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Abstract: In this paper, we study the following chemotaxis-Stokes system with active transport
ct + u · ∇c = ∇ · (αc(∇c− χ∇n))− nc,
nt + u · ∇n = ∇ · (βn(∇n− χ∇c)) + λnc,

ut = ∆u+ (n+ c)∇φ−∇P, ∇ · u = 0

in a bounded domain with positive parameters α, β, χ and λ. Here, c and n denote the density of the nutrient acting as a
chemoattractant and the density of the cell, respectively and u denotes the velocity of the fluid. The parameters α, β, χ and
λ are positive constants and λ represents the cell growth rate occurred by the nutrient supply. The novelty of this system is
that there is not only a chemotaxis term, which reflects the movement of the cells toward nutrient sources, but also an active
transport one, which means the nutrient is moving towards the cells. In order to prove the existence of weak solutions to the
above problem, we introduce the regularized problem using the the Yosida approximation of B := −∆ + 1 under homogeneous
Neumann boundary conditions in L2(Ω). Based on a priori estimates for the solutions of the regularized problem, it is shown
that under no-flux boundary condition and for any suitably regular initial data, an associated initial value problem possesses a
global weak solution provided 0 < χ < 1.
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1. Introduction
This paper deals with the following chemotaxis-Stokes

system with active transport

ct + u · ∇c = ∇ · (αc(∇c− χ∇n))− nc,
x ∈ Ω, t > 0,

nt + u · ∇n = ∇ · (βn(∇n− χ∇c)) + λnc,

x ∈ Ω, t > 0,

ut = ∆u+ (n+ c)∇φ−∇P, x ∈ Ω, t > 0,

∇ · u = 0, x ∈ Ω, t > 0,

(1)

for the unknown functions c, n and u in a bounded domain
Ω ⊂ R3 with sufficiently smooth boundary. Here, c and n
denote the density of the nutrient acting as a chemoattractant
and the density of the cell, repectively and u denotes the
velocity of the fluid. The parameters α, β, χ and λ are positive
constants and λ represents the cell growth rate occurred by the
nutrient supply.

Chemotaxis means an oriented movement of cells towards
higher concentration chemical materials and this mechanism
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happens in a lot of biological process ([1, 2]).

Baterica living in water, often follow the oxigen which they consume as well as diffuse through the water. Moreover, they are
transported by the fluid. This bialogical process could be described by the following PDE(Partial Differential Equation):

ct + u · ∇c = ∆c− f(x, n, c),

nt + u · ∇n = ∇ · (D(n)∇n− nS(n, c)∇c) + g(n),

ut + κ(u · ∇)u = ∆u−∇P + n∇φ,
∇ · u = 0,

(2)

where κ ∈ R. Here, D repesents the diffusivity and S
denotes the chemotactic sensitivity. The given functions g and
f reflect the growth of bacterial and the oxygen consumption,
respectively. The problem (2) and its modeified ones have
been studied in many literatures (see for instance [3–11]).
Especially, chemotaxis mechnism appears in the Cahn-Hilliard
systems for tumor growth, where chemical species acts as
the nutrient for the tumor cells([12], [13–15]). An absorbing
interest in these models is that there is not only a chemotaxis
term, which reflects the movement of the tumor cells toward
nutrient sources, but also an active transport one, which
means the nutrient is moving towards the tumor cells([12]).
Furthermore, they say that the mechanisms like this have
already been observed in the malign tumor colony.

To the best of our knowledge, excepting the Cahn-Hilliard
systems with chemotaxis, we are not to able to find any
literatures studying chemotaxis models with active transport.
Motivated by these work, we are studying chemotaxis systems
with active transport, starting from the simple problems, and
we consider the problem (1). The purpose of this work is to

show the global existence of weak solutions to (1).
In this pater, the norms in Lq(Ω)3 and Lq(Ω) are denoted

by ‖ · ‖q(1 ≤ q ≤ ∞) and let ‖ · ‖ = ‖ · ‖2. Also, (·, ·) means
the inner product in L2(Ω)3 and L2(Ω). Define the following
function spaces,

C∞0,σ(Ω) := {u ∈ C∞0 (Ω)3,∇ · u = 0},

L2
σ(Ω) := C∞0,σ(Ω)

