convex Combination on
graphs. This step is a sort of compression or fusion using
particularly the convex combination technics (in the sense of
Terán and Molchanov) [24], i.e. to combine and bring into
a single input set, the N secured transversal input elements
coming out from the data subgroup of Step 2. The acheivement

of this step 3 involves the use of the convexification function
defined in [7]. At this level, the mixing parameters of the
smoothing and convexifying qualities is hereby expressed and
traduced by probabilities µ(i) = pi for i = 0, . . . N − 1
of known frequencies identified by filtration/repartition with
respect to some conditions or thresholds. This activity is
sometimes called segmentation [28].

Since the convexification function Ψµ is continuous with
respect to its arguments and the convexification operator K is
linear, we have

Ψµ`(HN,0,`) −→
`→∞

Ψµ1
(HN,0,1). (21)

If good convergence conditions are respected as in Step 2,
then Step 3 can be modelized by the following:

θΓ,`(KHN,0,`) −→
`→∞

θΓ (KHN,0,1) (22)

which simply traduces the convergence of the empirical mean-
sets to the theoretical mean-set of the entire dataset [7].

Therefore,

[µ`(j), s̄j,`]
N−1
j=0 −→

`→∞
[µ1(j), s̄j,1]N−1

j=0 . (23)

It is worth noticing that beside the convex combination
process in this Step 3, each transversal component is adapted
by a filter using its own properties or rules and limits or errors,
while the mixing parameters, i.e. tj = pj in our setting, are
given to minimize the quadratic error of the overall data-set or
structure.

5.2.3. Graph Filtering Processing Using Our Approach
This concerns the second party or our approach of

processing. In the general setting of digital Signal processing,
tracking properties of two adaptive finite impulse response
(FIR) graph filters or secure adaptive FIR graph filter, the main
objective is to study an adaptive scheme which obtains the
output,

sout(t) = y(t) = H sin(t) (24)

with H standing for the overall graph filter matrix. For a
convex combination of two adaptive FIR filters, the output
signal of the overall structure is defined as:

y(t) = [λ(t), y1(t); (1− λ(t)), y2(t)] (25)

where yj(t), j = 1, 2 are the output signals of the component
adaptive FIR filters defined at time t. Note that, when
λ(t) is conveniently updated in this convex combination, the
resulting adaptive filter performs like the best of its individual
component, or even better than any of them, under certain
conditions.

Remark 5.2. In this paper, we would like to focus on shift-
invariant graph filters, for which applying the graph filter H
to the output is equivalent to applying the graph shift A to
the input prior to filtering. Such that, the matrices A and
H commute, i.e., HA = AH. But, this equality condition
holds if and only if H is a polynomial in the graph shift A,
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i.e., there exists a polynomial h(x) =
∑

i=0,...N−1

hkx
k with

real or complex coefficients, such that H = h(A), and called
polynomial filtering matrix.

For now, the structure of the adaptive graph filters is not
considered, except for the fact that it contains adjustable
parameters whose values can affect how the output signal y(t)
is computed. The output signal is then compared to the desired
response signal d(t), by subtracting the two samples signals at
time t. Remember that, the main idea behind is that, if wi(t)’s
are assigned appropriate values at each iteration then the above

scheme would extract the best properties of the component
filters yi(t).

The second party of our processing, called Part 2, delivers
the reference signal through the combined system model
driving the filtering of the earlier secured input signal into
its convex combination form. Here, the performance of a
convex combination of two adaptive FIR filters on graphs is
involved, having as the input signal, S̄(t) as defined according
to Equation (11), and Ȳ(t) standing for the output overall
signal.

The diagram below shows the adaptive configuration.

Figure 2. Connection of our approach to graph signal processing (Part 2).

It is worth noticing that, one nice property of a FIR graph
filter is that, all the nodes share parameters among them, such
that, for two nodes indexed by i and j, respective output signals
are defined as convex combinations as follows:

yi(t) = [wik(t), [Aks(t)]i]
N−1
k=0 (26)

and
yj(t) = [wjk(t), [Aks(t)]j ]

N−1
k=0 (27)

where the shifted signal at node i is computed as a local linear
combination of the signal values at neighboring nodes, i.e.,

[Aks(t)]i =
∑

j∈Ni∪{i}

aijsj (28)

where A stands for the graph shift. This shows that the
convolutional filter which is a shift-and-sum operation of the
input signal, is defined such that the k-shifted signal Aks(t) is
weighted by some parameters of the same column of rank k,
say w.k(t).

The output signal at the level of the k-shifted signal is
defined by

yik(t) = wTjk(t)sk(t) (29)

for k = 0, · · · , N − 1 and with wTjk(t) standing for the
transposed weight vector characterazing individual filters.
Remember that the scalar wjk(t) is for adapting quantitative

factors also called mixing or weight parameters, lying in the
real interval [0, 1].

