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Abstract 

This article explores advancements in damage detection and structural diagnostics for steel bridges by proposing an integrated 

analysis method for failure patterns and structural feasibility validation. The approach incorporates the correlation between 

damage causes and vibrational data classified by intensity levels. Using a supervised machine learning framework, training 

datasets are developed by analyzing structural behavior identified through specific vibration characteristics, specifically 

examining the Warren Truss type. It explored a system that diagnosed failure sequences based on vibration-classified structures 

within the steel bridge frame. The system generated data on the feasibility conditions by analyzing the vibration characteristics of 

structural elements with varying levels of damage. This vibration classification could be used as a reference for structural 

maintenance and repair. Machine learning diagnosis involved investigating bridge collapses to identify the types of elements and 

their positions within the structure, with forecasts serving as the basis for interference detection. Identifying and classifying 

vibration patterns in bridge structures focuses on assessing their response to potential damage and dysfunctions to ensure their 

safety and long-term durability. This involves using vibration-based structural health monitoring (SHM) systems that detect 

anomalies or changes in the dynamic behavior of bridges. The primary objective is correlating specific vibration signatures with 

structural defects, such as fatigue cracks, material degradation, or connection failures. This assessment categorized structural 

degeneration into three levels: moderate (30%), urgent (50%), and severe/critical (≥70%). The findings of the assessment group 

informed the design of management strategies, technical maintenance plans, and overall structural performance improvements 

for Warren Truss Bridges. Factual values and ductility measurements were also considered. The study provided a more detailed 

summary of relevant research outcomes and the developmental stages of a recent vibration-based diagnostic system for future 

research. 
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1. Introduction 

The development of a system for diagnosing and monitor-

ing bridge integrity through vibration signals is intended to 

assess structural conditions for maintenance purposes and to 

prevent potential collapse. This study analyzed data from the 

sudden failure of several steel bridges due to various factors, 

aiming to derive valuable insights for enhancing future bridge 

designs. Given the unexpected collapse of numerous steel 

bridges, there is an urgent need for a non-destructive and 

practical diagnostic tool capable of accurately evaluating a 

bridge’s structural integrity to help prevent similar incidents. 

The diagnostic tool conducted a feasibility analysis by simu-

lating various rapid-collapse scenarios in steel bridges, as-

sessing element damage, and predicting the maximum strain 

on the compromised components. [1, 2]. 

Steel bridge collapses have occurred in various countries 

for multiple reasons, including more than 500 instances in the 

United States [3], 2,130 incidents of destruction in India [4], 

and several others across different nations. The data indicates 

that the most frequent causes of structural damage to bridges 

include crack propagation, fatigue, corrosion, design flaws, 

construction errors, natural disasters, collisions, and plastic 

buckling. Failure mode diagnoses due to bridge element de-

terioration commonly utilize vibration response analysis to 

assess the structural integrity. Figure 1 illustrates a collapsed 

bridge in Indonesia caused by element decay and overload. 

 
Figure 1. The steel bridge collapsed in Indonesia; (a) Kutai Kertanegara (2011), (b). Babad Widang, Lamongan (2018). (c). Parawang, Riau 

(2023); Aceh, (d). Pematang Panggang, Palembang (2019). 

The Kutai Kartanegara Bridge, a 710-meter steel structure, 

collapsed in 2011 due to construction errors, deficiencies in 

connections and clamps, as well as structural elements. Prior 

to its collapse, signs of deterioration such as cracks, corrosion, 

and damage to bridge components were observed. Similarly, 

the Babad Widang Bridge in Lamongan failed in 2018, pri-

marily due to overloading and structural weaknesses. The 

Parawang Bridge, measuring 382 meters in total length with 

three spans, collapsed in 2023 as a result of corrosion in 

support members, cracks in critical structural components 

(diagonals), and overloading. Likewise, the Panggang Bridge 

in Palembang experienced failure due to overloading and 

significant damage to vital structural elements, particularly 

the bottom chord. Similar incidents have occurred globally, 

where steel bridges failed due to structural deficiencies. These 

recurring issues highlight the need for a robust diagnostic 

system capable of evaluating damage feasibility and assigning 

damage ratings to steel bridges based on specific technical 

and design scenarios. Such a system would utilize vibration 

mode analysis to detect structural faults. 

The study identified distinct patterns of damage during 

structural collapses by meticulously analyzing data correlations, 

damage classifications, and their severity levels. Leveraging an 

advanced datasheet, Supervised Machine Learning (SML) 

models were trained to enable precise diagnostic assessments 

for bridge structures with comparable designs. These findings 

underscore the transformative potential of SML in structural 

health monitoring, particularly for Warren truss bridges sub-

jected to critical loading conditions. Emerging advancements in 

machine learning algorithms and sensor technologies present a 

unique opportunity to enhance diagnostic accuracy further. By 

integrating high-resolution sensor data, critical load simulations, 

and fatigue analysis, future research can develop more robust 

predictive models capable of detecting subtle signs of structural 

distress well before catastrophic failures occur. This approach 

will not only improve the precision of existing diagnostic 

techniques but also address complex interactions between load 

dynamics and structural vulnerabilities that are often over-
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looked. Such innovation is vital for ensuring the safety and 

longevity of critical infrastructure. 

2. Failure Modes and Patterns 

Diagnostics for Feasibility of Steel 

Warren Truss Bridge 

The Failure Modes and Patterns Diagnostics approach fo-

cuses on identifying and understanding the mechanisms behind 

system or component failures by analyzing detected failure 

patterns or modes. This process typically utilizes advanced data 

analysis methods, including vibration monitoring, spectrum 

analysis, and other inspection techniques, to identify early signs 

of potential failure and guide corrective actions. The data gen-

erated from vibration characteristics, aligned with the fatigue 

levels of structural elements, serves as reference data for ma-

chine learning models or statistical algorithms, enabling more 

precise predictions. In the context of steel bridges, each struc-

ture has a natural frequency at which it vibrates when subjected 

to external forces. By analyzing the vibration response, engi-

neers can assess how these forces affect the structural integrity 

of the bridge, identifying areas of high or low stress during 

vibration. If external vibrations coincide with the bridge’s nat-

ural frequency, resonance can occur, leading to amplified vi-

brations and accelerated deterioration. 

A bridge maintenance system that can accurately detect these 

critical conditions will enable rapid and precise diagnosis of 

potential failures. The implementation of real-time monitoring 

through vibration sensors integrated with the Internet of Things 

(IoT), the Global Positioning System (GPS), and the Global 

Navigation Satellite System (GNSS) has the potential to con-

tinuously provide real-time data. However, applying such 

technology across an entire bridge requires significant invest-

ment, as well as ongoing monitoring and maintenance efforts 

[5-8]. Additionally, failure due to phenomena such as plastic 

buckling in support points, beams, and diagonals further com-

plicates maintenance and requires precise diagnostic tools. [9, 

10]. Therefore, while real-time monitoring systems offer sub-

stantial benefits, they must be balanced against the costs and 

logistical challenges involved in their deployment.[11]. The 

diagnostic approach for failure pattern recognition using clas-

sified vibration signals, taking into account the degree of 

damage to the structural components of the Warren truss. 

The diagnostic approach for failure pattern recognition, using 

classified vibration signals. Data on the characteristics of various 

types of element damage are collected by introducing controlled 

artificial damage based on a measured volume. The damage 

criteria are derived from research and observations of failures, 

with several elements subjected to maximum strain, particularly 

near the support points, significantly influencing stress concen-

tration and crack propagation. [12, 13]. The characteristic data 

was used to develop a diagnostic system based on the typicality 

and similarity of damage, as described in studies [14-16]. For 

each type of steel bridge structure, under varying damage condi-

tions and severity levels, the SML diagnostic system requires 

failure mode data categorized by the type of element damage at 

different classification levels. To accurately draw conclusions 

from the SML system's training data, the analysis system needs 

reference data, consisting of numerical values or data related to 

vibration. Preliminary research utilized a laboratory-scale pro-

totype of a Warren truss bridge to investigate its dynamic re-

sponse, as illustrated in Figure 2. 

 

Figure 2. (a). Modeling and Datasheets (b). Validation, Fusion, and Algorithms (c) Supervised Machine Learning (SML), [16]. 
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2.1. The Failure of an Individual Component 

and Its Propagation 

The unintended collapse of steel Warren truss bridges has 

occurred in several countries, including the United States, 

China, Japan, and India, leading to numerous fatalities, sig-

nificant financial losses, and prolonged disruptions to access 

in affected areas [9, 20-25]. Real-time monitoring systems to 

observe bridge conditions by detecting positional and struc-

tural changes. Findings from these monitoring efforts suggest 

that the root cause of damage and collapse in steel bridges 

may often stem from the failure of a single component, which 

then propagates throughout the entire structure [26, 27]. 

