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Abstract 

In recent years, generalized distributions have been widely studied in statistics as they possess flexibility in applications. This is 

justified because the traditional distributions often do not provide good fit in relation to the real data set studied. This paper 

develops a Power Gumbel distribution using the quadratic rank transmutation map (QRTM). The new generalization is called the 

transmuted Power-Gumbel distribution. Various mathematical properties of this distribution including moments, moment 

generating function, quantile function, mean deviation and order statistics were also studied. These features support the 

legitimacy and robustness of the proposed distribution. The maximum likelihood method is used for estimating the model 

parameters, and the finite sample performance of the estimators are assessed by simulation studies indicating that their precision 

improves with larger sample sizes. The asymptotic confidence intervals for the parameters are also obtained based on asymptotic 

variance-covariance matrix. Finally, the usefulness of the proposed model is illustrated in an application to two real data sets and 

conclude that the four-parameter transmuted Power Gumbel distribution provides better fit than the other five models. 
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1. Introduction 

The Gumbel distribution is perhaps the most widely applied 

statistical distribution for problems in engineering. It is also 

known as the extreme value distribution of type I. Recent 

developments focus on new techniques for building mean-

ingful distributions. These include the two-piece approach 

introduced by [17], Azzalini and Capitanio [5] studied the 

distributions generated by perturbation of symmetry with 

emphasis on a multivariate skew t distribution, and the gen-

erator approach pioneered by [14]. Many researchers have 

worked using generalizations technique, a few to mention are 

[3, 6, 7-11, 16, 21-23, 25, 26]. 

The aim of this paper is to introduce a new generalization to 

the Gumbel distribution using the transmutation map ap-

proach introduced by [24]. The new model which generalizes 

the Power Gumbel (PG) distribution is referred to as the 

transmuted Power Gumbel (TPG) distribution. The Gumbel 

(G) distribution is a very popular statistical distribution due to 

its extensive applicability in several areas and its wide ap-

plications has been reported by [19]. The applicability of GD 

in the field of flood frequency analysis, network, space, 
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software reliability, structural and wind engineering are re-

ported by [8]. Exponentiated Gumbel (EG) distribution, in-

troduced by [20] based on Gumbel (G) distribution and illus-

trated its applicability in the area of global warming modeling, 

rainfall modeling, wind speed modeling etc. Due to its wide 

applicability in different fields of science, the generalization 

of Gumbel Distribution has become important. The cumula-

tive distribution function (cdf) of the Power Gumbel distri-

bution is given by 

F(x) =  ∫ f(y)dy = ( 𝐞−𝐞
− 

𝐱−𝛍
𝛔 *

1

α
 

G(x)

0
       (1) 

where σ is a scale parameter, 𝛼 is a shape parameter and 𝜇 

is a location parameter, the corresponding probability density 

function (pdf) is given by 

f(x) =
1

α σ
 e−  

x−μ

σ

 

  (e− e
−  

x−μ
σ

 

)
1

α          (2) 

According to the Quadratic Rank Transmutation Map, 

(QRTM), approach a random variable X is said to have 

transmuted distribution if its cumulative distribution function 

cdf is given by 

F(x) = (1 + λ)G(x) − λ,G(x)-2          (3) 

where G(x) is the cdf of the base distribution, which on 

differentiation yields 

𝑓(𝑥) = 𝑔(𝑥),(1 +  𝜆) − 2 𝜆𝐺(𝑥)-,    |λ| ≤ 1    (4) 

where 𝑓(𝑥) and 𝑔(𝑥) are the corresponding pdfs associated 

with cdfs F(x) and G(x) respectively. Note that when λ=0, 

the base distribution will be obtained. Based on the above 

generalization, many authors [1, 4, 12, 13, 18] have dealt with 

this generalization of some known distributions. Afify et al. [2] 

derived the Transmuted Complementary Weibull Geometric 

distribution. The rest of the paper is organized as follows. In 

Section 2, we introduce the new distribution. In Section 3, we 

obtain some mathematical properties of the TPG distribution 

including, moments and moment generating functions, quan-

tile, mean deviations, Renyi entropies and order statistics. In 

Section 4, we discuss the estimation problem using the 

maximum likelihood estimation method and obtain the ob-

served information matrix. The asymptotic confidence inter-

vals for the parameters are also obtained based on asymptotic 

variance-covariance matrix. The finite sample performance of 

the estimators and approximate 100(1 − ϑ) % confidence 

intervals are assessed by simulation in Section 5. Two illus-

trative applications based on real data sets are investigated in 

section 6. Finally, concluding remarks are presented in section 

7. 

