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Abstract 

The role of Weighted Distribution in statistical modeling is influenced by a particular weighting mechanism. This paper 

introduces the Weighted Two-Parameter Rayleigh (W2R) distribution, an extension of the Rayleigh distribution, achieved by 

extending the baseline distribution by using an inverted weight function with an additional parameter. This modification 

provides greater flexibility, making the W2R distribution more suitable for diverse applications in reliability analysis and 

survival studies modeling. Theoretical and statistical properties of the new weighted distribution such as survival function, 

hazard function, reversed hazard function, moments, coefficient of variation, coefficient of skewness, coefficient of kurtosis, 

harmonic mean, moment generating function, mean-deviation, Rényi entropy, and order statistics were explicitly derived. This 

was to assess the flexibility and applicability of W2RD, moments, and the associated measures of W2RD distribution. The new 

weighted Rayleigh distribution parameters were estimated using the Maximum Likelihood Estimation (MLE) performance 

evaluators. A comparative analysis of W2R distribution with other existing distributions using remission time analysis was 

applied to two real-life datasets to evaluate its effectiveness. The models performances were assessed using Log-Likelihood 

and Akaike Information Criterion (AIC) and the results indicated that the W2R distribution provides a superior fit to real-world 

data compared to competing distributions. The study therefore highlights the potential of the W2R distribution as a more robust 

and versatile alternative for statistical modeling in various fields. 

Keywords 

Order Statistics, Rayleigh Distribution, Reliability Analysis, Renyi Entropy, Weighted Rayleigh Distribution 

 

1. Introduction 

Proper statistical distributions are required to make a valid 

statistical inference while wrong specification can lead to 

invalid inference giving birth to error. Weighted probability 

distributions have been applied in various real-world fields, 

particularly to adjust event probabilities by incorporating a 

weight function into the baseline distribution. This approach 

provides a useful method for addressing data interpretation 

challenges and helps in specifying appropriate and effective 

models. 

The concept of weighted distribution was first introduced 
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by [1] Fisher and later improved upon by [2] as a method of 

adjustment applicable to many situations. In environmental 

science, observations may often fall into the non-

experimental category, as noted by [3]. 

Many authors have employed the concept of weighted dis-

tribution to develop effective distributions for skewed data. 

Lehmann Type II Weighted Weibull distribution was intro-

duced by [4] as an extension of the standard Weibull distri-

bution, incorporating a weighting mechanism to enhance its 

flexibility in modeling real-world data. The study focused on 

deriving the probability density function, cumulative distri-

bution function, and other statistical properties of the pro-

posed distribution. The authors also examined its survival 

and hazard functions, demonstrating its applicability in relia-

bility analysis and lifetime data modeling. 

Contributions were made by [5] to the field of probability 

modeling by offering an alternative distribution with en-

hanced applicability in reliability engineering, medical re-

search, and environmental studies. Their work highlights the 

importance of weighted distributions in capturing complex 

real-life data patterns. Furthermore, the study by [6] explores 

the Weighted Rayleigh Distribution (WRD) and its applica-

tions in statistical modeling. The Rayleigh distribution is 

widely used in reliability analysis, engineering, and envi-

ronmental sciences, but the weighted extension provides 

greater flexibility in modeling real-world phenomena. The 

authors introduce a modification to the standard Rayleigh 

distribution by incorporating a weight function, allowing for 

enhanced adaptability in describing datasets with varying 

characteristics. 

Weighted distributions play a significant role in statistical 

modeling, particularly in scenarios where the underlying data 

is influenced by a specific weighting mechanism. Two 

weighted distributions introduced by [7] were derived from 

the exponential distribution, offering a novel approach to 

modeling lifetime data and reliability analysis. In his study, 

he explored the properties of these distributions, including 

their probability density functions, cumulative distribution 

functions, moments, and hazard functions. One of the key 

contributions of Mahdavi's work is the extension of the clas-

sical exponential distribution, which is widely used in relia-

bility engineering and survival analysis, to a weighted 

framework. This modification allows for greater flexibility in 

capturing real-world phenomena where standard distribu-

tions may not provide an adequate fit. By incorporating 

weight functions, the proposed distributions address varia-

tions in data influenced by sampling mechanisms, environ-

mental factors, or other external influences. 