Fatigue propagation in materials due to cyclic loading de-

velops over time. Continuous loading cycles can lead to the 

accumulation of damage within the material, ultimately re-

sulting in structural failure. At this stage, cracks will propagate 

over time, potentially leading to complete failure of the material. 

Key components such as transferal beams and stringers at 

mid-span, secondary elements located at diagonal positions in 

the upper chord, and variations in treatments for fatigue, cor-

rosion, and cracking have been highlighted in studies [28, 29]. 

Vibration response-based failure detection has been developed 

to identify damage levels caused by localized element failures, 

which could not be easily classified into the typical categories 

of mild, moderate, or severe/critical. The complexity in deter-

mining appropriate artificial treatments in the fatigue degrada-

tion simulation process arises from varying damage criteria, 

element positions, and the underlying causes. These treatments 

are applied to adjust the mechanical properties, such as the 

reduction in stiffness of elements during prototype testing, in 

order to provide an overview of the structural balance changes 

due to the applied loads. 

Based on recent advancements in vibration-based Structural 

Health Monitoring (SHM), vibration patterns in bridge struc-

tures are analyzed using advanced techniques to detect poten-

tial damage and validate both durability and safety. Structural 

defects, such as cracking or reductions in stiffness, are identi-

fied through SHM systems, providing critical insights. Addi-

tionally, this technology enables the integration of SHM data 

with Digital Twin frameworks, enhancing the management and 

monitoring of structural integrity in bridges, [30]. Anomaly 

detection algorithms are employed to observe variations in 

bridge vibration responses, often caused by material degrada-

tion or failure at connections. These methods enable early 

identification of structural changes through shifts in dynamic 

behavior [31]. The specific vibration signatures are associated 

with distinct damage types, improving the localization and 

severity assessment of structural issues, [32, 33]. 

2.2. Challenges of Steel Truss Bridge Failure 

Pattern Diagnostic Systems 

The condition monitoring of bridge structures, traditionally 

conducted through visual inspection of each structural ele-

ment, has progressively been replaced by vibration response 

monitoring. However, the implementation of this approach 

has not yet reached a level of precision and efficiency. Vi-

bration response-based diagnostic and monitoring systems 

have been developed to explore feasibility through more 

practical and cost-effective methodologies. Currently, a fea-

sibility analysis is being conducted through several phases, 

beginning with the visual inspection of the bridge condition, 

followed by an evaluation of the structural elements. Subse-

quently, modeling is performed using the Finite Element 

Method (FEM) with software such as Deform, ABAQUS, 

SAP2000, ANSYS, and others. This is then followed by a 

comprehensive analysis involving numerical, statistical, and 

experimental methods, [16, 17]. Vibration response moni-

toring has gradually replaced the visual inspection of indi-

vidual bridge elements for assessing the condition of bridge 

structures. The method developed involves vibration re-

sponse-based diagnostic and monitoring systems, aiming to 

enhance feasibility through more practical and cost-effective 

phases and methodologies. The feasibility analysis was con-

ducted through several stages, starting with visual observa-

tions of the bridge’s condition and inspections of the struc-

tural elements. 

The SML algorithm-based feasibility assessment system 

for bridge structures aims to generate data on element damage, 

identify damage locations, and evaluate the feasibility ratings 

of structural health of Warren truss steel bridges, limited to 

similar types of structures, requiring substantial numerical 

data and trends in vibration behavior that relate to various 

structural characteristics. The SML approach develops an 

analytical model through the use of a data sheet, a significant 

challenge system is the consistent acquisition of vibration 

trend data across multiple bridges. The development of the 

SML model involves the preparation of reference data based 

on measured vibrations obtained from various levels of 

damage with fatigue degradation on structural elements at 

critical locations identified through numerical analysis, in 

order to diagnose the damage level of the bridge. The analysis 

revealed four primary types of damage; fatigue that exceeded 

the maximum strain, corrosion of support elements, maxi-

mum tension in the diagonal rods, and plastic buckling. [18, 

19]. 

The technical preparation was significantly enhanced 

through a comprehensive evaluation of each variable, which 

contributed to the development of a more effective design 

methodology. This thorough analysis ensured that key factors 

were carefully considered, resulting in an optimized approach 

that aligns with best practices in the field. 

3. Literature Review 

Over the past decade, advancements in bridge damage de-

tection and monitoring have increasingly leveraged vibration 
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response-based systems. These systems aim to provide timely 

identification of structural issues, enhancing the safety and 

longevity of bridges. Despite significant progress, applying 

comprehensive damage rating systems remains a challenge. 

Current methodologies often lack the detailed descriptions 

necessary to establish practical criteria for assessing bridge 

damage severity. Specifically, the integration of vibration 

mode analysis to quantify stress components remains un-

derutilized, limiting the ability to identify early-stage damage 

or degradation patterns effectively. The SML has emerged as 

a promising tool for structural diagnostics. SML facilitates the 

identification of degradation-prone components whose failure 

may propagate through the structure. However, the effective 

application of SML in bridge damage detection relies heavily 

on high-quality training data. For steel bridge elements, data 

reflecting damage volumes must first be reconstructed into 

precise vibration response characteristics, ensuring that the 

SML model can discern subtle degradation trends. 

While research into SML-based diagnostic systems con-

tinues to expand, gaps remain in linking theoretical models 

with actual applications. Specifically, the practical challenges 

of reconstructing vibration response data and correlating it 

with structural stress and damage thresholds have not been 

comprehensively addressed. This research seeks to address 

these gaps by developing an approach to integrate recon-

structed vibration characteristics into SML frameworks, ena-

bling more accurate and efficient damage diagnostics for steel 

bridges. Such advancements are critical for ensuring rapid, 

data-driven decision-making in structural health monitoring 

systems. 

Table 1 presents the occurrence of local element failures 

under artificial treatment, referencing actual bridge structures 

to suggest potential improvements for monitoring systems 

and steel frame bridge design enhancements, particularly for 

Warren Truss structures. The progress in detecting failure 

modes based on vibration response is further elaborated in the 

Results Analysis and Recommendations section, as shown in 

Table 1. 

Table 1. Summarizes achievements in developing failure modes detection based on the vibration response of steel frame bridges. 

Author, 

(Year) 

Structure/ steel truss-type 

Methodology Results Analysis and Recommendations 

Truss Type 
Dimensions 

(PxLxT) (m) 

Sukamta, 

et. al, 

2022,[16]. 

Warren 

Truss and 

Modelling 

Reference 

bridge 

dimensions 

(53.0, 9.0, and 

5.0 m) with 

scale and ratio 

1:23. 

Laboratory scale Steel truss bridge 

modeling involves static and dynamic 

loads for responsiveness measurements, 

finite element (FE) modeling, and damping 

ratio measurements. 

Changes in vibration response were computed 

by comparing natural frequencies to 

experimental data, and the degree of divergence 

and reduction in damping were used as 

indicators of element deterioration within a 10% 

tolerance. The higher the amplitude, the more 

severe the damage. 

Giacomo 

Caredda et. 

al., 2005, 

[17] 

Railway/ 

Steel Truss 
21, 2.8, 2.3 

Simulating failure patterns on a computer 

by applying artificial treatments to predict 

the occurrence of element damage, espe-

cially at locations that trigger the propaga-

tion of structural damage, measuring 

bending moments, 3D simulations, artifi-

cial damage to the main structure (transfer 

beam, axis (z, x), the longitudinal beam of 

the middle bridge, and artificial treatment 

of the secondary structure (z, y) at its cen-

ter indicate and sides of the bridge with 

two elements. 

Maintenance was carried out based on the re-

sults of an analysis of expected damage to the 

most critical elements, which have the potential 

to accelerate damage propagation and degrade 

structural balance. The maximum bending force 

caused element breakage at the major structure's 

center point, necessitating a stronger top con-

nection. Bridge sections with damage to two or 

more components in the center have a higher 

connection bending moment; continuous parts 

are preferred over connection types on long 

spans. Damage to a particular component may 

cause collapse. 

B. Barros, 

et. al, 2023, 

[34] 

Pedestrian 

bridge with 

rivet con-

nection 

steel truss 

15.6, 5.8, 2.5 

Visual inspection, corrosion observation, 

laser scanning test, 3D model, vibration 

test, and FEM modeling will be carried out 

in three stages. (1). Identification, visual 

investigation, FE modeling, numerical 

approaches, and algorithms, (2). Measure-

ment of vibration response failure patterns 

(3). Prediction of elemental damage. 