2. The Transmuted Power Gumbel 

Distribution 

In this section, we studied the transmuted Power-Gumbel 

(TPG) distribution. Now by inserting (1) into (3), we obtain 

the cdf of transmuted Power-Gumbel (TPG) distribution 

F(x) =  (e− e
−  

x−μ
σ

 

)
1

α   (1 +  λ −  λ ( e− e
−  

x−μ
σ

 

*

1

𝛼

+.   (5) 

The corresponding probability density function pdf is given by 

f(x) =
1

α σ
  e−  

x−μ

σ

 

(e− e
−  

x−μ
σ

 

)
1

α   [1 + λ − 2λ(e− e
−  

x−μ
σ

 

)
1

α] (6) 

where 𝜇 is a location parameter, 𝜎 is a scale parameter, 𝛼 is 

shape parameter and 𝜆 is a transmuted parameter. 

Figures 1 and 2 illustrate the graphical behavior of the pdf 

and cdf of transmuted Power-Gumbel distribution for selected 

values of the parameters. 

 
Figure 1. The CDF of the TPG distribution. 

 
Figure 2. The PDF of theTPG distribution. 

3. Mathematical Properties 

In this section we provide some mathematical properties of 

the TPG distribution including the moments, moment gener-

ating function, quantiles, mean deviations, Rényi entropies 
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and order statistic. 

3.1. Moments and Moment Generating Function 

It is imperative to derive the moments when a new distri-

bution is proposed. They play a significant role in statistical 

analysis, particularly in applications. If X has Transmuted 

Power Gumbel distribution (μ, σ, 𝛼, 𝜆) then its rth moment of 

TPG can be written as 

𝐸(𝑋r) = ∫ 𝑋r∞

−∞
 
1

α σ
  e−  

x−μ

σ

 

(e− e
−  

x−μ
σ

 

)
1

α   [1 + λ − 2λ(e− e
−  

x−μ
σ

 

)
1

α]                               (7) 

𝐸(𝑋𝑟) = 2−𝑟e
−

2𝜇

𝛼𝜎log(−α𝜎log)𝑟 ((𝜆 + 1)2𝑟e
𝜇

α𝜎log𝛤 .𝑟 + 1,−
𝜇

αlog𝜎
/ − 𝜆𝛤 .𝑟 + 1,−

𝜇

αlog𝜎
/)                (8) 

In particular, 

𝐸(𝑋) = 𝜇 −
1

2
αlog(2 + 𝜆)𝜎  

𝐸(𝑋2) = 𝜇2 − αlog(2 + 𝜆)𝜇𝜎 +
1

2
α2log2(4 + 3𝜆)𝜎2  

𝐸(𝑋3) =
1

4
(4𝜇3 − 6αlog(2 + 𝜆)𝜇2𝜎 + 6α2log2(4 + 3𝜆)𝜇𝜎2 − 3α3log3(8 + 7𝜆)𝜎3)  

E(X4) = μ4 − 2αlog(2 + λ)μ3σ + 3α2log2(4 + 3λ)μ2σ2 − 3α3log3(8 + 7λ)μσ3 +
3

2
α4log4(16 + 15λ)σ4  

The variance, skewness, and kurtosis measures can now be calculated using the relations 

𝑉𝑎𝑟(𝑋) = 𝐸(𝑋2) − ,𝐸(𝑋)-2  

Skewness(𝑋) =
𝐸(𝑋3)−3𝐸(𝑋)𝐸(𝑋2)+2,𝐸(𝑋)-3

,𝑉𝑎𝑟(𝑋)-
3
2

  

Kurtosis(𝑋) =
𝐸(𝑋4)−4𝐸(𝑋)𝐸(𝑋3)+6𝐸(𝑋2),𝐸(𝑋)-2−3,𝐸(𝑋)-4

,𝑉𝑎𝑟(𝑋)-2
  

Similarly, the moment generating function of X obtained as below: 

𝑀𝑥(𝑡) = 𝐸(𝐞𝒕𝒙) = ∫ 𝑒𝑡 𝑥  𝑓(𝑥) 𝑑𝑥
∞

−∞
  

𝑀𝑥(𝑡) = 𝑒tμ2𝜎(−𝑡)𝑎𝜎𝑡((𝜆 + 1)2𝜎𝑡 − 𝜆)𝛤 (𝑡𝜎 + 1)  

3.2. Mean and Median Deviations 

The amount of scatter in a population is evidently measured to some extent by the totality of deviations from the mean and 

median. If X has a TPG distribution, then we can derive the mean deviation about the mean 𝜇 = 𝐸(𝑋) and about the median M 

as: 

𝛿1(𝑥) = ∫ |𝑥 −  𝜇 |
∞

−∞
𝑓(𝑥)𝑑𝑥  

𝛿2(𝑥) = ∫ |𝑥 −  M |
∞

−∞
𝑓(𝑥)𝑑𝑥.  