The Double Weighted Rayleigh Distribution (DWRD) was 

introduced and analyzed by [8] to expand on the convention-

al Rayleigh distribution by incorporating additional 

weighting functions. The study thoroughly examined the 

statistical properties of the proposed distribution, including 

its probability density function, cumulative distribution func-

tion, moments, and survival function. The author also ex-

plored various estimation techniques for the model parame-

ters, comparing methods such as the Maximum Likelihood 

Estimation (MLE) and the Method of Moments (MoM) to 

assess their efficiency and applicability. 

This study seeks to develop a novel statistical model, 

termed the Weighted Two-Parameter Rayleigh Distribution, 

by extending the traditional Rayleigh Distribution through 

the incorporation of an inverse weight function with an addi-

tional parameter. This modification and introduction of an 

additional parameter in the Weighted 2-Parameter Rayleigh 

Distribution (W2RD) is essential for enhancing the flexibil-

ity and adaptability of the Rayleigh Distribution. This modi-

fication allows for more precise modeling of real-world data, 

making the distribution suitable for applications in reliability 

analysis and survival studies modeling. 

One of the key advantages of the additional parameter is 

its ability to improve tail behavior, providing better control 

over the skewness and kurtosis of the distribution. This flex-

ibility is particularly useful when dealing with datasets that 

exhibit varying degrees of dispersion. Furthermore, the in-

clusion of this parameter enhances the overall shape of the 

distribution, allowing it to accommodate a wider range of 

data patterns. In many practical scenarios, the Rayleigh Dis-

tribution may be too restrictive, failing to capture the com-

plexities present in empirical data. 

Additionally, the extra parameter contributes to better data 

fitting by reducing estimation errors and increasing predic-

tive accuracy. Many datasets encountered in real-world ap-

plications do not conform precisely to a single-parameter 

model, making it necessary to introduce a more adaptable 

distribution. Therefore, W2RD extends the applicability of 

the Rayleigh model to various domains, including engineer-

ing reliability and medical survival analysis [9, 13, 14]. This 

study comprares Weighted 2 Rayleigh (W2R) with Weighted 

Rayleigh Distribution (WRD), Weighted Inverse Weibull 

Distribution (WIWD), Inverse Weighted Distribution (IWD) 

and Rayleigh Distribution using remission time analysis. 

1.1. The New Model 

The cumulative distribution function (cdfand probability 

density function of Rayleigh distribution with parameter 

are defined respectively by equations (1) and (2): 

𝐹(𝑥); = 𝑒
−

𝑥2

2𝛽2 , 𝑥 > 0, 𝛽 > 0                            (1) 

 

2

22

2
e ; 0, 0

x

x
f x x 





                           (2) 

If X is a non-negative random variable with probability 

density function,  f x  as defined in equation (2) and the 

weighted version of X, weigh function w(x) is denoted by 

random variable 𝑋𝑤, then the distribution of 𝑋𝑤 is called the 
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weighted distribution with probability density function given 

by 

 
   

w
d

w x f x
f x

w
  

Where 

   
0

dw w x f x dx



   

A particular case of weighted distribution is obtained 

when we substitude  f x  as defined in equation (2) and 

 w x x  in equation (3). The resulting distribution called 

weighted 2-parameter Rayleigh distribution with probability 

density function and cumulative distribution function are 

derived as in equations (3) and (4) respectively: 
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2
2/2
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 , , 0x                 (3) 

and 

2

2
1 ,

2 2
( ) 1

1
2

w

x

F x







 
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 

 
 

  
 

 0, 0x                 (4), 

where 𝛼 𝑎𝑛𝑑 𝛽 are the shape and scale parameters respec-

tively. 

When α =1, the resulting distribution is Weighted Ray-

leigh distribution [6]. 

1.2. Proof of Validity of W2R Distribution 

For the probability density function to be valid, it suffices 

that;  
0

1wf x dx



  

 

2

2
/2 ( 2)

1 2

0

2
1

1
2
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x e dx
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 
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                        (5) 
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2
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x
k


 such that 

1 1

2 22x k  and 

1 1

2 22dx k dk
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2𝑒−𝑘𝑑𝑘
∞

0

                             (7) 

=
1

𝛤(1−
𝛼

2
)

[𝛤 (1 −
𝛼

2
)] = 1                            8) 

 
Figure 1. Plot of the Probability Density Function for the W2R 

Distribution. 

