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Abstract 

The Eyring-Powell liquid is a type of non-Newtonian fluid. The complex flow behavior makes it useful in a variety of industrial 

and engineering applications such as drug manufacturing, paint and in armor construction. Blood, starch, nail polish and honey 

are such examples. The viscosity of these fluid changes with the rate at which the fluid shears. The need for improved heat 

transport fluid for industrial processes necessitates this research. The existing fluid are outdated by the advance in technology of 

machines. This paper modifies the classic Navier-Stokes equations to better capture the unique features of these fluids. The effect 

of a dual-layer structure on heat transfer in the hydromagnetic flow of an Eyring-Powell fluid near a boundary is numerically 

investigated. The state variable technique is used to generate and linearize the governing nonlinear differential equations as well 

as the applicable boundary conditions. The predictor-corrector scheme is utilized to solve the equations by calling the ode113 

solver in matlab as the bvp5c function is employed for analysis. The predictor makes the first approximation which is refined by 

the corrector. The findings, graphically depicted, demonstrate that fluid velocity, temperature, and other parameters decrease 

with increasing magnetic field intensity, thermal stratification, concentration stratification, and Nusselt number. 
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1. Introduction 

This scholarly work aims to deepen understanding and 

practical application through rigorous research, focusing on a 

model derived from the kinetic theory of matter that has 

enhanced the study of non-Newtonian fluids. The model is 

defined by three key constants: the Eyring-Powell parameter 

(ϵ), the material fluid parameter (γ), and the non-Newtonian 

parameters (ω), which together ensure a nonzero, bounded 

viscosity at both the surface and at infinity. Non-Newtonian 

fluid dynamics play a crucial role in industries like petroleum 

drilling, polymer production, glass manufacturing, and metal 

processing, while polymers are widely used in agriculture, 

medicine, and electronics for coating purposes. Additionally, 

magnetic fields are employed to analyze fluid behaviour, 

particularly the effects of particle alignment and flux rate 

under varying conditions, with applications in optical 

switches, magneto-optical filters, and nonlinear 

opto-materials. Hameed et al. [15] studied unsteady MHD of a 

non-Newtonian electrically conducting fluid on a porous 

non-conducting plate and discussed the effect of the presence 

of material constants of the second-order motion on the ve-
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locity field. Ibrahim and Makinde. [8] discussed and demon-

strated the double stratification on boundary layer flow and 

heat transfer of the nanofluids over a vertical plate, consid-

ering Brownian motion, thermophoresis, thermal stratification, 

and solutal stratification parameters. Javed et al. [9] looked 

into the boundary layer flow of an Eyring-Powell 

non-Newtonian fluid over a stretching surface of another 

similar flow and found that the fluid constituted the 

Eyring-Powell equation. Waini et al. [13] delved into 

Eyring-Powell fluid flow past a shrinking sheet: effect of 

magnetohydrodynamic (MHD) and Joule heating. The results 

revealed magnetic parameter growth rose the temperature. 

Siddiqui et al. [14] analysed Eyring-Powell fluid in helical 

screw rheometer and found out that an increase in the value of 

non-Newtonian parameters and pressure gradients escalated 

the flow of the fluid. 

Numerically, Malik et al [10] described the Eyring-Powell 

fluid in a magnetic field on the effect of physical parameters 

on mixed convective flow over a stretching sheet. Anderson 

[3] justified the boundary layer flow condition of how vis-

cosity and the immediate adjacent boundary affect the 

neighbouring molecules. Sandeep et al [5] presented heat 

and mass transfer in MHD nanofluid flow due to a cone in 

the porous medium. Ramzan et al. [17] studied radiative 

flow of Powell-Eyring magneto-nanofluid over a stretching 

cylinder with chemical reaction and double stratification 

near a stagnation point. The growth of thermal and solutal 

stratification deescalated temperature and concentration. 

Verma et al. [19] probed the boundary layer flow of 

non-Newtonian Eyring–Powell nanofluid over a moving flat 

plate in Darcy porous medium with a parallel free-stream 

with multiple solutions and stability analysis. The rate of 

mass transfer dwindled with rise in Eyring-Powell parameter. 

Abbas & Megahed [6] looked into Powell-Eyring fluid flow 

over a stratified sheet through porous medium with thermal 

radiation and viscous dissipation. Results, among other 

findings presented cooling increased by raising thermal 

stratification parameter. Jamshed et al. [7] probed a numer-

ical frame work of magnetically driven Powell-Eyring 

nanofluid using single phase model. Temperature improved 

the function of Biot number. 