The mean of the distribution is obtained from (8), and the median is obtained by solving the equation: 

(𝑒− 𝑒
−  

𝑥−𝜇
𝜎

 

*

1

𝛼

  (1 +  𝜆 −  𝜆 ( 𝑒− 𝑒
−  

𝑥−𝜇
𝜎

 

*

1

𝛼

+   =  
1

2
                              (9) 
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These measures can be calculated using the relationships that: 

δ1(x) = ∫ |μ −  x |
μ

−∞
f(x)dx + ∫ |x −  μ |

∞

μ
f(x)dx  

= 2∫ |μ −  x |
μ

0
f(x)dx = 2{μ F(μ) − ∫ x f(x)dx

μ

0
}  

𝛿1(𝑥) = 2 *𝜇 𝐹(𝜇) −  𝐽(𝜇) +  

𝛿2(𝑥) = 𝜇 − 2  𝐽(𝜇)  

where 𝐽(𝑡) =  ∫ 𝑥 𝑓(𝑥)𝑑𝑥
𝑡

−∞
. From (6) we have: 

𝐽(𝑡) = ∫ 𝑥 𝑓(𝑥)𝑑𝑥
𝑡

−∞   

= −(e−e
−  𝜇

𝜎 *

1

𝛼

 (𝑡 (−1 + (−1 + (e−e
−  𝜇

𝜎 *

1

𝛼

+𝜆+ + e
2 

−  𝜇
𝜎

𝛼 (e−e
−  𝜇

𝜎 *

1

𝛼

𝜆𝜎Ei *−
2e

−  𝜇
𝜎

 
+ − e

 
−  𝜇

𝜎

𝛼 (1 + 𝜆)𝜎Ei *−
e
−  𝜇

𝜎

 
++,   (10) 

where Ei is the exponential integral function Ei(z) defined by Ei(𝑧) = −∫  
𝑒− 

𝑡
𝑑𝑡

∞

−𝑧

 

3.3. Quantiles and Random Number Generator 

The quantile function plays a key role in simulating random samples from a given distribution. The characteristics of a dis-

tribution such as the median, kurtosis and skewness can also be described using the quantile function. The quantiles function of 

the TPG distribution is the real solution of 𝐹(𝑥𝑞) = 𝑞 for 0 ≤ 𝑞 ≤ 1. The quantiles of the Transmuted power Gumbel distri-

bution are obtained from cdf (5) as: 

𝑥𝑝 = 𝜇 − 𝜎𝐿𝑜𝑔 [𝐿𝑜𝑔 *2 (
1+𝜆−√1+2𝜆−4𝑈𝜆+𝜆2

𝜆
*
− 

+]                         (11) 

where 𝑈 is a uniform distribution with (0,1). 

3.4. Rényi Entropies 

An entropy of a random variable 𝑥 is a measure of variation of the uncertainty. Rényi entropy is defined by: 

𝒥𝑅(𝛾) =
1

1−𝛾
 𝑙𝑜𝑔,∫ 𝑓𝛾(𝑥)𝑑𝑥-  

where 𝛾 > 0 and 𝛾 ≠ 1. For the TPG distribution pdf given by (6) 

𝒥𝑅(𝛾) =
1

a γσγ ∫  .e−  
x−μ

σ

 

/
γ

∞

−∞
( e− e

−  
x−μ
σ

 

*

1

α

    [1 + λ − 2λ ( e− e
−  

x−μ
σ

 

*

1

α

]

γ

dx  

On substituting 𝑦 = 𝑒−  
𝑥−𝜇

𝜎

 

, the right-hand side reduces to 

= ∫
σγ

y γ
 (y)γ

∞

0
( e−y)

1

α     01 + λ − 2λ( e− y)
1

α1
γ

dy =
α Γ (γ) .

