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Abstract 

This research article presents an analytical study of convective flow in a vertical channel with convective boundary conditions. 

Because of the nonlinear nature of the governing energy and momentum equations, the homotopy perturbation method was 

employed. The effects of various physical parameters on temperature and velocity profiles are illustrated in Figures 2 to 9, and a 

comparison table is provided to validate the results. Notably, both temperature and velocity distributions increased with higher 

viscous dissipation. Furthermore, the velocity profile decreased with an increase in the Biot number, while the temperature 

profile adjacent to the plate increased as the Biot number grew. Shear stress also exhibited an upward trend with rising viscous 

dissipation. Finally, an increase in the Grashof number and Biot number is found to elevate the skin friction on both plates. The 

mean temperature is higher when air is used as the working fluid compared to mercury. To validate this study, the temperature 

and velocity results were compared with previously published work, showing excellent agreement. This confirms the efficiency 

of the Homotopy Perturbation Method in solving coupled and nonlinear system of differential equations. Additionally, it was 

observed that both temperature and velocity increase with a rise in the Prandtl number, attributed to the dominance of momentum 

diffusivity over thermal diffusivity. 
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1. Introduction 

The study of natural convection in Couette flow has gained 

significant attention due to its applications in various fields, 

including engineering, geothermal energy, the petroleum 

industry, physics, nuclear power plants, and lubrication 

technology. Momohjimoh et al. [1] observed a reduction in 

velocity boundary layer thickness with increasing Biot and 

Prandtl numbers. Ajibade et al. [2] noted that greater internal 

conductive resistance diminishes buoyancy forces, resulting 

in reduced fluid thickness, temperature, and velocity. Agun-

biade and Oyekunle [3] reported that higher viscous dissipa-

tion enhances fluid temperature and velocity. Similarly, Tafida 

and Ajibade [4] highlighted the positive influence of viscous 

dissipation on these parameters. Ajibade and Tafida [5] found 

that velocity boundary layer thickness enhances with larger 

Biot numbers. 

Astanina et al. [6] demonstrated that variable viscosity in 
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the working fluid effectively controls heat transfer and fluid 

flow. Hussain et al. [7] confirmed that the rate of heat transfer 

improves with higher Prandtl numbers. Ajibade et al. [8] 

revealed that hydrodynamic and thermodynamic distributions 

improve with increased viscous dissipation, while Ajibade 

and Tafida [9] observed that viscous dissipation raises fluid 

temperature but tends to reduce velocity. Finally, Ajibade and 

Princely [10] concluded that greater viscous dissipation leads 

to higher fluid temperature and velocity within the channel. 

Mehdi and Kourosh [11] concluded that growing the gener-

alized Prandtl number increases heat transfer while reducing 

skin friction, and also decreases the thickness of the temper-

ature boundary layer. Muawiya and Tafida [12] observed that 

the mass flux increases with higher viscous dissipation (Ec). 

Isa et al. [13] reported that skin friction rises with an increase 

in the Grashof number, while the Nusselt number decreases. 

Hamza [14] noted that the heat source parameter increases 

with a rise in the Biot number. Masthanaiah et al. [15] indi-

cated that higher values of viscous dissipation result in greater 

temperature generation. Tafida et al. [16] concluded that ve-

locity and temperature distribution develop as viscous dissi-

pation increases. 

Ajibade et al. [17] observed that the velocity profile de-

creases adjacent to the cold plate as viscous dissipation in-

creases. Liu et al. [18] highlighted the superiority of their 

method over conventional approaches, emphasizing its flexi-

bility in selecting the initial approximation. Abker [19] suc-

cessfully provided solutions for both linear and nonlinear 

equations by the method of homotopy perturbation (HPM). 