Faiza et al. [1] studied MHD on the bi-convective motion of 

Eyring-Powell nanofluid over a stretched surface, where they 

discussed the role of gyrotactic micro-organisms in heat and 

mass transfer in the presence of MHD forces in Eyring-Powell 

fluid. Mahanthesh et al. [16] investigated the unsteady MHD 

three-dimensional flows induced by a stretching surface to 

study the effects of thermal radiation, viscous dissipation, and 

Joule heating on velocity, temperature, and nanoparticle 

concentration. Aznidar Ismail et al. [21] discussed MHD 

Boundary Layer Flow in Double Stratification Medium and 

posted thermal stratification declined temperature. 

Mutuku and Makinde [11] examined double stratification 

on mass and heat transfer in unsteady MHD nanofluid flow 

over a flat surface. The results indicated that thermal stratifi-

cation reduced fluid temperature while solutal stratification 

reduced nanoparticle concentration. Srinivasacharya and 

Surender [18] presented the effect of double stratification on 

mixed convection boundary layer flow of a nanofluid past a 

vertical plate in a porous medium in which thermophoresis 

lowered heat transfer rate while it hiked the rate of mass and 

nanoparticle transport. Ramana Reddy et al. [12] looked into 

the effect of Soret and Dufour numbers on chemically reacting 

Eyring-Powell fluid flow over an exponentially stretching 

sheet with thermal radiation and the consequences of heat and 

mass transfer in the boundary layer flow. Akinshilo et al. [2] 

researched and illustrated the analysis of Eyring-Powell fluid 

flow with temperature-dependent viscosity and internal heat 

generation. 

Asha and Sunitha [4] discussed the effect of Joule Heating 

and MHD on the peristaltic blood flow of a nanofluid in a 

non-uniform channel. The results depicted that the pressure 

gradient gave opposite behaviour with increasing values of 

Eyring-Powell parameters. 

Our model studies steady double stratification on MHD 

boundary layer flow and heat transfer of Eyring-Powell fluid, 

since nothing is posted about it. 

2. Equations 

According to Eyring and Powell (1944), the Cauchy stress 

tensor in the Eyring-Powell fluid is given by 

11 1
sinhi i

ij

j j

u u

x E x
 




  

      

                (1) 

where   is the dynamic viscosity coefficient,𝛽̌ and 𝐸 are 

the Eyring-Powell and rheological fluid parameters,𝜏𝑖,𝑗 is the 

shear stress tensor component and 𝑠𝑖𝑛𝑕−1  is the inverse 

hyperbolic sine function. From equation (1), Ali and Zaib 

(2019) approximated sinh
-1

 as 
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The fluid flow considered was under low shear stress, 
1
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≪ 1 and 

𝜕𝑢𝑖
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The variables governing the flow in this study were chosen 

as velocity (𝑢, 𝑣), temperature, 𝑇 and concentration, 𝐶. 
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Figure 1. Flow geometry. 

By positioning the x-axis horizontally along the direction of 

the moving fluid and the y-axis perpendicular to it, a uniform 

magnetic field is applied perpendicular to the surface and 

parallel to the y-axis. The fluid studied is a non-Newtonian 

Eyring-Powell fluid with finite electrical conductivity. The 

parameters of this fluid constrain variations in its properties. 

According to Jaber [20], due to the fluid's unlimited electrical 

conductivity, the effects of viscous dissipation, Joule heating, 

induced magnetic field, external electric field, and flux 

polarity are negligible in the analysis. Utilizing the boundary 

layer approximation for the Eyring-Powell fluid and the stated 

assumptions, Boussinesq’s equation was employed to derive 

the continuity, momentum, energy, and concentration 

equations for steady, incompressible flow. The steady, 

incompressible Eyring-Powell fluid flow equations were 

formulated as follows: 

The steady incompressible Eyring-Powell fluid flow equa-

tions were obtained considering the laws of conservation of 

Mass: 

Div (𝑉⃗ ) =0                                   (3) 

Linear momentum: 

𝑉⃗ . 𝑔𝑟𝑎𝑑 𝑉⃗ = −
1

𝜌
 𝑔𝑟𝑎𝑑 𝑝 + 𝜈 ∇2 𝑉⃗ +  𝐹            (4) 

Energy: 