1 λ

α
/
γ
 2F1,−γ,γ,1+γ,

2λ

1 λ
-

γ
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The Rènyi entropy, takes the expression 

𝒥𝑅(𝛾) =
log( 𝛤 (𝛾) .

1 𝜆

𝛼
/
𝛾
 2F1,−𝛾,𝛾,1+𝛾,

2𝜆

1 𝜆
-*

𝛾−1
,                               (12) 

where, 2𝐹
~

1,𝑎, 𝑏, 𝑐, 𝑧- is the hypergeometric function calculated as.  

2F
~

1 = ∑   
akbk

k! ck

∞
k=0  zk. 

3.5. Order Statistics  

Order statistics make their appearance in many areas of statistical theory and practice. Suppose X1, X2 , X3, … … , Xn is a ran-

dom sample from the TPG distribution. Let Xi:n denote the ith order statistics. The pdf of Xi:n can be expressed as 

fi:n(x) =
n!

(i−1)!(n−i)!
 (F (x))i−1 (1 − F(x))

n−i
f(x)  

Let X1, X2, X3, … … , Xn be independently identically distributed order random variables from the (TPG) distribution having 

first and last order probability density function are given by the following: 

f1:n(x) = n  (1 − F(x))
n−1

f(x) 

= 𝑛  (1 − (1 + 𝜆) (𝑒− 𝑒
−  

𝑥−𝜇
𝜎

 

)
1

𝛼  −   𝜆(𝑒− 𝑒
−  

𝑥−𝜇
𝜎

 

)
2

𝛼*
𝑛−1

[
1+λ

  σ
  e−  

x−μ

σ

 

(e− e
−  

x−μ
σ

 

*

1

𝛼

 −
2λ

  σ
  e−  

x−μ

σ

 

(e− e
−  

x−μ
σ

 

*

2

𝛼

]   (13) 

fn:n(x) = n  (F(x))
n−1

f(x) 

= 𝑛  ((1 + 𝜆) (𝑒− 𝑒
−  

𝑥−𝜇
𝜎

 

*

1

𝛼

 −   𝜆 ( 𝑒− 𝑒
−  

𝑥−𝜇
𝜎

 

*

2

𝛼

)

𝑛−1

 [
1+𝜆

  𝜎
  𝑒−  

𝑥−𝜇

𝜎

 

(𝑒− 𝑒
−  

𝑥−𝜇
𝜎

 

*

1

𝛼

 −
2𝜆

  𝜎
  𝑒−  

𝑥−𝜇

𝜎

 

(𝑒− 𝑒
−  

𝑥−𝜇
𝜎

 

*

2

𝛼

]   (14) 

3.6. Survivor Function 

The survivor function S(x) is given by 

S(x) = p(X ≥ x) = 1 − p(X ≤ x) = 1 − F(x)  

Substituting the value of F(x) from (5), we get 

𝑆(x) = 1 − ( e− e
−  

x−μ
σ

 

*

1

𝛼

  (1 +  λ −  λ ( e− e
−  

x−μ
σ

 

*

1

𝛼

+   

Figure 3 is the plot of the survival function of the TPG for various sets of parameter values. 
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Figure 3. Survival function of the TPG plotted for various parameter 

values. 

3.7. Hazard Rate Function 

The hazard rate function h(x) is given by 𝑕(𝑥) =  
𝑓(𝑥)

𝑆(𝑥)
. 

Substituting the values of f(x) and F(x) from (5) and (6) re-

spectively, and simplifying we get 

h(x) =

1 λ

α σ
  e

−  
x−μ
σ

 

 (e−  
−  

x−μ
σ

 

 )
1
a −

2λ

α σ
  e

−  
x−μ
σ

 

 ( e−  
−  

x−μ
σ

 

 +

2
α   

  

 1−(e−  
−  

x−μ
σ

 

)
1
α  (1+ λ− λ( e−  

−  
x−μ
σ

 

+

1
α

,

  

4. Parameter Estimation 

The maximum likelihood estimators (MLEs) enjoy desira-

ble properties and can be used for constructing confidence 

intervals for the model parameters. So, we consider the esti-

mation of the unknown parameters for this distribution by 

maximum likelihood. Let 𝑋1, 𝑋2. . . , 𝑋𝑛 be a random sample 

from the TPG distribution with observed values 𝑥1, 𝑥2. . . , 𝑥𝑛 
and Θ = (μ, 𝜎, α, 𝜆)𝑇  be parameter vector. The likelihood 

function for Θ may be expressed as 

L(Θ) = ∏
1

α σ
  e−  

xi−μ

σ

 