 
Figure 2. Plots of the Probability Density Function of Rayleigh and 

W2R distributions. 

 
Figure 3. Plot of Cumulative Distribution Function of W2R distri-

bution. 

Figure 1 presents the probability density function plot of 

the Weighted 2-Parameter Rayleigh (W2R) distribution, il-

lustrating its shape and behavior. The plot showcases how 

the distribution varies with different parameter values, high-

lighting its flexibility in modeling real-world data. Its uni-
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modal (inverted bathtub) and decreasing shapes depending 

on the value of the shape parameter. 

Figure 2 displays the probability density function plots for 

the Rayleigh Distribution (RD) and the Weighted 2-

Parameter Rayleigh Distribution (W2RD). The plot high-

lights the impact of the additional parameter in W2RD, 

which modifies the shape of the distribution, allowing for 

greater flexibility in modeling diverse data patterns. Specifi-

cally, W2RD exhibits a higher peak and a steeper decline 

compared to RD, suggesting its enhanced adaptability for 

applications in reliability analysis and survival studies mod-

eling. It further revealed that the distribution is unimodal. 

Figure 3 depicts the cumulative density function of the 

Weighted 2-Parameter Rayleigh distribution for different 

parameter values, confirming the validity of the distribution, 

as none of the curves exceed one. 

2. Reliability Analysis 

2.1. Survival Function 

The survivor function quantifies the probability that a giv-

en event of interest has not yet occurred by a specific time x. 

In the context of reliability analysis and survival studies, if X 

represents the time until failure of a system or an individual, 

then the survival function S(x) expresses the probability of 

survival beyond time x. Mathematically, it is derived as the 

complement of the cumulative distribution function (CDF), 

ensuring that the probability remains within the range of 0 to 

1. The survival (or reliability) function plays a crucial role in 

various fields, including engineering, biomedical research, 

and risk assessment, as it helps estimate the longevity and 

performance of systems under study. The survival (or relia-

bility) function is obtained as: 

2

2
1 ,

2 2
( )

1
2

x

S x







 
   
 


 

  
 

                             (9) 

2.2. Hazard Function 

The hazard function, also known as the failure rate or risk 

function, quantifies the instantaneous likelihood that an event 

of interest (such as device failure) will occur within a small 

time interval [t, t + dt], given that the system or subject has 

survived up to time t. It provides valuable insights into the 

underlying failure mechanism of a process or system. The 

hazard function is defined as the ratio of the probability den-

sity function ( )f x  to the survival function S(x), expressed as: 

 
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( )

f x
h x

S x
  

 

2
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/2 ( 2)
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2
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



 


 
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 

               (10) 

2.3. Reversed Hazard Function of W2R 

Distribution 

The Reversed Hazard (RH) function quantifies the likeli-

hood of an event occurring at a given time, conditioned on 

the fact that the event has already occurred. It is defined as 

the ratio of the probability density function to the cumulative 

distribution function. Its provide insights into the failure rate 

of systems and components. 

Mathematically, the Reversed Hazard function for the 

W2R distribution is given by: 
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2
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/2 ( 2)

(1 ) 2

2
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1 1 ,
2 2 2

 
 
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

 


   
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x

r x x e
x    (11) 

 
Figure 4. Survival plot of the Weighted 2-Parameter Rayleigh Dis-

tribution. 

Figure 4 illustrates the survival function of the Weighted 

2-Parameter Rayleigh distribution for different parameter 

values. It demonstrates that as the scale parameter (β) value 

increases, the survival time also increases. 

3. Moments and Associated Measures of 

W2R Distribution 

The concept of moments plays a fundamental role in char-

acterizing a probability distribution by providing insights 

into its key properties, including central tendency, dispersion, 

asymmetry, and peakedness. Moments serve as the founda-

tion for deriving essential statistical measures such as the 

mean, variance, skewness, and kurtosis, which help in under-

standing the shape and behavior of a distribution. In the case 
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of the Weighted 2-Parameter Rayleigh Distribution (W2RD), 

moments are particularly useful in assessing its flexibility 

and applicability in various real-world scenarios. Mathemati-

cally, the jth moment of a non-negative random variable X is 

defined as follows: 

   
0

j j
wE X x f x dx



                           (12) 

 
2

2
/2 ( 2)

(1 ) 2

0

2

1
2

x

j jE X x x e dx
 

 



  


 
  
 

              (13) 
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2
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                 (16) 