The natural frequency measurement test data 

from five measurement sites (11,813 Hz) and the 

largest (31,813 Hz) show that pitting corrosion 

was the cause of failure, resulting in concen-

trated damage. Corrosion generates a sequence 

of breaks, propagating damage throughout the 

bridge structure. The algorithm's outputs reveal 

the presence of degraded and potentially harm-

ful substances (propagation). 
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Author, 

(Year) 

Structure/ steel truss-type 

Methodology Results Analysis and Recommendations 

Truss Type 
Dimensions 

(PxLxT) (m) 

Santiago 

Lopes, 

2023, [35] 

Truss, war-

ren, prat 

Span variation 

and collapsed 

proportion 

Investigating the causes of the Warren 

Bridge destruction. Pratt categorizes the 

causes of damage and collapse by deter-

mining the span and its largest percentage 

of truss warrens. 

The causes of damage and collapse were classi-

fied as 50% design and maintenance errors, 25% 

maintenance errors, 6% construction errors, 13% 

collisions, and 6% environmental and flood-

ing-related incidents. 

Jiajia Hao, 

et. al, 2022, 

[36] 

Warren 

Truss 
8.0, 0.6, 0.6 

Developing an algorithm (deep learning) 

uses a variety of approaches to identify 

damage from an architectural and structural 

perspective, as well as mathematical (nu-

merical) approaches and simulations that 

compare predicted data to actual data. Arti-

ficial damage scenarios comprise one, two, 

and three elements. 

The detection accuracy of an intentionally con-

trolled vibration experiment reached 99.6%, 

identifying a correlation between element deg-

radation and a decrease in elasticity. Calculating 

the precise location of damage using the number 

of conditioned elements was an excellent refer-

ence for developing algorithms. The central 

point was the most dispersed damage. 

Mohamad 

Ibrahim 

Zaed Am-

mar, et. al, 

2017, [37] 

Warren 

Truss 
77.0, 6.0, .6.0 

Simulation with ANSYS and SAP2000 

generates corrosion treatment and dynamic 

load variations on the structure, predicts 

the magnitude of the highest stress, partic-

ularly at the midpoint location, maximum 

strain, a 200 KN load was measured using 

an accelerometer at speeds ranging from 20 

to 40 km/h. 

The influence of dynamic loads and damping 

measurements on steel bridge constructions: the 

natural frequency measurement was 100 Hz, and 

the changes that occurred at the treatment loca-

tion were less than 100 Hz. The vibration re-

sponse on pitting corrosion elements differed 

between the bottom and diagonal elements. 

Marianna 

Crognale, 

et. al, 2021, 

[38] 

Railway, 

Truss/Pratt 

rivet 

The bridge's 

total length 

measured 170 

meters, split 

into two 

42.2-meter 

spans with 

sides measur-

ing 21.48 and 

21.12 meters. 

Focuses on fatigue and corrosion, identify-

ing critical points and elements, artificial 

treatment in the form of fatigue, corrosion, 

and cracks on structural elements on the 

bottom and diagonal sides, modeling with 

SAP 2000, treatment by reducing element 

cross-sections, deflection testing, and de-

creased element stiffness. 

The SAP2000 assessment of the appearance of 

element vibration response tendencies by moni-

toring changes in deflection values and decreas-

ing structural stiffness indicates that damage 

occurs when the deflection exceeds 0.3 and the 

main rod stiffness diminishes. Corrosion and 

fissures in component joints also had signifi-

cance. 

Andro 

Bunce, et. 

al, 2024, 

[39] 

Warren 

Truss, (foot 

bridge/ 

highway 

The spans 

measure 34 and 

36 meters long, 

2.5 meters 

wide, and 2.5 

meters height. 

The monitoring and diagnostic system was 

developed by generating vibration response 

datasheets for two actual Warren truss steel 

bridges from the same period. The re-

sponse data would be employed for train-

ing the Failure Pattern Diagnostic Model 

SML. Testing of concrete bridges was also 

conducted. 

The vibration response data from two steel 

bridges revealed a data similarity of 93–96%, 

comparable vibration patterns, and the same 

structure, suggesting that the data could poten-

tially be used as a Datasheet to train a diagnostic 

system model on other bridges of the same con-

struct. The vibration response values for steel 

and concrete bridges differ considerably. 

Patricia 

Vanova, et. 

al, 2022, 

[40] 

Warren 

Truss 

Warren Truss 

Bridge Proto-

type Model 

(2.0, 0.5, 0.5 

m) 

artificial damage scenarios in the form of 

deep fatigue cracks with variations in 

damage to several bridge elements, FEM, 

ABAQUS simulations, and differences in 

mass and stiffness will reduce the frequen-

cy, identifying element characterization 

and structure. 

The materials and models used were adjusted to 

approximate the condition of the steel truss 

Warren bridge, enhanced using numerical equa-

tions and measurements compared to the intact 

condition, and the level of damage that affected 

the stiffness. The dynamic response complying, 

response differences were observed for crack or 

damage depths exceeding 30%. 

Sudath C. 

Siriward-

ane, et. al, 

2015, [41] 

Truss 

Bridge/ 

railway 

Span 160 m, 

railway 

The study was divided into three phases: 

comprehensive bridge construction, visual 

observation, material testing with load 

variations, element modeling, FE, and 

SAP2000, and measuring element vibra-

According to Finite Element (FE) analysis data, 

at the damage location, each element measured 

an average natural frequency of 4.72–9.1 Hz, 

and when compared to the vibrations measured 

at the damaged element's location, the damage 
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Author, 

(Year) 

Structure/ steel truss-type 

Methodology Results Analysis and Recommendations 

Truss Type 
Dimensions 

(PxLxT) (m) 

tions while compensating for bridge dam-

age. 

location was determined to be 10 to 16 meters to 

the left of the reference. 

T. susanto, 

et. al, 2014, 

[42] 

Truss 

Bridge/ 

railway 

bridge/ 

steel 

Span 30 m 

Creating a replica of the Porong Bridge 

railway bridge in East Java, Indonesia, 

simplifies the acquisition of vibration re-

sponses. Modeling with CSI Bridge v15, 

and investigating the vibration response 

characteristics of damage parameters that 

comply with a ten percent decrease in ele-

ment cross-section. 

The ensuing vibration response data may indi-

cate oscillations indicating a loss in stiffness and 

relative appropriateness. To identify the precise 

location of essential elements. The element ad-

jacent to the center location has the greatest 

probable potential of causing damage. 

Azim, et. 

al, 2021, 

[43] 

Truss 

Bridge/ 

railway 

bridge/ 

steel 

32.92, 5.32, 

5.32 

FEM simulations, numerical analysis, and 

variable loading were used to assess vibra-

tion responses on elements under normal 

conditions, and when fake damage was 

applied, response variations were associat-

ed with damage severity. Artificial treat-

ment with a factor that decreases the elas-

ticity value of elements that have suffered 

30–60% artificial damage. 

The damage treatment reduces the stiffness val-

ue in the vertical rod by the same amount as the 

decrease in elasticity; in the adjacent diagonal 

plane, the changing elasticity is 50%. Mod-

el-based analysis indicates deterioration by 

comparing vibration response and stiffness vari-

ations, particularly on components that indicate 

significant corrosion and fractures. 

Thiri Phy-

oe, et. al, 

2014, [44] 

Warren 

Truss 

bridge/ 

highway 

36.57, 2.7.3, 

9.1 

The variables examined include alterations 

to truck loads on the highway and train 

loads on the railway; the assessment of the 

dynamic response of various bridge sec-

tions; and assessing the amount of deflec-

tion. Damping ratio (1–5%). 

Vibrations in each element were dynamically 

evaluated based on the volume of ratifying cars; 

the bridge's middle encountered the most deflec-

tion; the damping ratio was inversely propor-

tional to the acceleration response 

Mehrisadat 

Makki 

Alamdari, 

Et. al, 

2017, [45] 

Truss 

Bridge 
Span 1.200 

Data acquisition interprets the vibration 

response by modeling a 1200-meter-long 

steel bridge, observing 800 arch supports 

(jacks), and accounting for transportation 

frequency. Structure degradation. 

The consequences of observations on long-span 

bridges by applying structural damage, the 

changes in normal and distorted signals were 

identified and utilized to predict structural deg-

radation and bridge viability. 