(e− e
−  

xi−μ
σ

 

)

1

α

   *1 + λ − 2λ (e− e
−  

xi−μ
σ

 

)

1

α

+n
i=1   

Therefore, the log-likelihood function for Θ becomes 

𝑙(Θ) = −𝑛𝐿𝑛𝛼 − 𝑛𝐿𝑛𝜎 − ∑  
𝑥−𝜇

𝜎
−

1

 
∑𝑒−  

𝑥−𝜇

𝜎

 

+ 𝐿𝑛∏  [1 + 𝜆 − 2𝜆 (𝑒− 𝑒
−  

𝑥−𝜇
𝜎

 

*

1

𝛼

]𝑛
𝑖=1

                 (15) 

The MLEs of μ, 𝜎, α, 𝜆 say μ̂, 𝜎̂, α̂ 𝑎𝑛𝑑 𝜆̂, respectively, can be worked out by the solutions of the system of equations obtained 

by letting the first partial derivatives of the total log-likelihood equal to zero with respect to μ̂, 𝜎̂, α̂ 𝑎𝑛𝑑 𝜆̂. Therefore, the system 

of equations is as follows: 

∂ ln l(Θ)

∂μ
=  ∑

1

σ
  −  

1

α
 ∑ e−  

x−μ

σ

 

.
1

σ
/ + ∑

2λ(e−  
−  

x−μ
σ

 

+

1
α

(e
−  

x−μ
σ

 

)(
1

σ
)

1+λ−2λ(e−  
−  

x−μ
σ

 

+

1
α

                        (16) 

∂ ln l(Θ)

∂σ
= − 

n

σ
+ ∑  

x−μ

σ2 −
1

α
 ∑ e−  

x−μ

σ

 

.
x−μ

σ2  / + ∑
2λ(e−  

−  
x−μ
σ

 

+

1
α

(e
−  

x−μ
σ

 

*(
x−μ

σ2 )

1+λ−2λ(e−  
−  

x−μ
σ

 

)

1
α

                  (17) 

𝜕 ln 𝑙(Θ)

𝜕α
= 

1

α2
∑𝑒−  

𝑥−𝜇

𝜎

 

− 
𝑛

α
− ∑

2𝜆(𝑒− 𝑒
−  

𝑥−𝜇
𝜎

 

+

1
α

. 
1

α3/ (e
−  

−  
xi−μ
σ

 

+

1+𝜆−2𝜆(𝑒− 𝑒
−  

𝑥−𝜇
𝜎

 

+

1
α

                       (18) 

𝜕 ln 𝑙(Θ)

𝜕𝜆
= ∑

1−2(𝑒− 𝑒
−  

𝑥−𝜇
𝜎

 

+

1
α

1+𝜆−2𝜆(𝑒− 𝑒
−  

𝑥−𝜇
𝜎

 

+

1
α

                                  (19) 
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The solutions of nonlinear equations (16), (17), (18) and 

(19) are complicated to obtain, therefore an iterative proce-

dure is applied to solve these equations numerically. 

Under certain regularity conditions, the centered form of 

the MLE, √𝑛(Θ̂ − Θ), is asymptotically distributed as Nor-

mal (0, 𝐼−1(Θ)) , where 𝐼(Θ)  is the information matrix, 

given by 𝐼(Θ) = 𝐸 [
𝜕2𝑙(Θ)

𝜕Θ𝑖𝜕Θ𝑗
] , and can be approximated by 

𝐼(Θ̂) . Then, based on (Θ̂ − Θ)
𝑑
→𝑁4(0, 𝐼

−1(Θ)) , one can 

carry out confidence regions for functions of Θ. Therefore, 

approximate 100(1 − 𝛾)%  

μ̂  ∓ 𝑍𝛾

2
√Î 𝜇𝜇, 𝜎̂  ∓ 𝑍𝛾

2

√Î 𝜎𝜎, α̂  ∓ 𝑍𝛾

2

√Î αα, 𝜆̂  ∓ 𝑍𝛾

2

√Î 𝜆𝜆. 

where 𝑍𝛾 is the upper 100𝛾 − 𝑡𝑕 percentile of the standard 

normal distribution. 