‖·‖L2(Ω)3 ,

W 1,2
0,σ := C∞0,σ(Ω)

‖·‖W1,2(Ω)3

and let A be the Stokes operator with domain D(A) = W 1,2
0,σ ∩

W 2,2(Ω)3.
Suppose the following assumptions for the parameters and

the initial data,

α, β, λ > 0, 0 < χ < 1, (3)

c0, n0 ∈W 1,∞(Ω)

with c0 ≥ 0 and n0 ≥ 0, u0 ∈ D(A1/2).
(4)

Definition 1.1. Let 0 < T <∞ and Ω ⊂ R3 be a bounded domain with smooth boundary. Assume that (3) and (4) are fulfilled.
Then, a pair of functions (c, n, u) is called a weak solution of (1) on [0, T ], if it satisfies

c, n ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;W 1,2(Ω)), u ∈ L∞(0, T ;L2
σ(Ω)3) ∩ L2(0, T ;W 1,2

0,σ (Ω)3),

−
∫ T

0

∫
Ω

cϕt −
∫

Ω

c0ϕ(·, 0)−
∫ T

0

∫
Ω

cu∇ϕ = −α
∫ T

0

∫
Ω

c(∇c− χ∇n) · ∇ϕ−
∫ T

0

∫
Ω

ncϕ, (5)

−
∫ T

0

∫
Ω

nϕt −
∫

Ω

n0ϕ(·, 0)−
∫ T

0

∫
Ω

nu∇ϕ = −β
∫ T

0

∫
Ω

n(∇n− χ∇c) · ∇ϕ+ λ

∫ T

0

∫
Ω

ncϕ, (6)

−
∫ T

0

∫
Ω

uζt −
∫

Ω

u0ζ(·, 0) = −
∫ T

0

∫
Ω

∇u · ∇ζ +

∫ T

0

∫
Ω

(n+ c)∇φ · ζ, (7)

for any ϕ ∈ C∞0 (Ω× [0, T )) and ζ ∈ C∞0,σ(Ω× [0, T )).

Theorem 1.1. Let 0 < T < ∞ and Ω ⊂ R3 be a bounded
domain with smooth boundary. Assume that (3) and (4) are
fulfilled. Then, there exists a weak solution of (1) on [0, T ].

In this paper, the letter C is a positive constant only related
to the parameters α, β, λ, χ and the initial data, whose value
may be changed from line to line, even in the same line.

2. Proof of the Main Result
To prove Theorem 1.1, we introduce the following

regularized problems for ε ∈ (0, 1):
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

cεt + uε · ∇cε = α∇ · ((cε + ε)∇cε − χcε∇Jεnε)− nεcε, x ∈ Ω, t > 0,

nεt + uε · ∇nε = β∇ · ((nε + ε)∇nε − χnε∇Jεcε) + λnεcε, x ∈ Ω, t > 0,

uεt = ∆uε −∇Pε + (nε + cε)∇φ, x ∈ Ω, t > 0,

∇ · uε = 0, x ∈ Ω, t > 0,

∇cε · ν = ∇nε · ν = 0, uε = 0, x ∈ ∂Ω, t > 0,

cε(x, 0) = c0(x), nε(x, 0) = n0(x), x ∈ Ω

uε(x, 0) = u0, x ∈ Ω,

(8)

where Jε = (I + εB)−1 is the Yosida approximation of B :=
−∆+1 under homogeneous Neumann boundary conditions in
L2(Ω).

The following lemma shows the existence of classical
solution to (8) and it is proved by the similar way from [16],
[17], so we omit the proof here.