(𝑉⃗ . 𝑔𝑟𝑎𝑑)𝑇 =
𝜇

𝜌𝐶𝑝
 ∇2𝑇                        (5) 

Diffusion: 

(𝑉⃗ . 𝑔𝑟𝑎𝑑)𝐶 = 𝐷 ∇2𝐶 − (𝑑𝑖𝑣 𝜈𝑇⃗⃗⃗⃗ 𝐶)              (6) 

With 𝑉⃗  as the velocity vector, p is the pressure, and 𝜈 is 

the kinematic coefficient of viscosity, 𝐹  is the imposed mag-

netic force, and g is the acceleration due to gravity. Based on 

the stated assumptions, the formulation of equations govern-

ing boundary layer flow were obtained as 

𝜕𝑢

𝜕𝑥
+ 

𝜕𝑣

𝜕𝑦
 = 0                            (7) 

𝑢
𝜕𝑢

𝜕𝑥
+  𝑣

𝜕𝑢

𝜕𝑦
 =(𝜈 +

1

𝜌𝛽̌𝐶
)

𝜕2𝑢
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1
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)

2

(
𝜕2𝑢
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1

𝜌𝑓
[(𝐶 − 𝐶∞)𝜌𝑓𝛽𝑜𝑔(𝑇 − 𝑇∞) − (𝜌𝑝  −  𝜌𝑓 )𝑔(𝐶 − 𝐶∞)] −

𝜎𝐵2(𝑡)(𝑢−𝑢∞)

𝜌
  (8) 

𝑢
𝜕𝑇

𝜕𝑥
+  𝑣

𝜕𝑇

𝜕𝑦
 = 

𝑘

𝜌𝑐𝑝

𝜕2𝑇

𝜕𝑦2 + 
𝜇

𝜌𝑐𝑝
(

𝜕𝑢

𝜕𝑦
)

2

+
𝜎𝐵2(𝑡)(𝑢−𝑈∞)2

𝜌𝑐𝑝
       (9) 

𝑢
𝜕𝐶

𝜕𝑥
+  𝑣

𝜕𝐶

𝜕𝑦
 = 𝐷𝐵

𝜕2𝑢

𝜕𝑦2
                        (10) 

and the boundary conditions at the surface of the sheet and the 

free stream were expressed as; 

u = 0, v = v𝑤(x), T = Tw(x), C = Cw(x) at y = 0

u → u∞(x), T → T∞(x), C → C∞(x),  as y → ∞
}     (11) 

where u and v are the velocity components along the x-axis 

and y-axes, respectively,





  the kinematic viscosity, k  

the thermal conductivity of the fluid,  the fluid density, g  

the acceleration due to gravity,  the volumetric expansion 

coefficient of the fluid,  𝑇𝑤  temperature,  𝐶𝑤  the particle 

volume fraction on the boundary of the magnetic field, D the 

Brownian motion coefficient,  𝑈∞  the ambient free stream 

velocity, 𝑇∞ ambient temperature, 𝐶∞ ambient concentration, 

μ the fluid coefficient of dynamic viscosity and 𝐵𝑜 the im-

posed magnetic field. 

The 𝜆t < 1, a, b, c, m, and n are positive constants and 𝜆 

with dimension (time)
-1

 is the unsteadiness frequency param-

eter. Positive values of b, c, m, and n corresponded to the 

assisting flows while the negative the opposing flows. 
In non-dimensionalization, the set of equations describing 

motion were partial differential equations that, through simi-

larity, were transformed into nonlinear equations and con-

verted into ordinary differential equations. In order to simplify, 
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the following dimensionless variables were introduced. 

 𝜂 =  (
𝑎

𝜈𝑥
)

1

2
𝑦, 𝜓 = (𝑎𝑣)

1

2𝑥𝑓(𝜂)

𝜃(𝜂) =
𝑇−𝑇∞

𝑇𝜔−𝑇∞

𝜙(𝜂)  =  
𝐶−𝐶∞

𝐶𝜔+𝐶∞ ]
 
 
 
 
 

                   (12) 

Where 𝜂 𝑎𝑛𝑑 𝜓 are the similarity and the stream function 

variables that were defined as 

𝑢 =
𝜕𝜓

𝜕𝑦
 and 𝑣 = −

𝜕𝜓

𝜕𝑥
                           (13) 

substituting Eqn. (13) into equation (7) satisfied it. By ap-

propriate differentiation and substitution of equation (12) into 

(8-10), equation (14) was obtained as 

(1 + 𝜖)𝑓′′′ − 𝛾Ω(𝑓′′)2𝑓′′′ − (𝑓′)2 + 𝑓𝑓′′ +  𝐺𝑟𝜃 + 𝐺𝑟𝛽1 −  𝑁𝑟(𝜙 − 𝛽2) − 𝑀(𝑓′ − 1) = 0