5. Simulation Study 

Here, we assess the finite sample behaviors of the MLEs for 

the four-parameter TPG distributions. The assessment of the 

finite sample behavior of the MLEs for this distribution was 

based on the following: 

1. Use the inversion method to generate two thousand 

samples of size n from the TPG distribution, i.e. generate 

values of: 

X = μ − σLog [Log *2α (
1+λ−√1+2λ−4Uλ+λ2

λ
*
−α

+]  

2. Compute the MLEs for the two thousand samples, say 

(𝜇̂𝑖 , 𝜎̂𝑖 , α̂𝑖 , λ̂𝑖) for 𝑖 = 1,2, … ,2000. 

3. Compute the bias, mean squared errors, standard errors 

and 95% confidence limits (L, U and T) for two thou-

sand samples. The asymptotic variance (ASV) and 95% 

confidence intervals are computed by inverting the ob-

served information matrix. Bias and MSE are given by: 

𝐵𝑖𝑎𝑠(Θ̂) =
∑ (Θ̂𝑖−Θ)2000
𝑖=1

2000
  

𝑀𝑆𝐸(Θ̂) =
∑ (Θ̂−Θ)

22000
𝑖=1

2000
  

for Θ = (𝜇, 𝜎, α, 𝜆).  

4. We repeat these steps 2000 times (iteration) for n= 10, 30, 

50, 80, 100, 150, and 200, so computing 𝐵𝑖𝑎𝑠(Θ̂) , 

𝑀𝑆𝐸(Θ̂) , 𝐴𝑆𝑉(Θ̂)  and 95% confidence limits (L, U 

and T) for Θ = 𝜇, 𝜎, α, 𝜆.  

The average estimates, along with the bias, mean squared 

error and asymptotic variance are presented in Table 1. In 

Table 2, the average 95% confidence intervals are reported. 

Table 1. Average MLEs of the parameters and the corresponding mean squared errors (in parenthesis). 

 

 Sample size 

n 10 30 50 80 100 150 200 

μ̂  

Estimate 

0.5000360 0.5000249 0.5000234 0.5000236 0.5000238 0.5000241 0.5000225 

σ̂  0.3999766 0.3999840 0.3999850 0.3999848 0.3999846 0.3999843 0.3999855 

α̂  1.2999519 1.299993 1.2999933 1.2999933 1.2999683 1.2999678 1.2999931 

λ̂  0.2022122 0.2019203 0.2018955 0.2019614 0.2019951 0.2020381 0.2018951 

μ̂  

Bias 

0.3499960 0.1166660 0.0700120 0.0437510 0.0349998 0.0233332 0.0174999 

σ̂  0.2600020 0.0866670 0.0520110 0.0325010 0.0260002 0.0173334 0.0130001 

α̂  0.1700050 0.0566680 0.0340010 0.0212510 0.0170003 0.0113335 0.0035111 

λ̂  0.0797790 0.0266030 0.0159620 0.0099750 0.0079800 0.0053197 0.0039905 

μ̂  

MSE 

0.1224975 0.0136109 0.0048999 0.0019140 0.0012250 0.0005444 0.0003062 

σ̂  0.0676012 0.0075112 0.0027040 0.0010563 0.0006760 0.0003004 0.0001690 

α̂  0.0289016 0.0032112 0.0011560 0.0004516 0.0002890 0.0001284 0.0000123 

λ̂  0.0063647 0.0007077 0.0002548 0.0000995 0.0000637 0.0000283 0.0000159 

μ̂  ASV 2.8648052 0.9453186 0.5640477 0.3511622 0.2802932 0.1858870 0.1395571 
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 Sample size 

n 10 30 50 80 100 150 200 

σ̂  0.1689974 0.0563327 0.0337997 0.0211248 0.0168998 0.0112665 0.0084499 

α̂  0.0089971 0.0029993 0.0017996 0.0011248 0.0008998 0.0005999 0.0000768 

λ̂  0.0001071 0.0000320 0.0000189 0.0000117 9.2992E-6 6.1976E-6 4.6288E-6 

From Table 1 it is observed that as the sample size increases, the average biases, asymptotic variance and the mean squared 

errors decrease. This verifies the consistency properties of the estimates. 