A summary of our processing is as follows: in the first party,
after the DTC step where the rough graph datas have been
judiciously (i.e., uniformly in our context) partinioned in N
individual cluster signals, follows the step of normalizing datas
(DN) by convexification. At this level, allN transversal output
datas of the DTC step have to be secured and judiciously
inserted into a next singletarget, after being transformed
using K operator. The process continues with the third step
called data fusion (DF) using Terán and Molchanov’s convex
combination operation. At this level, the convex combination
mean, i.e., the generalized mean-set (expectation) of these N
secured transversal output coming from DN step is computed
and represents the new cluster input in part 2, to be fitting
into an overall convex combination of two complementary
capabilities adaptive FIR filters.

6. Result: Our Model

The private and last output scenario is more realistic, and
it is the one on which we are fucused in this paper, as it
corresponds to the case where the FIR block, i.e., our weighted
mean-set (expectation) adaptive filter, can be used as a module
of a more complex system whose intermediate signals must
not be disclosed to any party (see, [27] for the case of LMS
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filters). Our theoretical and experimental diagram highlight the
utility of our framework over previous approaches in settings
in which the measurements available are unnoisy or small in
number.

To move from a signal in the graph node domain to the
spectral frequency domain and come back, we use a tool like
the graph Fourier transform.

6.1. Graph Fourier Transform

From the eigendecomposition of A [19, 29], the graph
Fourier transform F is the inverse of the matrix V of
eigenvectors of the shift A,

F = V−1 (30)

But, the graph Fourier transform of graph signal s is given
by the graph Fourier analysis decomposition

ŝ(t) = F s(t) = {ŝk(t) | k = 0, . . . , N − 1} (31)

where

ŝk(t) =
1√
N

N−1∑
n=0

sn(t)e−j
2π
N kn (32)

stand for the Fourier coefficients of the signal.
Coming back to Equation (25) concerning ordinary convex

combination of two adaptive FIR filters, when generalizing it
to a sample of N individual secured adaptive graph filters, the
final secured output of Part 2.

6.2. Modelization of the Secure Adaptive Graph Filtering

The overall weighted-mean secured output graph signal,
denoted by Ȳ(t), is obtained from the weighted-mean graph
signal output of Part 1, denoted by S̄(t), using the Equation in
(12), shift-invariance of matrices and linearity of outputs, as

Ȳ(t) = [λ(t), Ȳ1(t); (1− λ(t)), Ȳ2(t)]

= [λ(t), W̄T
1 (t)ˆ̄S(t); (1− λ(t)), W̄T

2 (t)ˆ̄S(t)]

= [λ(t), [w̄1k(t), [Ak ˆ̄s(t)]1]N−1
k=0 ; (1− λ(t)),

[w̄2k(t), [Ak ˆ̄s(t)]2]]N−1
k=0

= [λ(t)w̄1k(t), [Ak ˆ̄s(t)]1; (1− λ(t))w̄2k(t),

[Ak ˆ̄s(t)]2]]N−1
k=0

= [λ(t),H1A; (1− λ(t)),H2A] ˆ̄s(t)
= [λ(t),H1; (1− λ(t)),H2]AFKs(t).

(33)

Therefore, the graph vertex-weighted adjacency matrix of
the overall adaptive convex combination of two FIR filters
takes the form:

H = [α1,H1;α2,H2]AFK (34)

where αi, i = 1, 2 are non-negative coefficients such that
α1 + α2 = 1, stand for the mixing parameters, matrices
Hi, i = 1, 2 stand for individual FIR filters, matrix A stands
for the graph shift, F stands for the Fourier transform and K
stands for the convex combination operator of the underlying
dataset.

Remark 6.1. At the end of the process, the output signal
can be recovered using the inverse graph Fourier transform
which computes the output back in the graph node domain.
[11, 13, 19].

6.3. Description of Our Model

According to (33), secure adaptive graph filtering process
by H can be performed by firstly convexifying the input signal
components Ks(t) in the graph node domain. After what,
the graph Fourier transform of these convexifiers output is
obtained via FKs(t); next followed by shift multiplication
in the frequency domain of the graph by the filter frequency
response AFKs(t). Finally, the graph filtering operation is
done by the convex combination of the two component graph
filters.

Our model in Equation (34), is a composed transformation
made up of a convolutional graph filter [α1,H1;α2,H2]A
and the matrix product FK. This represents the fundamental
matrix model describing the entire idea developped in this
paper. The output overall secured graph signal can now be
filtered in its better form to a preferable graph cluster.