Lemma 2.1. Let Ω ⊂ R3 be a bounded domain with smooth
boundary. Assume that (3) and (4) are fulfilled. Then for each
ε ∈ (0, 1), (8) has a classical solution (cε, nε, uε) such that

cε, nε ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)),

uε ∈ C0(Ω̄× [0,∞)) ∩ C2,1(Ω̄× (0,∞))

with cε ≥ 0 and nε ≥ 0.
Lemma 2.2. Let Ω ⊂ R3 be a bounded domain with smooth

boundary. Assume that (3) and (4) are fulfilled. Then,

‖cε(t)‖1 + ‖nε(t)‖1 +

∫ t

0

‖nεcε‖1 ≤ C (9)

holds for any t > 0.
Proof This lemma is directly proved by integrating the first

and second equation of (8).
Lemma 2.3. Let Ω ⊂ R3 be a bounded domain with smooth

boundary. Assume that (3) and (4) are fulfilled. Then,∫ t

0

‖∇cε‖2 + ‖∇nε‖2ds ≤ C(t+ 1) (10)

holds for any t > 0.
Proof Test the first equation and the second one of (8) by

β ln cε and α lnnε, respecitvely, to obtain

d

dt

∫
Ω

β(cε ln cε − cε)dx

+ αβ‖∇cε‖2 + 2αβε‖∇
√
cε‖2

= αβχ(∇cε,∇Jεnε)− β
∫

Ω

nεcε ln cεdx,

(11)

d

dt

∫
Ω

α(nε lnnε − nε)dx

+ αβ‖∇nε‖2 + 2αβε‖
√
nε‖2

= αβχ(∇nε,∇Jεcε) + αλ

∫
Ω

cεnε lnnεdx,

(12)

where we use (uε · ∇cε, ln cε) = (uε · ∇nε, lnnε) = 0 due to
∇ · uε = 0. Adding (11) and (12), leads to

d

dt

∫
Ω

(βcε ln cε + αnε lnnε − βcε − αnε)dx

+ αβ(‖∇cε‖2 + ‖∇nε‖2)

≤αβχ((∇cε,∇Jεnε) + (∇nε,∇Jεcε))

−
∫

Ω

nεcε(β ln cε − αλ lnnε)dx.

(13)

From the Hölder inequality and Young’s inequality, we have

(∇cε,∇Jεnε) + (∇nε,∇Jεcε)
≤‖∇cε‖‖∇Jεnε‖+ ‖∇nε‖‖∇Jεcε‖

≤1

2
(‖∇cε‖2 + ‖∇nε‖2)

+
1

2
(‖∇Jεcε‖2 + ‖Jε∇nε‖2)

≤1

2
(1 +

1

χ
)(‖∇cε‖2 + ‖∇nε‖2)

+ C(‖cε‖21 + ‖nε‖21)

where we use

‖∇Jεv‖2 = (−∆Jεv, Jεu) = (BJεv − Jεv, Jεv)

= ‖B1/2Jεv‖2 − ‖Jεv‖2 ≤ ‖B1/2v‖2

= (u,Bv) = (u,−∆v + v)

= ‖∇v‖2 + ‖v‖2

≤ ‖∇v‖2 + C(‖∇v‖6/5‖v‖4/51 + ‖v‖21)

≤ ‖∇v‖2 + (
1

χ
− 1)‖∇v‖2 + C‖v‖21.

(14)

Also, we get

nεcε(β ln cε − αλ lnnε)

≤ C
∫

Ω

nε(1 + c3/2ε ) + cε(1 + n3/2
ε )dx

≤ C(‖cε‖1 + ‖nε‖1 + ‖cε‖5/25/2 + ‖nε‖5/25/2)

≤ C(1 + ‖cε‖5/21 + ‖nε‖5/21 + ‖∇cε‖9/5‖cε‖7/10
1

+ ‖∇nε‖9/5‖nε‖7/10
1 )

≤ αβ(1− χ)

4
(‖∇cε‖2 + ‖∇nε‖2)

+ C(1 + ‖cε‖71 + ‖nε‖71),
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where we use |y ln y| < C(1+y3/2), y > 0 and the Gagliardo-
Nirenberg inequality

‖v‖5/25/2 ≤ C(‖∇v‖9/5‖v‖7/10
1 + ‖v‖5/21 ).

By the above estimations, (13) becomes

d

dt

∫
Ω

(βcε ln cε + αcε ln cε − βcε − αnε)dx

+
αβ(1− χ)

4
(‖∇cε‖2 + ‖∇nε‖2)

≤C(1 + ‖cε‖7/21 + ‖nε‖7/21 ).