Abu-Zeid [20] found that temperature rises with an increase in 

the Brinkman number. Adamu [21] concluded that HPM is a 

robust and effective tool for solving coupled differential 

equations. Ajibade and Tafida [22] demonstrated the effec-

tiveness of their HPM-based solution, achieving excellent 

results. Nasution [23] reported that HPM is suitable for 

solving nonlinear differential equation systems, as evidenced 

by simulations where HPM results closely matched numerical 

simulations using the 4th-order Runge-Kutta method. The 

main objective of this research is to apply the homotopy 

perturbation method (HPM) to examine the impact of viscous 

dissipation on steady natural convection Couette flow under 

convective boundary conditions. The governing equations for 

this flow are coupled and nonlinear, making them suitable for 

numerical schemes or approximate solution methods. Among 

these, the perturbation method is effective; however, its solu-

tions are limited to small perturbation parameters. To address 

this limitation, the homotopy perturbation method (HPM) is 

introduced as an alternative. HPM offers rapid convergence, 

often requiring only a limited terms in the series solution to 

achieve high correctness. Given the nonlinearity and coupling 

of the governing equations, HPM is employed in this study to 

solve the energy and momentum equations. 

 

2. Methodology 

We examine a steady flow of an incompressible fluid with 

viscous dissipation occurring between two vertical parallel 

plates positioned at specific locations. * 0y   and *y h , 

where the hot and cold walls are maintained at uniform tem-

peratures 1T  and 0T , respectively. It is assumed that the 

flow occur in the *x  direction, vertically upward along the 

plates, while the *y  axis is perpendicular to the plates, as 

depicted in Figure 1. Given the infinite length of the plates, 

both the velocity and temperature fields are assumed to de-

pend solely on the spatial coordinate. *y . 

 
Figure 1. Schematic diagram of the problem. 

The flow behavior and heat transfer in a vertical channel 

based on the Boussinesq’s approximation, are described by 

the following governing equations: 

2
2

2
0,

d T du

cpdy dy
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The corresponding boundary conditions for these equations 

are: 
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As the quantities involved have different dimensions, we 

introduce appropriate dimensionless variables to transform 

http://www.sciencepg.com/journal/ijfmts


International Journal of Fluid Mechanics & Thermal Sciences  http://www.sciencepg.com/journal/ijfmts 

 

47 

the governing equations and boundary conditions into a di-

mensionless form. The dimensionless quantities used in 

equations (1) – (2) and boundary condition (3) are: 

,
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hd
Bi
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Using these definitions, equations (1) to (3) can be rewrit-

ten in the following non-dimensional forms: 

22

2
Pr 0,

d T du
Ec

dydy

 
  

 
              (5) 

2

2
0,

d u
GrT

dy
              (6) 

The non-dimensional boundary conditions are: 

1,u   ( 1),
dT

Bi T
dy

   at 0y   

0,u   ,
dT

BiT
dy

   at       (7) 

Method of Solution 

To address the problem with the Homotopy Perturbation 

Method, we formulate a convex homotopy for the energy and 

momentum equations. As a result, the equations can be ex-

pressed in the following form without requiring an initial 

approximation: 

22

2
Pr

d T du
p Ec

dydy

  
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   

           (8) 

such that 

2 3
0 1 2 3 ...T T pT p T p T               (9) 

By putting equation (9) into equation (8), we have 
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By relating the coefficient of 0 1 2 3, , , ...p p p p , we obtain 

2
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2
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The boundary conditions are transformed to: 

 '
0 00 ( 1),T Bi T        ' ' '

1 1 2 2 3 30 , 0 , 0 ,...T BiT T BiT T BiT    

       ' ' ' '
0 0 1 1 2 2 3 31 , 1 , 1 , 1 ,...T BiT T BiT T BiT T BiT                      (15) 

Similarly, for equation (6), there is no initial approximation; thus, it can be transformed into: 
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2

2

d u dP
p GrT

dxdy
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 
                                 (16) 

such that 

2 3
0 1 2 3 ...u u pu p u p u                                (17) 

By substituting equation (17) into equation (16), we obtain: 
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By relating the coefficient of 0 1 2 3, , , ...p p p p , we obtain 
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The boundary conditions for these equations are transformed to: 