Alireza 

Entezami, 

et. al, 2017, 

[46] 

Steel 

Structure 

Steel frame 

structure on a 

laboratory 

scale 

Analyzing the bridge's feasibility despite 

considering the elements in sensitive loca-

tions, predicting the remaining element 

service using the auto-regressive (AR) 

technique, and formulating the vibration 

response using SML with stated re-

strictions. includes consequences of envi-

ronment. 

Damage to steel structures was effectively rec-

ognized and located; the intensity of the envi-

ronmental influence and potentially the quanti-

tative number of damaged elements were col-

lected and utilized to calculate the remaining 

expected lifespan of materials and structures. 

Seyed Sa-

man 

Khedmat-

gozar Dola-

ti, 2021, 

[47] 

Steel 

Bridge 

Steel bridge 

with structure 

variations. 

Discusses the numerous applications of 

non-destructive testing (NDT) approaches, 

such as the viability of steel bridge struc-

tures, vibration response, and the use of 

drones and cameras to identify damage. 

Visual inspection of elements for corro-

sion, delamination, cracks, reduction in 

cross-section, foremost surface area. 

The entirety of the NDT method provides a 

technique for detecting damage generated by 

cracks, propagation, and interior cracks utilizing 

eddy currents. Ultrasonic testing (UT) generates 

complete data on damage, particularly in the 

surface area, assesses the extent of corrosion, 

and produces a different response on damaged 

structures than on normal structures. 

Lorenzo 

Bernardini, 

et. al, 2021, 

[48] 

Warren 

Truss 
21.42, 4.5, 3.71 

Using 3D FE simulation, on a Warren truss 

model bridge to cause fictitious damage to 

the lower elements, such as cross girders 

and diagonal sides. Measuring with two 

dynamic responses: continuous wavelet 

(CWT) and Huang-Hilbert. 

Detection of vibration response patterns to iden-

tify defective elements with the potential to 

propagate cracks and collapse under the influ-

ence of high loads. Corrosion lowers 

load-bearing capability, especially at the bottom 

diagonal element connections. Damage to ele-
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Author, 

(Year) 

Structure/ steel truss-type 

Methodology Results Analysis and Recommendations 

Truss Type 
Dimensions 

(PxLxT) (m) 

ments subjected to significant loads will affect 

the entirety of the structure. 

Tran, M. Q, 

et. al, 2023, 

[49] 

warren 

truss 

1.230, 20.06, 

11.0 (m) di-

vided into 7 

span structures 

Damage to steel bridge structures was in-

vestigated using artificial intelligence (AI). 

FEM modeling, determining the damping 

ratio's influence and comparing it to the 

natural frequency of each bridge span 

model. Artificial damage ranges from 40 to 

50 percent. 

Generates FEM data, numerical vibration re-

sponse with simulated damage treatment on 

elements (40–50%), and element characteristics. 

Damage might be acknowledged in the dynamic 

response due to the reduced stiffness of the ma-

jor components. 

Samim 

Mustofa, et. 

al, 2018, 

[50] 

warren 

truss 

70.77, 6.0, 6.0 

(m) 

The element damping ratio will be used to 

determine the presence of strain, followed 

by FE modeling and changes in damping 

values to identify element damage. Diago-

nal components have a significant impact 

on structural performance. 

Element damping data was collected, particu-

larly at the diagonal element structural position; 

local damage data revealed changes in element 

stiffness, which were supported by modeling 

and energy calculations; and response patterns 

were used to track local damage by implement-

ing a variety of parameters. 

Wang S., et, 

al, 2023, 

[51] 

Suspension 

bridge/ 

railway 

1.120, 16.0 

The influence of train air speed on struc-

tures on long-span bridges was explored 

using FEM modeling and parameters 

ranging from modest to fast train speeds. 

High train speeds, combined with maximum 

load weight, have an extensive effect on the 

vibrational responses of bridge structures. The 

impact of the train's wind speed exceeds its 

weight, as evidenced by vibration response data 

along the diagonal structural elements. 

O. Bouzas, 

et. al, 2022, 

[52] 

Steel 

Bridge/trus

s 

48.1, 6.5, 7.5 

Inspection of NDT testing, aspects, geome-

try, and materials holistically, FE, reliabil-

ity assessment, visual inspection, laser 

scanning, ultrasonic, vibration tests, and 

numerical analysis. 

Completely defined element characteristics, 

plastic behavior of materials, approach to max-

imum service limits, calibration error 2.04%, 

reliability prediction by applying NDT, and 

maximum structural lifesaving capabilities were 

discovered. 

Ali M, et. 

al., 2018, 

[53] 

Warren 

Truss 

Modeling (5.5, 

0.65, 0.65) 

refers to 

AS/NZS1163: 

2009 

The bridge monitoring system, which fea-

tured Warren truss steel frame modeling, 

was subjected to a hammer test with meas-

ured intensity to simulate damage to ele-

ments at precise points corresponding to 

the maximum load. FE models and statis-

tical analysis. 

Damage treatment was conducted by reducing 

the strength of the connection with different 

variations and the number of elements, and sta-

tistical analyses indicate the condition and loca-

tion of damage; to comprehend the Warren Truss 

Bridge's complex structure. 

 

 

According to Table 1, the data classified by the method-

ology generally aligns with each other. In terms of phases, 

similar methods were employed, with sampling used to define 

a series of datasheets based on vibration responses aimed at 

identifying the most severe damage. Datasheets were devel-

oped for SML-based analysis algorithms by identifying 

damage in locations with potential structural significance. 

3.1. Development of Datasheet for Diagnostics of 

Warren Truss 

The datasheet was compiled and an assessment of the via-

bility of bridges with similar structures was conducted using 

data collected from observations of collapse and damage to 

bridge elements. The data collection process required exten-

sive time to generate training datasets for the SML model. 

Visual evidence, specifically of damage to structural com-

ponents on each bridge under investigation, was necessary to 

identify the area most prone to further damage propagation. 

Bridges were inspected visually using a digital camera 

mounted on a drone, particularly for high structures, those 

located in steep terrain, and those spanning major rivers. 

Direct visual inspection posed significant risks to inspectors, 

often requiring complex safety protocols. Therefore, drones 

were employed for aerial inspections, and underwater drones 

were utilized for seat inspections to gather more comprehen-
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sive data. Visual data obtained from digital cameras at re-

ported damage sites were compared with observational data 

collected from previously inspected bridges, [40, 54]. The 

vibration behavior was assessed through sensor measure-

ments and data acquisition, allowing for the estimation of the 

similarity proportion in both condition and feasibility, [55]. 

A bridge monitoring and diagnostic system is being devel-

oped by utilizing SML. Measurements from bridges with 

analogous structures are leveraged to build a comparative da-

taset. Data collected from instances of structural failure and 

deterioration are analyzed to create a comprehensive dataset, 

aiding in the assessment of the structural integrity of other 

bridges with similar designs. Visual documentation, high-

lighting damage to particular sections of each examined bridge, 

is utilized to pinpoint areas most susceptible to damage prop-

agation. Elevated bridge structures, steep terrains, and large 

rivers present challenges for direct visual inspection, which 

may pose risks to personnel and necessitate complex safety 

protocols. As a result, drones equipped with digital cameras are 

deployed for aerial inspections, while underwater drones are 

utilized for underwater section examinations, enabling the 

collection of more comprehensive data. Visual data captured by 

digital cameras at identified damage locations are then com-

pared with observational data from previously studied bridges 

to enhance the analysis of structural integrity, [56, 57]. The 

initial frequency may be compared to the frequency of dam-

aged components in the previous bridge. Vibration behavior 

was measured using sensors, and data was collected to estimate 

the similarity in conditions and assess feasibility, [58]. 

3.1.1. Classification Rating of Bridge Condition 

Research and failure evaluations will examine the damage 

level factors with degradation of 30%, 50%, and 70%, along with 

the treatment of prototype material elements. A reduction in 

stiffness or elasticity could significantly influence the extent of 

damage resulting from artificial deterioration. [43-45, 49]. The 

Percentage may be utilized as a parameter to represent different 

types of damage, including cracks, fatigue, or corrosion, which 

could potentially weaken structural elements and propagate 

further. The approach to classifying bridge conditions and es-

tablishing damage criteria varies across countries. Damage rat-

ings are typically determined according to standards set by the 

relevant government authorities or technical ministries, [59]. 

The assessment and maintenance guidelines for steel bridges 

assign ratings to bridge structures based on specific conditions. 

These ratings are frequently referenced in SML analysis to 

generate criteria data corresponding to each rating level. 

Table 2 provides a summary of the grading standards for 

the suitability and damage conditions of steel bridges across 

several countries, detailing the criteria used to evaluate their 

condition and suitability for continued service. 