(15)

Integrate the above inequality on (0, t), to get∫
Ω

βcε ln cε + αnε lnnεdx

+
αβ(1− χ)

4

∫ t

0

‖∇nε‖2 + ‖∇cε‖2ds

≤ Ct+ C.

(16)

Considering
∫

Ω
cε ln cεdx ≥ −C|Ω| and

∫
Ω
nε lnnεdx ≥

−C|Ω|, due to y ln y → 0, y → 0, (16) completes the proof.

Lemma 2.4. Let Ω ⊂ R3 be a bounded domain with smooth
boundary. Assume that (3) and (4) are fulfilled. Then,

‖A1/2uε(t)‖2 + ‖cε(t)‖2 + ‖nε(t)‖2

+

∫ t

0

‖Auε‖2ds ≤ CeCt + C,
(17)

holds for any t > 0.
Proof Test the first equation of (8) by cε − χJεnε to obtain

(cεt,cε − χJεnε)− χ(uε · ∇cε, Jεnε)
+ α‖(cε + ε)1/2∇(cε − χJεnε)‖2

=− (nεcε, cε − χJεnε)
+ αε(∇Jεnε,∇(cε − χJεnε)).

(18)

Similarly, test the second equation of (8) by nε − χJεcε to
obtain

(nεt,nε − χJεcε)− χ(uε · ∇nε, Jεcε)
+ β‖(nε + ε)1/2∇(nε − χJεcε)‖2

=λ(nεcε, nε − χJεcε)
+ βε(∇Jεcε,∇(nε − χJεcε)).

(19)

Add the above equations, then we have

1

2

d

dt
(‖cε(t)‖2 + ‖nε(t)‖2 − 2χ(J1/2

ε nε(t), J
1/2
ε cε(t)))

+ α‖c1/2ε ∇(cε − χJεnε)‖2 + β‖n1/2
ε ∇(nε − χJεcε)‖2 + αε‖∇(cε − χJεnε)‖2 + βε‖∇(nε − χJεcε)‖2

=− (nεcε, (1 + λχ)cε − (λ+ χ)nε) + χ((uε · ∇cε, Jεnε) + (uε · ∇nε, Jεcε))
+ αε(∇Jεnε,∇(cε − χJεnε)) + βε(∇Jεcε,∇(nε − χJεcε)).

(20)

Let
z(t) := ‖cε(t)‖2 + ‖nε(t)‖2 − 2χ(J1/2

ε nε(t), J
1/2
ε cε(t)),

which fulfills
z(t) = ‖cε(t)‖2 + ‖nε(t)‖2 − 2χ(J1/2

ε nε(t), J
1/2
ε cε(t))

≥ ‖cε(t)‖2 + ‖nε(t)‖2 − 2χ‖J1/2
ε nε(t)‖‖J1/2

ε cε(t)‖
(21)

≥ ‖cε(t)‖2 + ‖nε(t)‖2 − 2χ‖nε(t)‖‖cε(t)‖
≥ (1− χ)(‖cε(t)‖2 + ‖nε(t)‖2)

by the Hölder inequality and Young’s inequality.

Now, using the Hölder inequality and Young’s inequality,
we have

−(nεcε, (1 + λχ)cε − (λ+ χ)nε)

≤ C(‖cε‖33 + ‖nε‖33)

≤ C(‖∇cε‖3/2‖cε‖3/2 + ‖∇nε‖3/2‖nε‖3/2) + C

≤ C(‖∇cε‖2‖cε‖2 + ‖∇nε‖2‖nε‖2

+ ‖∇cε‖2 + ‖∇nε‖2 + ‖cε‖2 + ‖nε‖2) + C

≤ Cz(‖∇cε‖2 + ‖∇nε‖2 + 1)

+ C(‖∇cε‖2 + ‖∇nε‖2) + C,

(22)

where we use (21) and the Gagliardo-Nirenberg inequality

‖v‖3 ≤ C(‖∇v‖1/2‖v‖1/2 + ‖v‖1).