0 (0) 1,u   1 2 3(0) (0) (0) ... 0,u u u    0 1 2 3(1) 0, (1) 0, (1) 0, (1) 0...,u u u u     (23) 

Thus, by solving equations (11) and (19) and applying the boundary conditions '
0 0(0) ( 1)T Bi T  and '

0 0(1) ,T BiT 

 0 0 0,u   and 0 (1) 0,u   we obtain the solutions 

0 1 2T A y A                                         (24) 

0 1 2 ,u B y B                                        (25) 

Thus, by solving equations (12) and (20) and applying the boundary conditions '
1 1(0) ,T BiT and '

1 1(1) ,T BiT   1 0 0,u   

and 1(1) 0,u   we obtain the solutions 

2

1 3 4
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2

Ec y
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.
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                      (27) 

Thus, by solving equations (13) and (21) and applying the boundary conditions '
2 2(0) ,T BiT and '

2 2(1) ,T BiT   2 0 0,u   
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and 2 (1) 0,u   we obtain the solutions 
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Thus, by solving equations (14) and (22) and applying the boundary conditions '
3 3(0) ,T BiT and '

3 3(1) ,T BiT   3 0 0,u   
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To find the mass flux, 
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To obtain the mean temperature,  
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3. Results and Discussion 

This section presents a discussion of the results obtained. 

The analytical solutions for temperature and velocity are dis-

played in graphs and analyzed for various values of the moni-

toring parameters. Moreover, the calculated numerical values 

for the rate of heat transfer, skin friction, mass flux, and mean 

temperature are provided in tables for further evaluation. 

The temperature and velocity profiles for different values 

of Eckert number (Ec) is displayed in Figures 2 and 3. Both 

distributions increase with higher Eckert numbers, as the 

fluid's kinetic energy surpasses the boundary layer enthalpy 

difference. This intensifies convection currents, reducing 

fluid density and resulting in higher temperature and velocity 

profiles within the channel. It is also noted that the effect of 

the Eckert number on the temperature distribution is more 

pronounced near the cold plate. 

The effect of the thermal buoyancy ratio (Gr) is shown in 

Figures 4 and 5. It is observed that the temperature distribu-

tion increases near the heated plate as the Grashof number 

increases, while a decrease occurs near the cold plate with 

rising Grashof number. Additionally, the Grashof number has 

no noticeable effect on the temperature distribution at the 

center of the channel. In Figure 5, the velocity distribution 

increases across the channel with higher Gr values, which is 

attributed to the buoyancy forces overpowering the viscous 

forces. This causes fluid particles in more energetic regions to 

move toward less energetic areas. 

Figures 6 and 7 illustrate the effects of the Prandtl number 

(Pr) on the fluid's temperature and velocity distributions. It is 

observed that both temperature and velocity increase as the 

Prandtl number rises. This is due to the dominance of mo-

mentum diffusivity over thermal diffusivity. Physically, as the 

momentum diffusivity rate surpasses the thermal diffusivity, 

the fluid's boundary layer thickness increases, which enhances 

the convection currents within the channel, leading to higher 

temperature and velocity distributions. 

Figures 8 and 9 illustrate the effects of the Biot number (Bi) 

on the velocity and temperature distributions, respectively. 

Figure 8 shows that temperature distribution increases nearby 

the heated plate as the Biot number rises, while it decreases 

near the cold plate with an increasing Biot number. In Figure 9, 

the velocity profile is observed to decrease as the Biot number 

increases. This behavior is due to the dominance of internal 

conduction resistance over external convection resistance, 

which affects heat transfer to the fluid, consequently reducing 

its temperature and weakening fluid motion. 

Table 1 presents the computed numerical values for the rate 

of heat transfer at both plates. It is evident from the table that, 

the rate of heat transfer decreases at both plates as viscous 

dissipation increases. Furthermore, an increase in both the 

Prandtl number and viscous dissipation results in a higher rate 

of heat transfer. 