Table 2. Classification Rating of Bridge Condition criteria in several countries, [Summarize by The Author]. 

Countries Bridge Condition Criteria Level Range Rating 

Indonesia 0-5 bridge condition group 5 

Amerika (U.S) 0-9 Eligibility condition cluster 10 

Korea A-E Eligibility Condition Group 5 

China CS 1- CS 5 Rating condition/Status 5 

Jepang A,B,C,E1,E2,M,S Ratings 6 

Germany 1= Very Good, 2 = Good, 3 = Satisfactory, 4= Poor, 5 = Very Poor  5 

Malaysia 0-5 Rating condition/Status 5 

UK 1-5 Damage Severity Condition, A to E, Increased level/rating 5 

 

Table 2 provides an assessment of the bridge's condition 

based on the level of elemental damage. The primary com-

ponents of concern include pillars, which, when experiencing 

up to 30% damage, may begin to lose their ability to support 

vertical loads. Damage to cross beams can result in uneven 

load distribution, while damage to the deck, particularly in the 

range of 30%-50%, may affect the dynamic response of the 

bridge under moving loads. Instability, in this context, refers 

to phenomena such as excessive deformation, where damaged 

bridge components may exhibit permanent deformations, 

such as tilted pillars or sagging decks. Load redistribution 

caused by damage can lead to certain components bearing 

loads far exceeding their capacity, ultimately triggering sys-

temic failure. Additionally, dynamic response alterations due 

to damage can modify the natural frequency of the bridge, 

potentially resulting in resonance and excessive vibrations 

when subjected to dynamic loads. At the moderate level 

(30%), elemental damage remains tolerable but begins to 

show signs of reduced structural capacity. Intensive moni-

toring is required to prevent further progression. At the urgent 
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level (50%), load redistribution becomes significant, with 

remaining components bearing increased loads, accelerating 

the rate of damage and posing a risk of localized failure. At 

the severe/critical level (≥70%), damage at this stage indicates 

a loss of primary functionality in the affected elements, po-

tentially leading to progressive collapse if not addressed 

promptly. The grouping of ratings by percentage of element 

damage is preferred for FE analysis, as well as for references 

to numerical and artificial damage treatments. 

The percentages associated with various structural ele-

ments were analyzed to assess the extent of damage caused by 

external phenomena such as fatigue, buckling, and corrosion, 

by measuring the affected areas [60]. Corrosion detection 

devices, which display different colors based on the condition 

of the corroded regions, were utilized for this purpose [61]. 

The SML datasheets specify damage to individual elements 

exhibiting critical conditions due to corrosion, with beam 

connections susceptible to collapse, and dynamic response 

patterns with defined characteristics [48, 62]. Vibration data 

collected from installed sensors, along with mechanical 

property testing, Scanning Electron Microscopy (SEM), and 

X-Ray Fluorescence (XRF) analysis, were employed to cor-

relate material characteristics with vibration responses and to 

calculate material fatigue in cracked or damaged components. 

3.1.2. The Material's Fatigue Level 

The fatigue level of a material refers to its progressive 

structural degradation under cyclic loading, leading to stiff-

ness reduction and potential failure over time. This phenom-

enon is characterized by microcrack initiation, propagation, 

and eventual fracture, significantly affecting the material’s 

load-bearing capacity. Understanding fatigue behavior is 

crucial for assessing structural integrity, predicting service 

life, and implementing effective maintenance strategies in 

engineering applications. The fatigue ∆K, was determined 

using Equation (1), [63]. 

∆𝐾 =  
∆𝑃 (2+ 𝛼)

√𝑊 (1−𝛼)3/2𝐵
 (0,886 + 4,64 𝛼2 + 14,72 𝛼2)  (1) 

Annotations; 

ΔK: The change in stress intensity factor used to measure 

the stress level around the crack tip (MPa√m), caused by the 

cyclic load/applied cyclic load on the specimen ΔP (Newtons); 

α: The ratio between the effective crack length (a) and the 

specimen width (W); B: Thickness of the specimen material 

(mm). W: Width of the specimen (mm); a: Crack length (mm).; 

1−α: a geometry-based correction factor that represents the 

remaining width of the specimen after subtracting the crack 

length; Coefficients in the function (0.886, 4.64, -14.72). 

Empirical correction factors to account for the influence of 

the specimen geometry on the stress distribution at the crack 

tip. The ratio a/W (the crack length to specimen width), cal-

culated using a polynomial equation based on the value of ux, 

which is related to experimental parameters such as load or 

material conditions. This function implies a complex and 

non-linear relationship between these variables. If ux is a 

parameter influenced by test conditions, then by knowing the 

value of ux. the ratio a/W, determined value (a) computed 

using equation (2) corresponds to the following equation: 

𝑎

𝑊
= 1,0010 − 4,6695 𝑢𝑥 +  18,46𝑢𝑥

2 − 236,82 𝑢𝑥
3 +

1214,9 𝑢𝑥
4 − 2143,6 𝑢𝑥

5           (2) 

The formula above calculates the ratio between the crack 

length (a) and the specimen width (W), which is used to assess 

the relative size of the crack in relation to the specimen di-

mensions. ux is a parameter associated with the specimen's 

behavior or experimental conditions (equations 3). The con-

stant coefficients (1.0010, −4.6695, 18.46, −236.82, 1214.9, 

−2143.6) represent the contribution of each term in the pol-

ynomial to the final value of the ratio (a/W) for a given ux. 

The first coefficient (1.00101): Serves as the base constant, 

representing the value of the ratio when ux=0, The second 

coefficient (−4.6695), Represents the first-order effect of ux 

on the ratio (a/W). Subsequent coefficients (18.46, −236.82, 

1214.9, −2143.6) Represent the sequential contributions of 

ux
2
, ux

3
, ux

4
, and ux

5
 to changes in the ratio (a/W). The terms 

(n=1, 2, 3, 4, 5) indicate higher-order contributions to account 

for the non-linear relationship between ux and the ratio (a/Wa). 

The UX value calculated by equation (3). 

𝑢𝑥 = ([
𝐸𝑉𝑔𝐵

𝑃
]

1

2
+ 1)−1               (3) 

Annotations; Ux; The parameter derived from the test 

conditions, often used to normalize or scale the geometric or 

material properties in relation to the applied load. E: Modulus 

of elasticity (Young's modulus) of the material, representing 

the material's stiffness, Pa (Pascals) or GPa (Gigapascals). Vg: 

Geometric factor or a parameter associated with the geometry 

of the specimen, typically dimensionless. B: Thickness of the 

specimen material, (m (meters) or mm (millimeters). P: Ap-

plied load during the experiment. N (Newtons) or kN (ki-

lonewtons). By assessing changes in steel ductility, the re-

maining deformation capacity of components and the struc-

ture can be predicted before a potential failure occurs. These 

measurements allow for a precise estimation of the maximum 

deformation that can be sustained prior to structural collapse. 

The following equation is utilized to evaluate ductility (μ): 

𝜇 =
𝛿𝑢

𝛿𝑦
                      (4) 

The ductility ratio (𝜇) is calculated as the ratio of the ulti-

mate displacement (𝛿𝑢) to the yield displacement (𝛿). It pro-

vides a quantitative measure of the material's or structure's 

capacity to deform plastically before failure. Ductility refers 

to a structure's ability to absorb energy before collapsing [64]. 

Stages of developing SML diagnostics, according to analysis 

capabilities shown in figure 3. 
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Figure 3. Stages of developing SML machine learning diagnostics, according to analysis capabilities; (1). Observation data, sensor modeling, 

and data acquisition, (2). Validation, Fusion & algorithms, (3) validation, prediction of remaining service. [The author]. 

Figure 3 illustrates the staged approach based on the di-

agnostic system's analytical capabilities, enabling classifica-

tion, structural analysis, and evaluation. The system's capacity 

to analyze the structure, contingent on the extent of element 

damage, demonstrates the analytical potential of machine 

learning. The analysis was categorized into five diagnostic 

levels. Level I (damage detection) serve as the foundational 

level in the SHM/machine learning diagnostic framework. 

The continuous updating of SHM data facilitates the recog-

nition of abnormal events, thus providing a more accurate 

temporal assessment. Level II (damage localization) identifies 

damage and determines its location within the structure. Level 

III (damage classification) allows the system to categorize the 

type, cause, and severity of damage based on the system's 

algorithm. Level IV (damage quantification) evaluates the 

extent of damage by determining the percentage of degrada-

tion. Level V (damage prognosis) evaluates the residual ser-

vice life, assigns a damage classification, and determines the 

overall adequacy of the structure for ongoing operation. 