3.1. The Mean of W2R Distribution 
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                         (17) 

3.2. Variance of W2R Distribution 
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3.3. Coefficient of Variation of W2R 

Distribution 
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3.4. Coefficient of Skewness of W2R 

Distribution 
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3.5. Coefficient of Kurtosis of W2R Distribution 

   4 3 2 2 4

4

4 6 3E X E X
CK

   



  
         (25) 

 

 

22 2 2 2 2 2

2

16 7 4 20
3 1 8 4 2

3 2 2 2 3 3

4 2 1
2

CK

 
          




        
                           


 

   
 

 (26) 

3.6. Harmonic Mean of W2R Distribution 

The Harmonic Mean of the weighted 2-parameter Ray-

leigh distribution can be obtained as 

1
.H M E

x

 
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                     (30) 

3.7. Moment Generating Function of W2R 

Distribution 

The moment generating function (MGF) provides a means 

to compute moments of a distribution efficiently. According 

to [10], the moment generating function for a random varia-

ble x that follows the Weighted 2-Parameter Rayleigh (W2R) 

distribution is derived as follows: 
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Let X have a Weighted 2-Parameter Rayleigh distribution, 

then the Moment Generating Function of X is obtained as: 
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substituting equation (33) into (32), we have 
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Using Taylor’s series, equation (34) becomes 
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   

   
0

!

j
j

x

j

t
M t E X

j





                     (36) 

where E(Xj) is defined in equation (16). 

Therefore, 

 
/2

0

2 3

j! 2
1

2

n j j j

x

j

t j
M t

 




 
 

     
    

   
  

               (37) 

3.8. Mean Deviation of W2R Distribution 

The deviation from the mean measures the spread and how 

values differ from the mean. Let x be a random variable fol-

lowing a Weighted 2-Parameter Rayleigh (W2R) distribution 

with a mean  E x  . The mean deviation is expressed as 

follows: 

   MD E x                        (38) 

   
0

wMD x f x dx 


                       (39) 

     
0

2 2w wMD F xf x dx


                  (40) 

where  wF   in Equation (40) is obtained as 

 

2

2
1 ,

2 2
1

1
2

w

x

F








 
   
 

 
 

  
 

                 (41) 

also  
0

wxf x dx


 in Equation (40) is obtained as 
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 

1

2

0

3
2 ,

2

1
2

wxf x dx



 



 
 
 


 

  
 

               (42) 

where
3

,
2




 
 
 

is expression for lower incomplete gam-

ma function. 

Substituting equation (41) and (42) into (40), then the 

Mean Deviation (MD) is given as; 

 

2 1

2
21/2

31 , 2 ,
2 22 4 2

2 1 2
2

1 1 1
2 2 2

MD

  
 

 


  

           
       

      
                  

      
 

 (43) 

3.9. Renyi Entropy 

The entropy of X is a randomness measure of the system 

and defined as 

 ( )

0

1
log

1
R wI f x dx






 
 
 
 
               (44) 

where 0 1and    

 
 

2

2
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1 2
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1 2
log

1
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x

RI x e dx
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
 







  


  
  
       
        

   (45) 
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1
1

2
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 
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1 1 1 1 1 12 1
2 2 2 2 2 2

2
2 2

2

x
let t then x t and dx t


   



   

  

1 1
112 2

2
( )

0

1 2
log

1
1

2

t
RI e t dt

  
 




 



  
  



 
 
 
   

   
  

   (47) 

1 1

12 2

( )

1
2

1 2
log

1
1

2

RI

  





 
 


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    
      

   (48) 

3.10. Order Statistics 

Let 𝑋(1), 𝑋(2),𝑋(3) …, 𝑋(𝑛), be the order statistics of a ran-

dom sample 𝑋1 , 𝑋2 , 𝑋3 , …, 𝑋𝑛  drawn from weighted 2-

parameter Rayleigh distribution, then the pdf of rth order sta-

tistics 𝑋(𝑟), is given by 

   
1

( )

!
( ) ( ) ( ) 1 ( )

1 ! !

r n r

w r w w w

n
f x f x F x F x

r n r

 
       

 
   (49) 

Substituting equations (3) and (4) in the equation (49), 

then the probability density function of rth order statistics 

𝑋(𝑟),  of the weighted 2-parameter Rayleigh distribution is 

given by 

   
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2

1
2 2

2 22/2
1 2
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2 22 2! 2

( ) 1
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1 1 1
2 2 2
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f x x e
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
 