𝜃′′ + 𝑃𝑟𝐸𝑐(𝑓′′)2 + 𝑃𝑟𝑓′𝜃 − 𝑃𝑟𝑓′𝛽1 + 𝑃𝑟𝜃′𝑓 + 𝑃𝑟𝐸𝑐𝑀(𝑓′ − 1)2 = 0

𝜙′′ + 𝐿𝑒[𝑓′𝜙 + 𝑓′𝛽2 − 𝜙′𝑓] = 0

]                   (14) 

Subject to the dimensionless boundary conditions 

𝑓′ = 0, 𝑓′ = 𝑓, 𝜃 = 1 − 𝛽1, 𝜙 = 1 − 𝛽2, 𝜃 = 0, 𝜙 = 0                                                          (15) 

The parameters were prescribed as 

𝜖 =
1

𝜇𝐵̅𝐶
, 𝐿𝑒 =

𝒗

∆𝑩
, 𝑀 =

𝜎𝐵0
2

𝜌𝑎
, 𝑃𝑟 =

𝑘

𝜇𝐶𝑝
, 𝑁𝑟 = (

𝑇𝑤−𝑇∞

𝜌𝑓𝑎2 ) 𝑔, 𝛽1 =
𝑐

𝑏
, 𝛽2 =

𝑛

𝑚
 

𝛾 =
1

𝜇𝛽̂𝐶3 , 𝐺𝑟 =
(1−𝐶∞)𝑔𝛽

𝑎2 , Ω =
𝑎3𝑥2

2𝑣𝐶2
 and 𝐸𝑐 =

𝑎2𝑥

𝑏𝐶𝑝
 

Where 𝜖, 𝐿𝑒,𝑀, 𝑃𝑟, 𝑁𝑟, 𝛽1, 𝛽2, 𝛾, 𝐺𝑟, Ω, 𝐸𝑐 are the dimen-

sionless Eyring-Powell parameter, Lewis number, Magnetic 

parameter, Prandtl number, thermophoresis parameter, 

Thermal stratification parameter, solutal stratification param-

eter, material fluid parameter, Grashoff number, local 

non-Newtonian parameter, and Eckert number respectively. 

The physical quantities, skin friction coefficient 

𝐶𝑓 , Nusselt number 𝑁𝑢 and Sherwood number 𝑆𝑕, applied 

in industries and engineering fields were stated as 

𝐶𝑓 =
𝜏𝜔

𝜌𝑢∞
2 , 𝑁𝑢 =

𝑥𝑞𝜔

𝑘(𝑇𝜔−𝑇∞)
, 𝑆𝑕 =

𝑥𝑞𝑚

𝐷𝑚(𝜌𝑝−𝜌𝑓)           (16) 

𝜏𝜔, 𝑞𝜔 and 𝑞𝑚 are skin friction, surface heat flux, and the 

surface mass flux defined by 

𝜏𝜔 = 𝜇
𝜕𝑢

𝜕𝑦
, 𝑞𝜔 = 𝑘

𝜕𝑇

𝜕𝑦
 and 𝑞𝑚 = −𝐷𝑚

𝜕𝐶

𝜕𝑦
            (17) 

The 𝜇, 𝑘 are dynamic viscosity and thermal conductivity. 

Applying equation (17) into equation (16), we obtained 

𝑅𝑒𝑥

1
2⁄ 𝐶𝑓 = 𝑓′′(0), 𝑅𝑒𝑥

−1
2⁄ 𝑁𝑢 = −𝜃′(0), 𝑅𝑒𝑥

1
2⁄ 𝑆𝑕 = −𝜙′(0)                                                (18) 

The quantities 𝐶𝑓 , Nu, Sh were the local skin friction, 

Nusselt number, and Sherwood number, 𝑅𝑒𝑥 = 𝑈∞ 𝑥 𝜈⁄  was 

the local Reynolds number. 

3. Numerical Procedure 

The boundary value problem solver bvp5c was called by 

invoking the Matlab ode113 function that solved the linear-

ized equations. 