3.2. Modeling of Fatigue Degradation in Warren 

Truss Bridge Elements 

Modeling of Warren Truss bridge elements with fatigue 

treatments (30%, 50%, and 70%) to identify the impact of 

degradation on structural conditions. The simulation data will 

be used as a reference for determining the bridge's condition 

rating. The model refers to the dimensions of 56 meters in 

length, 7 meters in width, and 5 meters in height. Modelling 

and ANSYS Analysis shown figure 4. 

Table 3. Dimensional Data of the Warren Truss Bridge at Sendang Mulyo, Semarang, Central Java. 

Length (m) Width (m) Height (m) Sidewalk (m) Class 

55,30 7,0 5,0 1,0 C 
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Figure 4. Depicted a model of the Sendang Mulyo Bridge in Semarang, Indonesia. 

The geometry of the Warren Truss Bridge was modeled in 

ANSYS using the FEM. Each element, such as truss members, 

joints, and connecting elements, was accurately represented to 

capture the bridge’s vibration response and load distribution. 

The material (S355) Steel used underwent stiffness degrada-

tion to simulate the effects of fatigue. The stiffness reduction 

was applied at 30%, 50%, and 70% levels to model the 

damage caused by fatigue. The static and dynamic load was 

applied, with vehicle loads based on standard truck weights, 

equivalent to 320 kN, to observe the bridge's response under 

normal conditions and during fatigue-induced degradation. 

The ANSYS simulation was conducted to validate the 

damage rating of the bridge, serving as a reference for clus-

tering in machine learning. The bridge model underwent 

fatigue degradation by gradually reducing material stiffness to 

compute the stress distribution and deformation based on the 

stiffness reduction, to predict the behavior of the bridge under 

static loading. The material properties presented in Table 4 

pertain to ASTM A572 Grade 55. The variations in stiffness 

degradation levels shown in Table 5. 

Table 4. Material Classification S355/ASTMA572 Grade55. 

Parameters Mechanical Properties 

Density 7.8 g/cm3 

Parameters Mechanical Properties 

Modulus Young (Gpa) 200 GPa 

Poission’sRatio 0,3 

Bulk Modulus 166 GPa 

Shear Modulus 76.9 GPa 

Tensile Yield Strength 430 

Tensile Ultimate Strength 550 

 

Table 5. Parameters and Level of stiffness degradation levels. 

Parameters 
No 

Fatik 
30% 50% 70% 

Modulus Young (Gpa) 200 140 100 60 

Poission’s Ratio 0,3 0,3 0,3 0,3 

Tensile Yield Strength (Mpa) 430 301 215 129 

Compressive Yield Strength (Mpa) 430 301 215 129 

Tensile Ultimate Strength (Mpa) 550 385 275 165 

The fatigue treatment on the elements is simulated by defining 
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several elements with bold lines, as illustrated in Figure 5. 

 
(a). The elements marked with bold lines are subjected to 30% fatigue treatment.  

 
(b). The elements marked with bold lines are subjected to 50% fatigue treatment. 

 
(c). The elements marked with bold lines are subjected to 70% fatigue treatment. 

Figure 5. The treatment of fatigue on elements under varying static loads induced by vehicles. 

 
Figure 6. Reference truck load for static vehicle load analysis. 

The steel bridge design, permissible deflection limits are 

often set to control excessive deformation that could com-

promise structural integrity and serviceability. According to 

standard guidelines, such as those outlined by the American 

Association of State Highway and Transportation The static 

load, corresponding to Truck HL 93 as specified in AASHTO 

LRFD, shown in Figure 6. 

4. Results 

The permissible deflection for steel bridges subjected to 

live loads is typically limited to L/800. This limit is estab-

lished to prevent uncomfortable vibrations and excessive 

bending, which could lead to long-term damage to the struc-

ture. The bridge model referenced in Figure 5, with a span 

length of 56 meters (L), a width of 7 meters, and a height of 5 

meters, has an allowable deflection of approximately 70 mm 

when subjected to live loads (calculated as 56,000 mm/800). 

This deflection limit is widely recognized within the engi-

neering field as a standard measure to ensure the structural 

integrity and durability of steel bridges under various static 

and dynamic load conditions. This standard plays a critical 

role in maintaining the safety and serviceability of such 

structures [65]. Shown in Figure 7. 
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(a). Static Load (1 unit of truck /320 kN) 

 

(b). Static Load (2 unit of truck /640 kN) 

 

(c). Static Load (4 unit of truck /1280 kN) 

Figure 7. The static load distribution of a truck, with variations in the number of units, (1 unit, 2 units, and 4 units) and their positions (in-

dicated by red markers). 
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The analysis focuses on a 56-meter long, 7-meter wide, and 5-meter (high) of Warren Truss bridge model, using ANSYS simulation 

to assess deflection behavior under loading conditions and material degradation. The study incorporates findings from literature and 

compares the simulated deflection results with standard deflection limits for steel Warren Truss bridges to evaluate the bridge's condi-

tion, potential criticality, and maintenance at 70% degradation, the deflection is recorded at 2.3168 mm. shown in Figure 8. 

 
(a). The deflection behavior of elements deteriorated by 70% within a bridge subjected to the load of a single HL-93 truck. 

 
(b). The deflection state of elements experiencing 70% degradation in a bridge subjected to the loading of two HL-93 trucks. 
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 (c). The deflection state of components subjected to 70% fatigue degradation in a bridge loaded with four HL-93 trucks 

Figure 8. The deflection under static load, condition of elements degraded by 70%. 

Under moderate loading conditions, the number of deflec-

tions indicates that even degraded components retain some 

degree of structural resilience. Figure 8 (b) shows that under 

the load of two HL-93 trucks (each with a nominal weight of 

320 kN), the deflection increases to 3.7945 mm, indicating a 

higher stress concentration, particularly in areas with prior 

fatigue damage. Figure 8 (c) demonstrates that under the load 

of four HL-93 trucks (total load = 1280 kN), the maximum 

deflection reaches 19.081 mm. This value significantly ex-

ceeds the deflection observed under lower load scenarios, 

reinforcing the trend that fatigue degradation intensifies with 

increasing load, consistent with findings from other studies on 

midspan deflection under truck loading. The results of AN-

SYS simulations under dynamic loading, with primary ele-

ments degraded due to fatigue as shown in Figure 5(c), reveal 

a significant reduction in material stiffness, which directly 

affects the structure's natural frequency. Higher levels of 

degradation result in more severe material damage, rendering 

the structure incapable of vibrating at higher frequencies as 

observed in its original state. The alteration of natural fre-

quency due to 70% degradation in structural elements is pre-

sented in Figure 9. 
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Figure 9. ANSYS Simulation Results: Natural Frequency Variation Due to 70% Element Degradation. 

 
(a) 

 
(b) 
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(c) 

Figure 10. Frequency and Amplitude for: (a) Load from a single truck (320 kN), (b) Load from two trucks (640 kN), and (c) Dynamic load 

under (2.560 kN), and critical deflection of 62.457 mm. 

Figure 9 demonstrates that a lower natural frequency indi-

cates the structure is approaching its failure threshold. This 

implies that as fatigue degradation progresses, the structure 

becomes increasingly susceptible to resonant vibrations, 

which can accelerate structural failure. Dynamic load effects 

under critical conditions are illustrated in Figure 10. 

Based on Figure 10, the structure was subjected to a single 

truck load (320 kN), revealing that frequencies of 2.00 Hz and 

4.00 Hz generated relatively high acceleration amplitudes. 

Low frequencies contributed significantly to the structural 

response. In Figure 10.b, it is confirmed that the peak accel-

eration occurred at a frequency of 20.00 Hz with an amplitude 

of 7.26 m/s
2
. This condition indicates that with the presence of 

two trucks, vibrations at higher frequencies have a more sub-

stantial impact, with dominant vibrations occurring at fre-

quencies above 20 Hz. The additional load from the second 

truck increased the bridge's sensitivity to high-frequency 

vibrations. Low frequencies (1.50 Hz, 3.50 Hz, and 4.00 Hz) 

also exhibited notable amplitudes but were comparatively 

lower than those observed at higher frequencies. Maximum 

deformation, as shown in Figure 10.c, resulted from a dy-

namic load of 2,560 kN causing a deflection of 62.457 mm. 

This value approaches the critical threshold, with the peak 

deformation located at the mid of the bridge span. 