And using Hölder inequality and Young’s inequality yield

(uε · ∇cε, Jεnε) + (uε · ∇nε, Jεcε)
≤ ‖∇cε‖2 + ‖∇nε‖2

+ C‖uε‖26(‖Jεnε‖23 + ‖Jεcε‖23)

≤ ‖∇cε‖2 + ‖∇nε‖2

+ C‖A1/2uε‖2(‖∇nε‖2 + ‖∇cε‖2 + 1).

(23)
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Also, we have

αε(∇Jεnε,∇(cε − χJεnε))
≤ αε‖∇Jεnε‖‖∇(cε − χJεnε)‖
≤ αε‖∇(cε − χJεnε)‖2 + C‖∇Jεnε‖2

≤ αε‖∇(cε − χJεnε)‖2 + C(‖∇nε‖2 + ‖nε‖21)

(24)

and

βε(∇Jεcε,∇(nε − χJεcε))
≤ βε‖∇Jεcε‖‖∇(nε − χJεcε)‖
≤ βε‖∇(nε − χJεcε)‖2 + C‖∇Jεcε‖2

≤ βε‖∇(nε − χJεcε)‖2 + C(‖∇cε‖2 + ‖cε‖21),

(25)

where we use (14).
On the other hand, test the third equation of (8) by Auε to

obtain

1

2

d

dt
‖A1/2uε‖2 + ‖Auε‖2

= ((nε + cε)∇φ,Auε))

≤ 1

2
‖Auε‖2 + C(‖nε‖2 + ‖cε‖2)

≤ 1

2
‖Auε‖2 + C(‖∇nε‖2 + ‖∇cε‖2).

(26)

Add (20) and (26) using the estimations (22)-(25) to get

1

2

d

dt
(z(t) + ‖A1/2uε‖2) + α‖c1/2ε ∇(cε − χJεnε)‖2

+ β‖n1/2
ε ∇(nε − χJεcε)‖2 +

1

2
‖Auε‖2

≤Cz(‖∇cε‖2 + ‖∇nε‖2 + 1)

+ ‖A1/2uε‖2(‖∇cε‖2 + ‖∇nε‖2 + 1)

+ C(‖∇cε‖2 + ‖∇nε‖2 + 1).

(27)

Applying the Gronwall’s inequality to (27) considering (10),
proves this lemma.

Proof of Theorem 1.1 Let 0 < T < ∞. Applying Aubin-
Lions lemma considering Lemma 2.3 and Lemma 2.4, we can
choose {ε}, ε→ 0 (still denote by itself) and take the functions
c, n and u, such that

c, n ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;W 1,2(Ω)),

u ∈ L∞(0, T ;D(A1/2)) ∩ L2(0, T ;D(A)),

cε → c in L2(0, T ;L2(Ω)),

cε ⇀ c in L2(0, T ;W 1,2(Ω)),

nε → n in L2(0, T ;L2(Ω)),

nε ⇀ n in L2(0, T ;W 1,2(Ω)),

uε → n in L2(0, T ;D(A1/2)),

uε ⇀ u in L2(0, T ;D(A)).

Now, prove that (c, n, u) is the weak solution of (1) on
[0, T ]. First, (8) leads to

−
∫ T

0

∫
Ω

cεϕt −
∫

Ω

c0ϕ(·, 0)−
∫ T

0

∫
Ω

cεuε∇ϕ

=− α
∫ T

0

∫
Ω

((cε + ε)∇cε − cεχ∇Jεnε) · ∇ϕ

−
∫ T

0

∫
Ω

nεcεϕ,

(28)

−
∫ T

0

∫
Ω

nεϕt −
∫

Ω

n0ϕ(·, 0)−
∫ T

0

∫
Ω

nεuε∇ϕ

= −β
∫ T

0

∫
Ω

((nε + ε)∇nε − nεχ∇Jεcε) · ∇ϕ

+ λ

∫ T

0

∫
Ω

nεcεϕ,

(29)

−
∫ T

0

∫
Ω

uεζt −
∫

Ω

u0ζ(·, 0)