Table 2 shows the calculated numerical values of skin 

friction at both plates. It is observed that an increase in the 

Grashof number and Biot number inclines to raise the skin 

friction at both plates. 

Table 3 presents the mass flux values. Mass flux increases 

as the Biot number and Grashof number rise, while it de-

creases with an increase in the Prandtl number. 

Table 4 shows the mean temperature values. The mean 

temperature is higher when the working fluid is air compared 

to mercury. Additionally, the mean temperature increases 

with rising Grashof and Biot numbers. 

Validation of results 

To validate this study, we compared our results for temper-

ature and velocity with those of Muawiya and Tafida [12], 

finding excellent agreement, as presented in Table 5. This 

confirms that the Homotopy Perturbation Method is an effec-

tive approach for solving coupled and nonlinear differential 

equations. Additionally, to further substantiate our findings, we 

extended the work of Muawiya and Tafida [12] by introducing 

a different boundary condition, specifically the convective 

boundary condition. The comparison is outlined in Table 5. 

4. Conclusion 

This article examines the effect of viscous dissipation on 

steady natural convection Couette flow with convective bound-

ary conditions, employing the homotopy perturbation method. 

The energy and momentum equations were solved, and the re-

sults were presented graphically and analyzed for various values 

of the governing parameters. The study concludes that: 

Both temperature and velocity profiles rise with increasing 

viscous dissipation, 

The velocity profile decreases as the Biot number increas-

es, 

A rise in the Prandtl number and viscous dissipation leads 

to an enhanced rate of heat transfer, 
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The mean temperature is greater when air is used as the 

working fluid compared to mercury. 

 
Figure 2. Temperature profile for various values of 

(Pr 0.71, 6.0, 15.0)Ec Gr Bi   . 

 
Figure 3. Velocity profile for various values of 

(Pr 0.71, 6.0, 15.0)Ec Gr Bi   . 

 
Figure 4. Temperature profile for various values of 

( 0.8,Pr 0.71, 15.0)Gr Ec Bi   . 

 
Figure 5. Velocity profile for various values of 

( 0.8,Pr 0.71, 15.0)Gr Ec Bi   . 

 
Figure 6. Velocity profile for various values of 

Pr( 0.8, 6.0, 15.0)Ec Gr Bi   . 

 
Figure 7. Temperature profile for various values of 

Pr( 0.8, 6.0, 15.0)Ec Gr Bi   . 

http://www.sciencepg.com/journal/ijfmts


International Journal of Fluid Mechanics & Thermal Sciences  http://www.sciencepg.com/journal/ijfmts 

 

53 

 
Figure 8. Velocity profile for various values of 

( 0.8,Pr 0.71, 6.0)Bi Ec Gr   . 

 
Figure 9. Temperature profile for various values of 

( 0.8,Pr 0.71, 6.0)Bi Ec Gr   . 

Table 1. Calculated numerical values for the rate of heat transfer at both plates. 

 6.0, 7.0Gr Bi   8.0, 7.0Gr Bi   10.0, 17.0Gr Bi   

Ec  Pr  1
Nu  0

Nu  0
Nu  1

Nu  0
Nu  1Nu  

0.1   0.6821 0.4346  0.6778  0.2668  0.4821 0.3353  

0.4   0.3631 0.2538  0.3517  0.1287  0.3007  0.2078  

0.7  0.044  0.2741 0.1780  0.2130  0.1007  0.2706  0.2006  

1.0   0.0761 0.0431 0.0357  0.0927  0.1908  0.0990  

0.1   0.5793  0.6110  0.4468  0.3700  0.4011 1.4462  

0.4   0.2411 0.4240  0.1311 0.2356  0.2968  1.3207  

0.7  0.71 0.1630  0.2086  0.1827  0.1971 0.2077  1.2006  

1.0   0.0835  0.1781 0.1600  0.1736  0.1243  1.1371 

Table 2. Calculated numerical values for the skin friction at both plates. 