5. Discussion 

The deflection is consistently observed at the midpoint of 

the bridge, which is in line with numerous studies that indicate 

the midpoint of Warren Truss bridges as a critical region for 

deflection accumulation, [43-45, 49]. This is due to the 

symmetrical distribution of load and the inherent flexural 

behavior of trusses increases deflection under heavier loads. 

The critical load leading to potential failure, an extrapolation 

from the current deflection data suggests that an additional 

increase in load beyond the current 1280 kN (4 HL 93 trucks) 

would push the bridge toward its deflection limits. Based on 

the observed progression of deflection, a load of approxi-

mately 2.560 kN could result in deflections approaching the 

70 mm limit, thus entering the critical phase for the bridge's 

structural integrity. The deflection data showing signs of 

fatigue degradation, remains structurally capable under sig-

nificant loads. The bridge's midpoint, is crucial for early de-

tection of potential failure points. Predictive maintenance 

strategies should focus on the elements most susceptible to 

fatigue degradation, ensuring the bridge operates safely 

within standard deflection limits. 

5.1. Scenario of Critical Element Damage 

Static loads, such as heavy trucks or equipment positioned 

on the bridge for extended periods, would induce continuous 

stress. Based on current data, the load of 4 HL 93 trucks (1280 

kN) produced a maximum deflection of 19.081 mm. To reach 

70 mm, an extrapolated static load of approximately (2560 kN) 

may be necessary. This load could represent a rare scenario, 

such as a construction overload or accidental overloading, but 

it would be worth simulating in ANSYS to observe the 

bridge's performance under extreme static conditions. Future 

research stemming from this review will aim to evaluate the 

excessive stress redistribution that can occur due to resonance, 

potentially amplifying the dynamic stress experienced by the 

main elements of a bridge model. Preliminary data from 

ANSYS simulations under dynamic loading show that ele-

ments with 70% material fatigue experience a maximum 

deflection of 62.457 mm, which approaches the design limit. 

Dynamic loads, such as wind-induced vibrations, seismic 

activity, or moving vehicle traffic, have a more severe impact 

due to their fluctuating nature. 
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Considering resonance and fatigue from ANSYS simula-

tion data under static and dynamic loading, it is observed that 

a deflection of approximately 70 mm is generated at a load of 

around 2560 kN due to oscillations and stress concentrations, 

particularly when accounting for fatigue degradation at 70%. 

The application of 30%, 50%, and 70% levels represents an 

interpretation based on a factor-driven approach and levels to 

be tested in prototype and actual experiments on a bridge 

model. The resulting data, in the form of vibration patterns for 

each level, will serve as training data for SML. 

Dynamic stress resulting from resonance may lead to un-

controlled stress redistribution, increasing the risk of stress 

concentration in specific areas such as welded joints or di-

agonal elements. This phenomenon facilitates the under-

standing of crack propagation due to material fatigue, espe-

cially when the material has undergone significant degrada-

tion. Excessive deflection and stiffness reduction can be 

identified by evaluating deflection magnitudes at each deg-

radation level. These analyses are crucial for determining the 

extent of structural stiffness loss during resonance, which 

could reveal vibration patterns with high amplitudes that may 

cause permanent deformation in structural elements. 

The various causes and types of damage, along with their 

impacts on structural stability, were assessed to obtain sup-

porting data for the SML system, which was developed as a 

failure pattern diagnosis datasheet. The identified element 

damage was validated using scanning electron microscopy 

(SEM), X-ray fluorescence (XRF), and corrosion analysis. 

Material degradation and collapse were investigated through 

mechanical, microstructural, and compositional testing, fol-

lowed by sampling. The elements’ conditions were compre-

hensively evaluated to determine crystal orientation, corro-

sion mechanisms, and fatigue strength. The objective of these 

tests was to detect hidden or latent defects within the structure, 

often referred to as blind spots. 

5.2. Resonance Measurement in Warren Truss 

Bridge Models 

The Measuring resonance in Warren truss bridge models is 

crucial for assessing stress redistribution caused by dynamic 

loads. Resonance occurs when the excitation frequency of 

external forces, such as moving traffic or wind-induced vi-

brations, aligns with the structure's natural frequency, leading 

to amplified vibrations and stresses. Critical parameters in-

clude natural frequency, excitation frequency, vibration am-

plitude, damping ratio, and maximum deflection. Modal 

testing determines fn and vibration modes by exciting the 

structure using mechanical shakers or modal hammers, with 

responses recorded via accelerometers. Time and frequency 

domain’s characteristics are extracted through data acquisi-

tion systems and Fourier analysis to provide a comprehensive 

evaluation of the structure's dynamic behavior. These analyses 

are especially important for structures with material fatigue. 

Preliminary studies indicate that elements with 70% material 

fatigue approach the design deflection limit of 62.457 mm 

under dynamic loading. The analysis includes evaluating the 

damping ratio and identifying resonance to assess structural 

resilience. 

Dynamic response patterns in training datasets can be de-

rived by simulating damage to specific elements, such as 

deactivating diagonal side members. Connection tests can 

also be performed by applying concentrated loads or remov-

ing connection elements to evaluate their contribution to 

overall structural performance. The diagnostic system ana-

lyzes the input data through sampling and compares it with the 

observed amplitude [19, 66]. Observations and simulations 

using FEM, alongside mathematical calculations, will gener-

ate a validation model for fatigue levels and their effects on 

bridge structures [67]. 

The correlation between vibrational data and structural 

damage was categorized into damage intensity levels to in-

form maintenance strategies. The SML models have been 

employed to analyze structural behavior based on vibration 

characteristics, with specific focus given to Warren Truss 

bridges. Damage levels ranging from moderate to critical 

were classified to guide repair and management plans. Ex-

tensively, data collected from various bridges were applied to 

train diagnostic systems, which forecast failure sequences and 

predict structural dysfunction based on vibrational response. 

In recent research, vibration-based SHM techniques have 

been explored for their ability to ensure durability and safety 

in bridge structures. These methods use algorithms for 

anomaly detection to identify material degradation and con-

nection failures, correlating vibration patterns with specific 

structural damage types. Moreover, the integration of SHM 

with Digital Twin models has been proposed to advance in-

telligent management practices through digital visualization 

of structural conditions. These approaches offer new avenues 

for improving safety and operational performance in steel 

bridges. The detailed breakdown of SML models tailored for 

vibrational analysis, explicitly addressing damage classifica-

tions (moderate, urgent, critical) and their implications for 

structural maintenance strategies. The vibrational patterns are 

tied directly to structural failure diagnostics, making it prac-

tical for real-world applications in repairs and performance 

improvement. 
The deployment of periodic and real-time monitoring sys-

tems to assess vibration patterns in large structures and long 

spans presents challenges, particularly in the placement of 

vibration sensors. Manual sensor installation on high and 

complex structures is costly; therefore, an alternative ap-

proach involves using specially modified drones to install 

sensors on visually damaged elements. The sensor is equipped 

with a magnetic mechanism that enables simple attachment to 

the steel surface, transported by the drone's camera. Real-time 

monitoring technology incorporates camera systems, wireless 

remote sensors, interferometry systems based on wave am-

plitude and phase shifts, and 3D scanning to enable visual data 

acquisition and the measurement of dynamic response pat-
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terns. Drone systems equipped with optics and directional 

cameras are especially useful for identifying blind spots. 

Initial data collection includes measurements of other influ-

encing factors, such as temperature and wind speed, within 

the steel bridge environment. Utilizing drone camera sensing 

to measure damaged areas, particularly those in diffi-

cult-to-reach or concealed locations, minimizes the need for 

personal protective equipment and reduces the risk of work-

place accidents. 

This study investigates the feasibility of detecting bridge 

deterioration through vibration patterns that indicate actual 

damage, as observed in published cases of bridge collapse and 

failure, combined with simulated damage treatment in FE 

modeling of steel bridge structural components. A smart di-

agnostic strategy, utilizing camera systems, remote wireless 

sensors, interferometry, 3D scanning, and drones, is expected 

to enhance the collection of visual data for more accurate, safe, 

and efficient assessments. Significant characteristics and 

damage clusters, quantified in percentages, are identified as 

key factors influencing the degradation of bridge structural 

performance. The challenges of developing the SML ap-

proach become increasingly apparent. The FE numerical 

method allows for the detection of potential damage in blind 

spots and fractures within structural elements. 