But, this study involves adjusting graph filters based on
incoming graph data. Therefore, our resulting model looks
more flexible as it addresses security in data transmission
or processing, focussing on protecting data or information
from unauthorized access or manipultaion. It also adapts
changes in the input signal, which is crucial for effective
performance. Compares to some others approaches, this model
enables dynamic adaptation based on statistcal properties of
the input graph signals allowing for more flexible adaptation
mechanism, like filtering adjustments.

To implement the performance of our proposed model, we
examine the following theoretical case study.

7. Theoretical Case Study

We start by assuming that the two transversal FIR filters
y1(t) and y2(t) considered, are of the same structure, i.e.,
with the same step-size, constant mixing or weight parameters
liying in the interval [0, 1], metrised by any ideal probability
measure of metric dΓ of order α = 1, and the optimal solution
not subject to changes at different speeds. From the example
above, the convexification operator K coincides in this case
with the identity map of the convexifiable space R2.

We are to study the stationary performance of the adaptative
weighted mean-set (expectation) scheme which obtains the
output of the overall filter according to

Ȳ(t) =
[
λi(t), Ȳi(t)

]1
i=0

,

where Ȳi(t) are defined to be Ȳi(t) = W̄T
i (t)S̄(t), i = 1, 2,

with sT (t) = (1, 1). Here, the mixing parameters λi(t) =
pi(t) = pi ∈ [0, 1] are constant.

We refered to the example study in [29], illustrating a
convex combination approach for Artificial neural network, to
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consider some similar numerical and fonctional parameters.
For the case of linear structure, we considered the same
adaptation or activation function, defined by y = f(x) =
1+5x, where x stands for the input variable (i.e., the reference
point data used as the input data in the regression model) and
y stands for the output variable (i.e., the overall best reference
output response) after secure adaptive filtering.

We theoritically study two illustration scenarios of two data
generation processes which are similar in structure (linear),
with different weight parameters respecting condition (A2)
(see 5) and without noise. We use linear regression based on
convex combination method to determine the best reference of
the convex combination adaptive secured graph filters.

In this example, two illustration scenarios are traduced
under privacy as follows:

Scenario 1: We considered equal mixing parameters: p0 =
p1 = 0.5

We have

Ȳ(t) = 0.5Ȳ0(t) + 0.5Ȳ1(t) = 1 + 5(0.5s̄0(t) + 0.5s̄1(t)).

Scenario 2: We considered different mixing parameters:
p0 = 0.2 and p1 = 0.8

We have

Ȳ(t) = 0.2Ȳ0(t) + 0.8Ȳ1(t) = 1 + 5(0.2s̄0(t) + 0.8s̄1(t)).

For each of these scenarios, after performing about
100 replications using an Intel Core i5-6300U CPU @
2.40GHz, reporting root mean squared errors signals, high
performances were still observed for our model in scenario
2. That is, 3.469(1.322) for scenario 1 and 2.978(1.003) for
scenario 2, compared to 3.4723(1.3234) for scenario 1 and
2.9894(1.0022) for scenario 2, obtained in [29].

The obvious similarities in these results can find a
justification in the fact that, the convexification operator K
of the data-space which is supposed to bring some privacy
changes by the convexifying action coincides with the identity
function of the data-space.

Our approach may face some two practical limitations in
certain aspects like Dynamic changes or data quality, since
many graph methods in the literature assume static structures,
while real-world networks often change dramatically (e.g.,
removing or adding nodes and edges). And, also like
limited focus as many approaches may assume homogeneity
in node or edge characteristics, which can be unrealistic in
diverse networks. These limitations highlight the challenges
and considerations when applying Mosina’s approach and its
generalized versions in practical scenarios, emplasizing the
need for careful evaluation and adaptation to specific contexts.

8. Conclusion
The generalized Mean-sets theory’s approach developped

from Mosina’s arguments on NCCCP spaces can, under some
crucial conditions, help to improve adaptive graph filtering
under privacy of some individual informative trends. In this

paper, we have analyzed the graph filtering behaviors of an
adaptive convex combination of N individual adaptive filters
using this approach. Individual adaptive graph filters being
independently adapted by space-valued random variables on
which the natural convexification operator of the underlying
metric space acts to preserve privacy of their informative
trends. While the empirical weighted mean-set obtained
using the convexification function on the underlying dataset
(as metric space) is adapted to minimize the error signal
of the overall structure. We realized that the matrix model
from the overall graph signal and filter provides a generalized
weighted mean-set (expectation) of the transversal secured
signal and adaptive graph filters, and these performs as close
as desired to the best of their components. Thanks to the
properties of some generalized Mean-sets theory’s tools like
the expectation operator, the convexification operator and the
convex combination function.
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quelconque dans un espace distancié. Annales de
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