Table 2. Average 95% confidence intervals for the parameters. 

n 

𝛍̂  𝛔̂  𝜶̂  𝝀̂  

L U T L U T L U T L U T 

10 (0.073 0.051 0.124) (0.056 0.046 0.102) (0.062 0.048 0.110) (0.056 0.049 0.105) 

30 (0.065 0.045 0.110) (0.048 0.04 0.088) (0.051 0.041 0.092) (0.044 0.034 0.078) 

50 (0.053 0.038 0.091) (0.042 0.036 0.078) (0.036 0.03 0.066) (0.036 0.028 0.064) 

80 (0.042 0.031 0.073) (0.035 0.031 0.066) (0.036 0.028 0.064) (0.030 0.024 0.054) 

100 (0.035 0.025 0.060) (0.031 0.027 0.058) (0.030 0.024 0.054) (0.028 0.022 0.050) 

150 (0.032 0.022 0.054) (0.029 0.023 0.052) (0.028 0.021 0.049) (0.026 0.022 0.048) 

200 (0.031 0.018 0.049) (0.027 0.021 0.044) (0.027 0.02 0.047) (0.025 0.022 0.047) 

 

Table 2 shows that as the sample size increases, the average 

confidence lengths decrease and the intervals tend towards 

symmetry. 

6. Applications 

Here, we provide applications to two real data sets to show 

how the TPG distribution can be applied in practice. For this 

aim, the TPG distribution is compared with other competitive 

distributions. In these applications, the model parameters are 

estimated by the method of maximum likelihood with their 

corresponding standard errors of the parameters. The Akaike 

information criteria (AIC), Consistent Akaikes Information 

Criterion (CAIC), Bayesian information criterion (BIC) and 

Hannan-Quinn information criterion (HQIC) statistics are 

computed to compare the fitted models. In general, the 

smaller values of these statistics, the better the fit to the data. 

6.1. The First Real Data 

The first real data set included survival times (in months) 

for a sample of (131) women with breast cancer residing at 

Dar Al-Hayat of the National Cancer Control Foundation – 

Sana’a during the period from February to December 2022. 

The data are:  

Table 3. The first data. 

8 1 1 4 2 4 2 2 1 5 

1 5 1 2 2 2 2 2 6 6 

9 1 3 2 5 3 2 6 1 6 

3 1 2 1 2 1 11 1 1 4 
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2 5 3 2 1 7 2 9 1 5 

2 1 1 1 2 2 2 2 7 1 

1 1 1 11 1 1 3 1 1 3 

1 3 3 11 3 5 1 2 1 3 

1 11 6 1 1 2 5 1 3 3 

1 2 6 1 1 3 4 2 2 2 

1 2 8 4 4 9 3 6 2 1 

1 5 8 8 1 5 3 4 1 1 

1 1 3 2 8 4 4 5 1 1 

1          

The descriptive statistics of the data are shown in Table 4 below. 

Table 4. Descriptive Statistics of the first data. 

N Minimum Mean Median SD Variance Skewness Kurtosis Maximum 

131 1 3.0916 2 2.54936 6.49924 1.44367 4.44689 11 

 

We compare the four-parameter transmuted Power Gumbel 

(TPG) distribution, three parameter Power Gumbel (PG) 

distribution, three parameters transmuted Gumbel (TG) dis-

tribution, two parameters transmuted Power (TP) distribution, 

two parameter Gumbel (G) distribution and one parameter 

Power (P) distribution fitted to the data. In general, the smaller 

the values of these statistics, the better the fit to the data. 

The estimates of the parameters and their standard errors 

(SEs) are listed in Tables 5 and 8. The values of the statistics 

Akaike Information Criterion (AIC), Bayesian Information 

Criterion (BIC), Hannan–Quinn Information Criterion (HQIC) 

and Consistent Akaike Information Criterion (CAIC) are also 

given in Tables 5 and 8.  

Table 5. MLEs (standard errors in parentheses) and the measures AIC, BIC, HQIC and CAIC of the first data. 

Distribution 𝝁̂ 𝝈̂ 𝒂̂ 𝝀̂ AIC BIC HQIC CAIC 

TPG 
0.5072283 

(1.519E-10) 

0.3950362 

(1.15E-10) 

1.2977409 

(1.524E-11) 

0.243313 

(2.168E-11) 
542.36787 553.86866 547.04115 542.68533 

PG 
1.3520571 

(0.000037) 

1.2980909 

(0.0000354) 

0.9958667 

(0.0000191) 
- 667.10618 675.73177 670.61114 667.29515 

TG 
0.3547992 

(0.0424285) 

1.6546951 

(1.2150712) 
- 

1.1041474 

(0.0107192) 
621.60111 630.2267 625.10607 621.79008 

TP - - 
0.3994155 

(0.0006942) 

0.1948232 

(0.1195048) 
662.25883 668.00922 664.59547 662.35258 

G 
0.455232 

(16.002212) 

1.4050549 

(17.3974) 
- - 704.98438 710.73478 707.32102 705.07813 

P 
2.0006681 

(2.6420308) 
- - - 760.24241 768.868 763.74737 760.43139 
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6.2. The Second real Data 

The second real data set consists of 100 observations on waiting time (in minutes) before the customer received service in a 

bank which is extracted from [15]. The data are:  

Table 6. The second real data. 