𝑓 = 𝑦1, 𝑓
′ = 𝑦2, 𝑓

′′ = 𝑦3, 𝑓
′′′ = 𝑦4, 𝜃 = 𝑦4, 𝜃

′ = 𝑦5, 𝜃
′′ =

𝑦6, 𝜙 = 𝑦6, 𝜙
′ = 𝑦7  

𝑦1
′ = 𝑦2                                 (19) 

𝑦2
′ = 𝑦3                                 (20) 

𝑦3
′ =

𝑦2
2−𝑦1𝑦3− 𝐺𝑟𝑦4−𝐺𝑟𝛽1+ 𝑁𝑟(𝑦6−𝛽2)+𝑀(𝑦2−1)

(1+𝜖−𝛾𝜔𝑦3
2)

       (21) 

𝑦5
′ = 𝑦5                                 (22) 

 

𝑦5
′ = 𝑃𝑟𝑦2𝛽1 − 𝑃𝑟𝐸𝑐𝑦3

2 − 𝑃𝑟𝑦2𝑦4 − 𝑃𝑟𝑦5𝑦1 − 𝑃𝑟𝐸𝑐𝑀(𝑦2 − 1)2                                           (23) 
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𝑦6
′ = 𝑦7                                (24) 

𝑦7
′ = −𝐿𝑒[𝑦2𝑦6 + 𝑦2𝛽2 − 𝑦7𝑦1]          (25) 

constrained by the boundary conditions 

𝑦2 = 𝑓𝜔, 𝑦4 = 1 − 𝛽1, 𝑦7 = 1 − 𝛽2 𝑎𝑡 𝜂 = 0
𝑦2 = 1, 𝑦5 = 0, 𝑦6 = 0  𝑎𝑡 𝜂 = ∞

}       (26) 

4. Discussion 

The nonlinear momentum, temperature, and concentration 

equations Eqn. (13) with the boundary conditions Eqn. (14) 

were transformed to linear differential equations. Execution 

of the Adams-Moulton predictor-corrector in Matlab ode113, 

demystified numerical computation. 1000 mesh densities 

were used with absolute and relative tolerance of 10
-6 

and 10
-8

. 

The characteristic length 0 ≤ 𝜂 ≤ 8  and the convergence 

criterion was deployed during simulation. The effects of the 

varied magnetic field, thermophoresis, thermal stratification, 

and solutal stratification parameters on dimensionless velocity, 

dimensionless temperature, dimensionless concentration, 

local skin friction, local Nusselt number, and local Sherwood 

number were discussed. 

Velocity profiles 

 
Figure 2. Effect of M on dimensionless velocity. 

𝛽1 = 0.1, 𝛽2 = 0.5, ∈= 0.4, 𝐸𝑐 = 0.3, 𝑃𝑟 = 0.4, 𝐺𝑟 = 0.3, 

𝐺 = 0.1, 𝐿𝑒 = 0.3, 𝛾 = 0.2;  Ω = 0.3, 𝑁𝑟 = 0.25 

As observed in figure 3, an increase in the thermophoresis 

parameter leads to a decrease in the velocity of the fluid. The 

increase of particles in the fluid medium at constant temper-

ature and volume leaves little space for migration. Also, the 

force driving these particles lowers. 

 
Figure 3. Effect of Nr on dimensionless velocity. 

𝛽1 = 0.1, 𝛽2 = 0.5, ∈= 0.4, 𝐸𝑐 = 0.3, 𝑃𝑟 = 0.4, 𝐺𝑟 = 0.3, 

𝐺 = 0.1, 𝐿𝑒 = 0.3, 𝛾 = 0.2, Ω = 0.3 

 
Figure 4. Effect of 𝛽1 on dimensionless velocity. 

𝛽2 = 0.1, 𝐸 = 0.2, 𝐸𝑐 = 0.3, 𝑃𝑟 = 0.7, 𝐺𝑟 = 0.2, 𝐺 = 0.1, 

𝐿𝑒 = 0.03, 𝛾 = 0.5, Ω = 0.4, 𝑁𝑟 = 0.1 

Figures 2-5 show the effects of magnetic field, thermo-

phoretic, thermal, and solutal stratification parameters on 

fluid velocity. 

Figure 2 confirms [21] the effect of strength of magnetic 

field increasing decreases velocity. The application of mag-

netic field strength perpendicularly introduces a resistance 

force, Lorentz force, which reduces the rate at which the fluid 

particles move hence reducing the flow rate thus satisfying the 

first boundary condition. 
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Figure 5. Effect of 𝛽2 on dimensionless velocity. 