= −
∫ T

0

∫
Ω

∇uε · ∇ζ +

∫ T

0

∫
Ω

(nε + cε)∇φ · ζ,
(30)

for any ϕ ∈ C∞0 (Ω× [0, T )) and ζ ∈ C∞0,σ(Ω× [0, T )).
From the above convergence and the boundedness of cε, nε

and uε, we can easily see that∫ T

0

∫
Ω

nεϕt →
∫ T

0

∫
Ω

nϕt,

∫ T

0

∫
Ω

cεϕt →
∫ T

0

∫
Ω

nϕt,

∫ T

0

∫
Ω

uεζt →
∫ T

0

∫
Ω

uζt,

∫ T

0

∫
Ω

nεcεϕ→
∫ T

0

∫
Ω

ncϕ,∫ T

0

∫
Ω

nεuε∇ϕ→
∫ T

0

∫
Ω

nu∇ϕ,∫ T

0

∫
Ω

cεuε∇ϕ→
∫ T

0

∫
Ω

cu∇ϕ

∫ T

0

∫
Ω

(cε + ε)∇cε · ∇ϕ→
∫ T

0

∫
Ω

c∇c · ∇ϕ,∫ T

0

∫
Ω

(nε + ε)∇nε · ∇ϕ→
∫ T

0

∫
Ω

n∇n · ∇ϕ,∫ T

0

∫
Ω

∇uε∇ζ →
∫ T

0

∫
Ω

∇u∇η,∫ T

0

∫
Ω

(nε + cε)∇φ · ζ →
∫ T

0

∫
Ω

(n+ c)φ · ζ

when ε→ 0.

To prove the convergence of
∫ T

0

∫
Ω
cε∇Jεnε · ∇ϕ, we use following estimations:
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∫ T

0

∫
Ω

cε∇Jεnε · ∇ϕ−
∫ T

0

∫
Ω

c∇n · ∇ϕ

=

∫ T

0

∫
Ω

cε∇Jε(nε − n) · ∇ϕ+

∫ T

0

∫
Ω

cε∇(Jεn− n) · ∇ϕ

+

∫ T

0

∫
Ω

(cε − c)∇n · ∇ϕ,

(31)

∫ T

0

∫
Ω

cε∇Jε(nε − n) · ∇ϕ+

∫ T

0

∫
Ω

(cε − c)∇n · ∇ϕ

=−
∫ T

0

∫
Ω

Jε(nε − n)∇cε · ∇ϕ−
∫ T

0

∫
Ω

cεJε(nε − n)∆ϕ+

∫ T

0

∫
Ω

(cε − c)∇n · ∇ϕ

≤C(‖nε − n‖L2(0,T ;L2(Ω))‖∇cε‖L2(0,T ;L2(Ω)) + ‖nε − n‖L2(0,T ;L2(Ω))‖cε‖L2(0,T ;L2(Ω))

+ ‖cε − c‖L2(0,T ;L2(Ω))‖∇n‖L2(0,T ;L2(Ω)))

→0, ε→ 0.

(32)

∫ T

0

∫
Ω

cε∇(Jεn− n) · ∇ϕ

=−
∫ T

0

∫
Ω

(Jεn− n)∇cε · ∇ϕ−
∫ T

0

∫
Ω

(Jεn− n)cε∆ϕ

≤C‖Jεn− n‖L2(0,T ;L2(Ω))‖∇cε‖L2(0,T ;L2(Ω))

+ C‖Jεn− n‖L2(0,T ;L2(Ω))‖cε‖L2(0,T ;L2(Ω))

≤C‖Jεn− n‖L2(0,T ;L2(Ω)) → 0, ε→ 0,

(33)

where we use Lebesgue’s dominated convergence lemma considering

‖Jεn− n‖2 ≤ (‖Jεn‖+ ‖n‖)2 ≤ 4‖n‖2,
∫ T

0

‖n‖2 <∞,

and

lim
ε→0
‖Jεn− n‖2L2(0,T ;L2(Ω)) = lim

ε→0

∫ T

0

‖Jεn− n‖2 =

∫ T

0

lim
ε→0
‖Jεn− n‖2 = 0. (34)

The convergence of
∫ T

0

∫
Ω
nε∇Jεcε · ∇ϕ is obtained by the silmilar way.

Bringing together above calculations, yields that (c, n, u) satisfies (5)-(7) for any ϕ ∈ C∞0 (Ω × [0, T )) and ζ ∈ C∞0,σ(Ω ×
[0, T )).
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