0.8 0.8 1.3 1.5 1.8 1.9 1.9 2.1 2.6 2.7 

2.9 3.1 3.2 3.3 3.5 3.6 4.0 4.1 4.2 4.2 

4.3 4.3 4.4 4.4 4.6 4.7 4.7 4.8 4.9 4.9 

5.0 5.3 5.5 5.7 5.7 6.1 6.2 6.2 6.2 6.3 

6.7 6.9 7.1 7.1 7.1 7.1 7.4 7.6 7.7 8.0 

8.2 8.6 8.6 8.6 8.8 8.8 8.9 8.9 9.5 9.6 

9.7 9.8 10.7 10.9 11.0 11.0 11.1 11.2 11.2 11.5 

11.9 12.4 12.5 12.9 13.0 13.1 13.3 13.6 13.7 13.9 

14.1 15.4 15.4 17.3 17.3 18.1 18.2 18.4 18.9 19.0 

19.9 20.6 21.3 21.4 21.9 23.0 27.0 31.6 33.1 38.5 

The descriptive statistics of the data are shown in Table 7 below. 

Table 7. Descriptive Statistics of the second data. 

N Mean Median SD Variance Skewness Kurtosis Minimum Maximum 

100 9.777 7.85 7.2638 52.7634 1.4883 5.5485 0.8 38.5 

Table 8. MLEs (standard errors in parentheses) and the measures AIC, BIC, HQIC and CAIC of the first data. 

Distribution 𝝁̂  𝝈̂  𝒂̂  𝝀̂  AIC BIC HQIC CAIC 

TPG 
0.3531289 

(2.3676E-6) 

0.6366211 

(5.8268E-6) 

1.2984443 

(4.161E-11) 

0.1645854 

(6.0687E-7) 
1001.7795 1007.5299 1004.1161 1001.8732 

PG 
1.0998154 

(0.0000257) 

1.1401995 

(0.0000791) 

0.1558073 

(0.000012) 

- 

- 
1075.7277 1084.3533 1079.2327 1075.9167 

TG 
0.248029 

(0.4844093) 

1.3005865 

(0.5463889) 

- 

- 

1.5884808 

(0.396437) 
1093.2296 1104.7304 1097.9029 1093.5471 

TP 
- 

- 

- 

- 

0.2037791 

(0.0306841) 

0.1642718 

(0.1414493) 
1060.4862 1069.1118 1063.9912 1060.6752 

G 
18.74255 

(505.54667) 

11.159707 

(34.639565) 

- 

- 

- 

- 
1185.1877 1196.6884 1189.8609 1185.5051 

P 
34.14885 

(186.34564) 

- 

- 

- 

- 

- 

- 
1181.50961 1187.26001 1183.84626 1181.60336 
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Based on the Tables 5 and 8, we conclude that the new TPG 

model provides adequate fits as compared to other models in 

both applications with small values for SE, AIC, BIC, HQIC 

and CAIC. In the two applications, the proposed TPG model 

is much better than the five models. 

7. Conclusions 

In this paper we have proposed a new distribution, re-

ferred to as the TPG distribution. A mathematical treatment 

of the proposed distribution including explicit formulas for 

the density and survivor functions, moments, order statistics, 

and mean and median deviations have been provided. The 

estimation of the parameters has been approached by 

maximum likelihood. Also, the asymptotic vari-

ance-covariance matrix of the estimates has been obtained. 

The confidence intervals of the parameters of the new model 

are evaluated through the simulation study. Finally, two 

applications to real data indicate that the TPG distribution 

provides a good fit and can be used as a competitive model to 

fit real data. 
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AIC Akaike’s Information Criterion 

BIC Bayesian Information Criterion 

CAIC Consistent Akaikes Information Criterion 

HQIC Hannan-Quinn Information Criterion 

G Gumbel 

P Power 

PG Power Gumbel 

SE Standard Error 

TG Transmuted Gumbel 

TP Transmuted Power 

TPG transmuted Power Gumbel 
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