𝛽1 = 0.8, ∈= 0.2, 𝐸𝑐 = 0.3, 𝑃𝑟 = 0.7, 𝐺𝑟 = 0.2, 𝐺 = 0.1, 

𝐿𝑒 = 0.03,𝑀 = 0.1, 𝛾 = 0.5, Ω = 0.4;𝑁𝑟 = 0.1 

From figure 4, a growth of thermal stratification diminishes 

the velocity of the fluid. The fluid layers order according to 

temperature decay and the thermal floating (thermal buoy-

ancy). The rate at which energy flows from one stratum to 

another reduces as velocity. 

Figure 5 depicts that a rise in solutal stratification depletes 

velocity. An increased particle concentration decreases the 

magnitude of vibration and the movement of the fluid parti-

cles causing a reduction in the flow rate. 

Temperature profiles 

 
Figure 6. Effect of M on dimensionless temperature. 

𝛽1 = 0.8, 𝛽2 = 0.1, ∈= 0.2, 𝐸𝑐 = 0.3, 𝑃𝑟 = 0.7, 𝐺𝑟 = 0.2, 

𝐺 = 0.1, 𝐿𝑒 = 0.03, 𝛾 = 0.5, Ω = 0.4,𝑁𝑟 = 0.1 

It is observed that, Figure 6, magnetic field increases with 

temperature of the fluid. The Lorentz force causes resistance 

against particles in the fluid medium. The motion of the par-

ticles in the resistive medium cause heat climbing tempera-

ture. 

 
Figure 7. Effect of 𝛽1 on dimensionless temperature. 

𝛽2 = 0.1, ∈= 0.2, 𝐸𝑐 = 0.3, 𝑃𝑟 = 0.7, 𝐺𝑟 = 0.2, 𝐺 = 0.1, 

𝐿𝑒 = 0.03,𝑀 = 0.1, 𝛾 = 0.5, Ω = 0.4,𝑁𝑟 = 0.1 

 
Figure 8. Effect of 𝛽2 on dimensionless temperature. 

𝛽1 = 0.4, ∈= 0.2, 𝐸𝑐 = 0.3, 𝑃𝑟 = 0.7, 𝐺𝑟 = 0.2, 𝐺 = 0.1, 

𝐿𝑒 = 0.03,𝑀 = 0.1, 𝛾 = 0.5, Ω = 0.4,𝑁𝑟 = 0.1 

 
Figure 9. Effect of Nr on dimensionless temperature. 

𝛽1 = 0.4, 𝛽2 = 0.1, ∈= 0.2, 𝐸𝑐 = 0.3, 𝑃𝑟 = 0.7, 𝐺𝑟 = 0.2, 𝐺𝑟 =

0.1, 𝐿𝑒 = 0.03,𝑀 = 0.1, 𝛾 = 0.5 
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In Figure 7, it is clear that thermal stratification decreases 

temperature. Layering a fluid according to temperature ex-

changes heat between the neighboring particles in adjacent 

layers. This exchange occurs until the particles on the 

boundaries equilibrate. Some fluid particles lose energy while 

others gain. The loss-gain lowers the temperature. 

As illustrated in Figure 8, solutal stratification cutbacks am-

bient and fluid temperature. Momentum transport heat from 

warmer to cold regions. Layering resists vertical flow of heat. 

The upper stratum lose heat faster to the surroundings thus it is 

replenished from below. Solutal gradients barricades thermal 

mixing creating unequal temperature caused by radiation and 

conduction. Heat transfer to ambient domains cutdown. 

Figure 9 shows a declining temperature heighten thermophore-

sis parameter. Low-temperature gradient and Brownian motion 

due to the collision of particles lowers the temperature. Tempera-

ture difference between hot and cold regions moves suspended 

particles to the cold regions. The collision yield momentum force 

and higher kinetic energy. 

Concentration profiles 

 
Figure 10. Effect of M on dimensionless concentration. 

𝛽1 = 0.4, 𝛽2 = 0.1, ∈= 0.2, 𝐸𝑐 = 0.3, 𝑃𝑟 = 0.7, 𝐺𝑟 = 0.2, 𝐺 = 0.1, 

𝐿𝑒 = 0.03,𝑀 = 0.8, 𝛾 = 0.1, Ω = 0.4,𝑁𝑟 = 0.8 

 
Figure 11. Effect of 𝛽1 on dimensionless concentration. 