5.3. Level Rating Clusters Damage Assessments 

Warren Truss Steel Bridges 

The system focuses on providing sufficient data for analy-

sis according to feasibility ratings, which are divided into 

three clusters: (1) moderate (30%), (2) urgent (50%), and (3) 

severe/critical (≥70%). Each rating cluster requires training 

data that reflects the dynamic response patterns of the bridge 

for types of damage such as fatigue, corrosion, and plastic 

buckling, as well as the location of the damage. Additionally, 

structural loads including weight, vehicle or train loads, and 

other complex factors are essential for establishing a precise 

diagnostic system. The analytical capacity of the SML system 

is restricted to structures with consistent dimensions, such as 

the span, width, and height of Warren truss bridges. Other 

critical aspects include cross-sectional type and maximum 

load capacity with each aspect requiring validation through 

reliable data. 

Based on the constraints outlined above, a smart diagnostic 

system for efficient SML can be developed with the following 

capabilities: utilizing digital sensor devices and a drone sys-

tem to detect structural damage and evaluate feasibility crite-

ria, as illustrated in Figure 11. 

 
(a)                                               (b)                         (c) 

Figure 11. The smart diagnostic system is illustrated in (a), where visual inspection and modeling are performed. In (b), training data are 

compiled, validated, (c), supervised machine learning (SML) [The Author]. 

The subsequent phase of this research is focused on as-

sessing the effectiveness of SML across complex environ-

ments and varied conditions, alongside determining the vi-

bration response data required for different types of steel 

bridge constructions. Testing will be conducted on a range of 

bridge structures to evaluate SML's efficiency, accuracy, and 

to identify any potential limitations. Prioritizing the ad-

vancement of SML technology is a critical step toward 

achieving technological maturity, facilitating the develop-

ment of a highly efficient and precise diagnostic system. The 
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successful advancement of this technology will play a pivotal 

role in automating analysis processes, offering rapid, 

cost-efficient, and highly accurate monitoring solutions. 

5.4. Assessments Actual Warren Truss Steel 

Bridges 

Testing on actual bridges involves the installation of ac-

celerometer sensors at critical points, such as main joints, 

diagonal elements, and mid-span locations, to capture vibra-

tion responses. A mechanical exciter (shaker) is employed to 

introduce structural excitation, and vibration data is recorded 

using a data acquisition system. Fourier analysis is then ap-

plied to identify vibration modes and natural frequencies. 

Dynamic load simulations are conducted to observe the 

structural response to moving loads or oscillatory forces. 

These simulations involve vehicles with varying speeds and 

weights to record acceleration, deflection, and stress distri-

bution. Wind-induced vibrations are simulated using a wind 

tunnel, where wind speed is varied to study resonance effects. 

Additionally, seismic sensors measure responses to seismic 

loads, while load cycle data from the sensors are used to 

evaluate cracks or material degradation through 

Non-Destructive Testing (NDT) methods such as ultrasonic, 

radiographic, and thermal imaging. Material damage levels 

are categorized for labeling (Moderate, Urgent, or Critical). 

The SML prototype model is validated to ensure its pre-

dictions can be generalized to actual bridges by comparing the 

predicted damage risks and maximum deflection with meas-

urements from different bridges varying in geometry, material 

conditions, and load characteristics. Training data are utilized 

to assess bridge conditions and provide recommendations for 

maintenance and monitoring. This approach ensures a robust 

model capable of delivering actionable insights for effective 

bridge management. 

5.5. Implications of the Study 

This study provides recommendations and diagnostic ap-

proaches for identifying failure patterns in steel bridge 

structures, particularly for Warren truss systems. It also offers 

a reference framework for evaluating the safety and opera-

tional feasibility of such bridges. The data and validation 

systems generated aim to simplify maintenance assessments 

and strength predictions, ensuring the construction performs 

optimally, especially in analyzing structural behavior and 

material degradation. 

5.6. State of the Art 

The study will investigate fatigue degradation levels in the 

primary elements of a laboratory-scale Warren truss bridge pro-

totype with a scale ratio of 1:20, referencing the actual Sendang 

Mulyo bridge in Semarang. Both static and dynamic load tests 

will be conducted on degraded elements, varying in both the 

number of elements affected and the degree of degradation, to 

determine the influence of each factor at critical thresholds. 

Degradation levels of 30%, 50%, and 70% are interpreted based 

on a factor-level approach to be tested on both the prototype and 

the actual bridge model. The resulting data will consist of vibra-

tion patterns corresponding to each fatigue level, combined with 

other factors such as corrosion levels and buckling. Numerical 

data in the form of vibration patterns will be utilized as training 

data for SML. In the initial stages, each factor will be tested and 

partially simulated to validate its effects. 

The development of supervised machine learning models 

will analyze damage in Warren truss bridges, focusing on 

Fatigue levels and specific locations on elements subjected to 

tension or stress, measuring percentage degradation in struc-

tural equilibrium, crack-level modeling to assess structural 

impacts, corrosion levels, particularly in elements and con-

nections critical to the overall structure and Structural analysis 

under critical loading conditions. 

Validated experimental data will populate a database for 

further diffusion analysis, which will then be used to develop 

computational and statistical damage models. These models 

aim to analyze structural failure patterns in Warren truss steel 

bridges. The diagnostic system, leveraging machine learning 

techniques, evaluates structural stability and offers insights into 

the feasibility and safety of bridge construction. However, 

several critical factors continue to impede the development of a 

robust bridge failure pattern diagnosis model based on vibra-

tion responses, as outlined in previous studies. The SML di-

agnostic system still relies on visual data representing damage 

and the positional information of structural elements, due to the 

inherent limitations of visual recovery techniques in damaged 

areas, physical intervention remains essential. Furthermore, 

implementing SML requires testing on a structurally identical 

bridge model, to accurately assess the extent of damage, ana-

lytical modeling tools remain indispensable. Comparative 

testing is also necessary to evaluate the vibration response of 

the bridge model under varying visual damage scenarios. 

The data collected is being used to develop an algorithm that 

employs computational and statistical damage modeling to ana-

lyze failure patterns in Warren truss steel bridge designs. The 

diagnostic system currently under development utilizes machine 

learning to investigate structural stability, providing critical in-

formation on the feasibility and safety of bridge construction. 

Structural degeneration has been categorized into three distinct 

levels: moderate (30%), urgent (50%), and severe/critical 

(≥70%). These classifications inform the planning of mainte-

nance and technical operations related to Warren Truss Bridge 

upkeep, addressing the overall structural performance. 

5.7. Scope and Limitations 

The research focuses on developing a vibration-based val-

idation system, emphasizing the specific modeling of Warren 

truss steel bridges. This includes incorporating measurable 

material degradation and dysfunction in structural elements 
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while maintaining equilibrium in normal forces, dynamic load 

applications, and real-condition anomalies. Simulated damage 

scenarios are tailored to reflect common steel bridge failures, 

categorized as minor, moderate, or severe (critical), based on 

existing research. Certain actual parameters are excluded to 

streamline the vibration data scaling model. 

6. Conclusion 

The phenomena and simulations reveal a maximum deflec-

tion under a static load of 2,560 kN, with fatigue levels (30%, 

50%, and 70%) significantly influencing structural deformation. 

The effects of low and high frequencies were also identified, 

although lower frequencies resulted in reduced amplitude 

fluctuations. Dynamic loading produced a complex structural 

response, creating significant stress variations and contributing 

to material fatigue. Compared to static loading, dynamic load-

ing demonstrated a substantial increase in stress, with dynamic 

acceleration fluctuations due to structural resonance observed 

at critical points, particularly when a truck was positioned at the 

center of the bridge. At a fatigue level of 70%, the increased 

deflection of 62.457 mm highlights the cumulative effects of 

dynamic load cycles. High-frequency dynamic loads generated 

greater amplitude impacts, with a maximum acceleration of 

1.333 m/s² recorded under 70% fatigue conditions, indicating a 

heightened risk of resonance. These findings underscore the 

importance of considering dynamic loading effects and fatigue 

levels in structural analysis to ensure safety and longevity. 

These findings provide a foundation for developing training 

datasets in Supervised Machine Learning (SML) models. 

Experimental data from static and dynamic testing, extending 

to tests on actual bridge models, include key parameters such 

as natural frequency, maximum acceleration, deflection, and 

material fatigue levels. Data labeling is based on structural 

damage levels and performance, categorized into clusters of 

Moderate, Urgent, and Critical. The resulting dataset is used 

to train supervised learning algorithms for predicting damage 

risk and maximum deflection under dynamic loads and var-

ying fatigue levels. Resonance analysis is integrated as a 

critical risk indicator. Model validation is conducted to ensure 

generalization across bridges with diverse geometries, mate-

rial conditions, and load scenarios. This approach enhances 

the robustness and reliability of predictions in assessing 

structural performance and safety. 
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IoT Internet of Things 

GPS Global Positioning System 
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