 

 

  

 

 


                     
                   
              
             

 (50) 

Hence, the probability density function of higher order sta-

tistics 𝑋(𝑛), can be obtained as 

 
 

2
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1
2

22/2
1 2

( )

1 ,
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1 1
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



 



 


         
         
        
       

 (51) 

And the probability density function of the first order sta-

tistics 𝑋(1), can also be obtained as 

 
 

2

2

1
2

22/2
1 2

(1)

1 ,
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( )

1 1
2 2

n
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n
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
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



 



 


         
         
        
       

 (52) 

4. Parameter Estimation of W2R 

Distribution 

The estimation of the parameters for the weighted 2-

Parameter Rayleigh distribution is obtained using Maximum 

Likelihood Estimation (MLE) as follows: 

Let 
1 2

, ,..., nx x x  be a random sample of size “n” from 

the Weighted 2-Parameter Rayleigh distribution, as defined 

in equations (3) and (4). The likelihood function ( , )wL    is 

then given by 

1

( , ) (x / , )

n

w w i

i

L f   



                     (53) 

The likelihood function of Weighted 2-Parameter 

Rayleigh is expressed as: 
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 
 
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1 2

1

2
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w
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L x e


 
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

 
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 
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log ( , ) log(2) n 2 log( ) 1 log log 1

2 22

n n

w

i i

n
L x x n

 
    

 

  
          

  
   (55) 

The solution of the non-linear system of equations ob-

tained by differentiating equation (55) with respect to 

and 𝛽 gives the maximum likelihood estimates of the model 

parameters. 

Application to Real Life 

Two real-life data sets were analyzed using the Weighted 

2-Parameter Rayleigh (W2R), Weighted Rayleigh (WR), 

Rayleigh (R), Weighted Inverse Weibull (WIW), and Inverse 

Weibull (IW) distributions to evaluate their effectiveness in 

modeling real-world scenarios. The performance of the W2R 

distribution was assessed in comparison to these established 

distributions using key statistical criteria, including the log-

likelihood and Akaike Information Criterion (AIC). These 

measures provided insights into the goodness-of-fit and 

model complexity, allowing for a comprehensive evaluation 

of W2R's suitability for diverse applications, particularly in 

reliability analysis and survival studies. 

The first data set, previously utilized by [11], represents 

the waiting time (in minutes) before service for 100 bank 

customers. This data set provides valuable insights into cus-

tomer service efficiency and queue management in banking 

operations. 

Table 1. Summary of waiting time (Minutes) before service of bank 

Customers. 

N Mean Med. Var. Skewness Kurtosis 

100 9.877 8.100 52.3741 1.4727 5.5403 

Table 2. Analysis of competing distributions performance on wait-

ing time before service of bank Customers. 

Models Estimates LL AIC 

W2R 
0.7293 (0.1498)

10.8435(0.9155)













 -321.0227 646.0453 

WRD 
^

12.2231(0.8562)   -322.9123 647.8247 

RD 
^

8.6431(0.4373)   -329.24 660.4801 

Models Estimates LL AIC 

WIWD 
8.92778 (0.80856)

0.76940(0.07370)













 -327.8677 659.7354 

IWD 
6.53228(0.87686)

1.16291(0.0799)













 -334.3810 672.7620 

 
Figure 5. Histogram with competing distributions on waiting time 

data set. 

Table 2 presents the estimated parameter values (along 

with their standard errors), log-likelihood (LL), and Akaike 

Information Criterion (AIC) values for the Weighted 2-

Parameter Rayleigh (W2R) distribution alongside several 

existing distributions. The comparative performance analysis, 

based on LL and AIC, indicates that the W2R distribution 

provides the best fit to the data, achieving the highest log-

likelihood value (-321.0227) and the lowest AIC (646.0453). 

This suggests that the W2R distribution offers superior flexi-

bility and accuracy in modeling the given dataset. 

Among the competing distributions, the Weighted Ray-

leigh distribution follows closely in performance. The stand-

ard Rayleigh (RD), Weighted Inverse Weibull (WIWD), and 

Inverse Weibull (IWD) distributions exhibit progressively 

weaker fits, with the IWD distribution performing the worst, 

as evidenced by its highest AIC value (672.7620). Addition-

ally, Figure 6 visually reinforces these findings, demonstrat-

ing that the Weighted Rayleigh distribution provides a more 

precise fit to the data compared to the other distributions. 