𝛽2 = 0.1, ∈= 0.2, 𝐸𝑐 = 0.3, 𝑃𝑟 = 0.7, 𝐺𝑟 = 0.5, 𝐺 = 0.1, 𝐿𝑒 =

0.03, 𝑀 = 0.1, 𝛾 = 0.1, Ω = 0.3,𝑁𝑟 = 0.4 

 
Figure 12. Effect of 𝛽2 on dimensionless concentration. 

𝛽1 = 0.1, ∈= 0.2, 𝐸𝑐 = 0.3, 𝑃𝑟 = 0.7, 𝐺𝑟 = 0.5, 𝐺 = 0.1, 𝐿 = 0.03, 

𝑀 = 0.1, 𝛾 = 0.1, Ω = 0.3,𝑁𝑟 = 0.4 

 
Figure 13. Effect of Nr on dimensionless concentration. 

𝛽1 = 0.1, 𝛽2 = 0.2, ∈= 0.3, 𝐸𝑐 = 0.4, 𝑃𝑟 = 0.7, 𝐺𝑟 = 0.5, 

𝐺 = 0.1, 𝐿𝑒 = 0.3,𝑀 = 0.4, 𝛾 = 0.3, Ω = 0.3 

Figure 10 shows that magnetic field strength advances with 

particle concentration. Particles are charged and squeezed 

together. Thermal stratification increases concentration 

(Figure 11) because particles with the same temperature are 

layered together. Particle concentration is highest on the 

boundary since temperature and diffusion forces are low, 

while it underdevelopes with a hike in solutal stratification 

(Figure 12); size and density arrange the particles. 

Thermophoresis sores the concentration of the fluid 

particles (Figure 13). The energy gradient accummulates 

particles to cooler regions. Thi is applied in the concentration 

of deoxyrebonulceic acid in biofilms and the sceintific 

justification of why particles deposit on cooler surfaces. 

The Particles possessing more energy flow to the cold 

region while those with lower energy move towards the higher 

temperature. The resultant effect is that thermophoretic 

particles lose some fluid into the air as vapor. The fluid 

saturates. 
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Figure 14. Effects of M and 𝛾 on dimensionless concentration. 

𝛽1 = 0.1, 𝛽2 = 0.6, ∈= 1, 𝐸𝑐 = 0.6, 𝑃𝑟 = 1.2, 𝐺𝑟 = 3, 

𝐺 = 2, 𝐿𝑒 = 0.9, 𝛾 = 1,Ω = 0.3,𝑁𝑟 = 0.3 

 
Figure 15. Effects of M and 𝛾 on Local Nusselt Number. 

𝛽1 = 0.01, 𝛽2 = 0.2, ∈= 0.2, 𝐸𝑐 = 1.2, 𝑃𝑟 = 4, 𝐺𝑟 = 1.5, 

𝐺 = 0.4, 𝐿𝑒 = 0.8, 𝛾 = 0.1, Ω = 0.6, 𝑁𝑟 = 0.4 

 
Figure 16. Effects of 𝛽1 𝑎𝑛𝑑 𝑁𝑟 on Local Nusselt Number. 

𝛽2 = 0.3, ∈= 0.4, 𝐸𝑐 = 1.3, 𝑃𝑟 = 4, 𝐺𝑟 = 1.2, 𝐺 = 0.6, 

𝐿𝑒 = 0.95,𝑀 = 0.4, 𝛾 = 0.1, Ω = 0.6 

 
Figure 17. Effects of M 𝑎𝑛𝑑 𝑁𝑟 of Local Sherwood Number. 

𝛽1 = 0.1, 𝛽2 = 0.8, ∈= 1.2, 𝐸𝑐 = 0.4, 𝑃𝑟 = 6, 𝐺𝑟 = 0.8, 

𝐺 = 1.1, 𝐿𝑒 = 1.2, 𝛾 = 0.4, Ω = 0.1 

 
Figure 18. Effects of 𝛽1 𝑎𝑛𝑑 𝑁𝑟 of Local Sherwood Number. 

𝛽2 = 0.01, 𝛽2 = 0.8, ∈= 1.1, 𝐸𝑐 = 0.4, 𝑃𝑟 = 8, 𝐺𝑟 = 0.8, 

𝐺 = 1.1, 𝐿𝑒 = 1.2,𝑀 = 0.1, 𝛾 = 0.4;  Ω = 0.1 

 
Figure 19. Effects of 𝛽2 𝑎𝑛𝑑 𝑁𝑟 of Local Sherwood Number. 