 6.0, 7.0Gr Bi   8.0, 7.0Gr Bi   10.0, 17.0Gr Bi   

Ec  Pr  1
  0

  0
  1

  0
  1  

0.1   0.5261 1.6732  0.5273  1.6821 1.3281 1.5281 

0.4   0.5700  1.7260  0.5738  1.7386  1.5711 1.6525  

0.7  0.044  0.6134  1.9980  0.6380  1.9990  1.7013  1.9752  

1.0   0.6531 2.3600  0.6597  2.4987  1.8245  2.3655  

0.1   0.4217  1.4894  0.4256  1.4910  0.8525  1.0992  
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 6.0, 7.0Gr Bi   8.0, 7.0Gr Bi   10.0, 17.0Gr Bi   

Ec  Pr  1
  0

  0
  1

  0
  1  

0.4   0.4530  1.5360  0.4620  1.5470  1.0710  1.3553  

0.7  0.71 0.4986  1.8671 0.5211 1.8710  1.5051 1.8520  

1.0   0.5246  1.9876  0.5632  1.9940  1.5652  2.2505  

Table 3. Calculated numerical values of mass flux Q . 

 6.0, 7.0Gr Bi   8.0, 7.0Gr Bi   8.0, 7.0Gr Bi   

Ec  Pr  Q  Q  Q  

0.1   0.7685  0.7692  0.8235  

0.4   0.7812  0.7850  0.8857  

0.7  0.044  0.8150  0.8171 0.8891 

1.0   0.8301 0.8380  0.9521 

0.1   0.7445  0.7451 0.7425  

0.4   0.7581 0.7598  0.7901 

0.7  0.71 0.7805  0.7820  0.8873  

1.0   0.8133  0.8182  0.849  

Table 4. Calculated numerical values of mean temperature mQ . 

 6.0, 7.0Gr Bi   8.0, 7.0Gr Bi   8.0, 7.0Gr Bi   

Ec  Pr  m
Q  m

Q  mQ  

0.1   8.7552  8.7926  8.9572  

0.4   4.0361  4.0675  4.2531  

0.7  0.044  3.8501  3.9172  3.9721  

1.0   5.8424  5.9715  6.2140  

0.1   10.2706  11.6981 12.2531 

0.4   5.2961  6.3284  7.9602  

0.7  0.71 4.5072  5.7561  6.4821 

1.0   6.8721 7.8815  8.1236  
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Table 5. Comparison of calculated numerical values between the present problem and that of Muawiya and Tafida [12]. 

 Muawiya and Tafida [12] Present problem 

 6.0,Pr 0.71, 0.5Gr y    6.0,Pr 0.71, 130, 0.5Gr Bi y     

Ec Temperature Velocity Temperature Velocity 

0.1  0.4824  0.7761 0.4817  0.7703  

0.4  0.4607  0.7538  0.4601 0.7510  

0.7  0.4210  0.7210  0.4178  0.7193  

1.0  0.3986  0.6993  0.3952  0.6907  

 

Abbreviations 

g Acceleration to Due Gravity [ms-2] 

β Coefficient of Thermal Expansion [K-1} 

h Width of the Channel [m] 

μ Coefficient of Viscosity [Kgm-1s-1] 

T* Dimensional Fluid Temperature [K] 

ν Kinematic Viscosity [m2s-1] 

Tw Channel Wall Temperature [K] 

Pr Prandtl Number 

T0 Temperature of the Ambience [K] 

Gr Grashof Number 

T Dimensionless Fluid Temperature 

Ec Eckert Number 

u* Dimensional Velocity [ms-1] 

Bi Biot Number 

u Dimensionless Velocity 

cp Specific Heat at Constant Pressure [m2s-2K-1] 

U Dimensional Velocity of the Moving Plate [ms-1] 

ρ Density of the Fluid [Kgm-3] 

y* Coordinate Perpendicular to the Plate [m] 

α Thermal Diffusivity of the Fluid [Kgm-3] 

y Dimensionless Co-ordinate Perpendicular to the Plate 
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