This highlights the effectiveness of weighting mechanisms in 

improving distributional adaptability for real-world applica-

tions. 

The second data set, previously analyzed by [12], com-

prises the remission times (measured in months) for a ran-

domly selected sample of 128 bladder cancer patients. This 

dataset is particularly valuable in medical and survival analy-

sis studies, as it provides insights into the duration of remis-

sion following treatment. 
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Table 3. Summary of Remission time (Months) of Cancer Patient’s. 

N mean Med. Var. Skewness Kurtosis 

128 9.365 6.395 110.433 3.286 18.483 

Table 4. Analysis of competing distributions performance on Remission time (Months) of Cancer Patients. 

Models Estimates LL AIC 

W2R 
1.25184(0.07685)

16.23830(1.50662)













 -426.5927 857.1853 

WRD 14.0455(0.8942)


  -431.1156 864.2312 

RD 9.9316(0.4373)


  -491.2986 984.5971 

WIWD 
6.20806(0.32313)

0.44408(0.03869)













 -428.6478 861.2956 

IWD 
 2.43039(0.21867)

0.75207(0.04243)













 -443.9773 891.9547 

 

 
Figure 6. Histogram with competing distributions on Remission 

time (Months) of Cancer Patients. 

Table 5 presents the estimated parameter values (along 

with their standard errors), log-likelihood (LL), and Akaike 

Information Criterion (AIC) values for the Weighted 2-

Parameter Rayleigh (W2R) distribution and other existing 

distributions. These statistical measures are crucial for evalu-

ating the goodness-of-fit of each model to the dataset. 

The comparative analysis of the competing distributions, 

based on remission time (in months) of cancer patients, 

demonstrates that the W2R distribution provides the best fit. 

It achieves the highest log-likelihood value (-426.5927) and 

the lowest AIC (857.1853), indicating superior model per-

formance. The Weighted Rayleigh Distribution (WRD) and 

Weighted Inverse Weibull Distribution (WIWD) follow 

closely, with slightly higher AIC values of 864.2312 and 

861.2956, respectively. 

In contrast, the Rayleigh Distribution (RD) exhibits the 

poorest fit, as evidenced by its lowest log-likelihood (-

491.2986) and the highest AIC (984.5971). Similarly, the 

Inverse Weibull Distribution (IWD) also performs subopti-

mally, with an AIC of 891.9547. These results highlight the 

advantage of incorporating additional flexibility in distribu-

tion modeling, as seen in the weighted versions. 

Furthermore, Figure 6 visually reinforces these findings, 

illustrating that the weighted 2-Parameter Rayleigh distribu-

tion (W2R) provides a better curve fit to the dataset com-

pared to other models. This confirms the effectiveness of 

weighted distributions in capturing the underlying patterns in 

cancer remission time data. 

5. Conclusion 

In conclusion, the introduction of the Weighted 2-

Parameter Rayleigh (W2R) distribution demonstrates its 
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flexibility and superior performance when compared to exist-

ing models like the Weighted Rayleigh (WR), Rayleigh (R), 

Weighted Inverse Weibull (WIW), and Inverse Weibull (IW) 

distributions. Through the fusion of an inverted weight func-

tion with an additional parameter, the W2R distribution of-

fers improved modeling capabilities, as seen in its theoretical 

and statistical properties, including survival and hazard func-

tions, moments, and entropy. The estimation of its parame-

ters was conducted using Maximum Likelihood Estimation 

(MLE), and two real-life data sets were analyzed to assess its 

effectiveness. The results show that the W2R distribution 

consistently provides a better fit based on log-likelihood and 

Akaike Information Criterion (AIC) values. The performance 

comparison of the competing distributions further highlights 

the W2R distribution's superiority. In both data sets, the 

W2R distribution achieved the highest log-likelihood and the 

lowest AIC values, indicating a better fit than the other mod-

els. Specifically, in the remission time analysis, the W2R 

model outperformed the WRD, WIWD, RD, and IWD distri-

butions, with the Rayleigh distribution showing the worst fit. 

Overall, the Weighted 2-Parameter Rayleigh distribution 

proves to be a more robust and flexible model for real-life 

data analysis. 
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