𝛽1 = 0.01, ∈= 0.9, 𝐸𝑐 = 0.4, 𝑃𝑟 = 4, 𝐺𝑟 = 0.8, 𝐺 = 1.2, 

𝐿𝑒 = 1.5,𝑀 = 0.1, 𝛾 = 0.4, Ω = 0.1 
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Effect of variation of parameters on 𝐶𝑓 , 𝑆𝑕 𝑎𝑛𝑑 𝑁𝑢 

Figures 14 to 19 illustrates the effect of differently varied 

fluid parameters on Eyring-Powell fluid for local skin friction, 

Nusselt number, and Sherwood number. The variants are fluid 

parameters, magnetic fields strength, thermal stratification, and 

solutal stratification. An inflation of magnetic field strength and 

fluid parameter shrinks the local skin friction (Figure 14) be-

cause both parameters shift the fluid away from the boundaries. 

Figure 15 indicates that energy transfer improves with mag-

netic field strength and thermal diffusion. An increase in 

thermal stratification and thermophoresis parameter trims en-

ergy diffusion as observed on Figures 16 and 17 respectively. 

Figure 19 shows that mass migration flourishes with thermo-

phoresis parameter and magnetic field strength. The spread of 

particles due to Brownian motion spreads mixing. Figure 19 

Illustrates the augmentation of solutal stratification and ther-

mophoresis parameters declines mass diffusion. 

5. Conclusion 

A synopsis of the numerical analysis of double stratification 

on magnetohydrodynamic boundary layer flow and heat 

transfer of an Eyring-Powell fluid is presented. The nonlinear 

governing partial differential equations obtained have been 

linearized using similarity transformations. The numerical 

results are illustrated graphically for velocity, temperature and 

concentration, skin friction coefficient, local Nusselt number, 

and the local Sherwood number. The study reveals the fol-

lowing: 

1) The development of magnetic field strength, thermo-

phoresis, thermal stratification, and solutal stratifica-

tion decays velocity. 

2) A climb of thermal stratification, solutal stratification, 

and thermophoresis parameters lowers the temperature. 

3) The fluid concentration grows with magnetic field 

strength, thermal stratification, solutal stratification, 

and thermophoresis. 

4) An increase in magnetic field and material fluid de-

creases skin friction, while an increase in magnetic 

strength, thermal stratification and thermophoresis in-

creases energy and mass. 

5) The rise of thermal stratification, solutal stratification 

and thermophoresis diminishes energy and mass dif-

fusion. 

There is a possibility of further study with the inclusion of 

the z-axis for three-dimensional analysis. Finally, one can 

consider the time variable for unsteadiness flow analysis. 

Greek Letters and Symbols 

𝛾  Material Parameter 

𝜔  Non-Newtonian Parameter 

𝜖  Eyring-Powell Parameter 

𝜇  Dynamic Viscosity 

𝐵𝑜  Initial Magnetic Field 

𝜆  Unsteadiness Parameter 

𝜓  Dimensionless stream function 

𝜙  Dimensionless Concentration function 

𝜃  Dimesnionless Temperature function 

𝜏𝜔  Skin Friction 

𝛽1  Thermal Stratification 

𝛽2  Solutal Stratification 

𝜌  Density 

Ω Local Nanomaterial Parameter 

𝜂  Similarity Variable 

∇  Nabla Operator 

𝑉⃗   Velocity Vector 

Ec Eckert Number 

Gr Grashof Number 

Nr Thermophoresis 

M Magnetic field 

g Gravitational Field Strength 

T Temperature 

Le Lewis Number 

F Force 

p Pressure 

Pr Prandtl Number 

Nu Nuselt Number 

Sh Sherwood Number 

𝐶𝑓  Local Skin friction 

𝐶𝑝  Specific heat capacity 

𝑅𝑒𝑥  Reynold number 

𝑞𝜔  surface heat flux 

𝑞𝑚  surface mass flux 

k thermal conductivity 

a,b,c Constants 

t time 

𝑇∞, 𝐶∞, 𝑢∞  Ambient Temperature, Concentration & 

Velocity 

(u,v) Speed in x and y Directions 

Abbreviations 

MHD Magnetohydrodynamic 

Matlab Matrix Laboratory 

Eqn. Equation 
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