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Abstract: Well-known methods of joint estimation of the state and parameters (quasilinearization, invariant imbedding,
extended Kalman filter and others like them) expand the vector of the state of the system by including equations for parameters
in the model. Such a task of joint estimation of the state and parameter is nonlinear even for linear systems. For Linear Structure
Models (LSModels), an analytical method is proposed for the transition to an auxiliary model in which the parameter vector is
expanded by initial states and the task of identifying parameter and initial states becomes linear. With the help of an auxiliary
state vector, the initial dynamic model is reduced to an auxiliary model with residual. In this case, the auxiliary model does not
contain derivatives of the measured elements of the initial dynamic model, but contains filtered measured elements. The proof
of the identity of solutions according to the initial and auxiliary models is given. An Iterative algorithm of identification of
order, parameters and state estimation is proposed. An analytical example of solving the problem of joint estimation of
parameters and state for the heat equation is given and its software implementation in the MATLAB is discussed in detail. Next,
another auxiliary model is proposed. If the first implies that the order of the differential equation is unknown but only limited by
a certain value, then the second model has a given order. Now there can be two types of auxiliary models to it. An example of a
nonlinear initial model is given.
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1. Introduction

The article proposes a method for simultaneous
identification of parameters, determination of the model
equation order and evaluation of the state of nonlinear
dynamical systems.

Well-known methods of joint estimation of the state and
parameter (quasilinearization [1, 2], invariant imbedding [3-
6], extended Kalman filter [7, 8] and others like them [9,
10]) expand the vector of the state of the system by including
equations for parameters in the model. Such a task of joint
estimation of the state and parameter is nonlinear even for
linear systems.

The idea of the auxiliary model is very simple. Let the initial
LSModel have the form:
a1ẋ(t) + a2x(t) + a3g(t) = 0 :
Integrating the equation of the model, we obtain the

auxiliary model:

a1x(t)− a1x(t0) + a2

t∫
t0

x(τ)dτ + a3

t∫
t0

g(τ)dτ = 0.

Thus, we got another parameter a1x(t0) that contains the
initial conditions, and the problem remains linear. This article
is devoted to generalizing this simple idea.

For Linear Structure Models (LSModels) [11, 12], an
analytical method is proposed for the transition to an auxiliary
model in which the parameter vector is expanded by initial
states and the task of identifying parameter and initial states
becomes linear.

In the first part of the article, for estimating the state of
the system was used numerical differentiation. Hereinafter we
will show how to replace differentiation with integration with
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measurement filtering elements.
The method of projection onto the plane of guarantors [13]

from the first part of the article has also gained traction. Now
the projection is performed onto the span of filtered guarantors.

2. Auxiliary Linear Structure Model

Let’s consider the following Linear Structure Model
(LSModel) with residual

K∑
k=1

S∑
s=1

aksf
(S−s)
k (t, y, g) = ε(t), (1)

where

ε(t) − residual;
aks − LSModel parameters;
fk(t, y, g) − LSModel elements, depending on input g(t),

output y(t) and on an independent variable t∈ ttt;

f
(S−s)
k (t, y, g) =

dS−s

dtS−s
fk(t, y, g) − corresponding

derivatives of fk(t, y, g) with respect to independent
variable t∈ ttt;
ttt − is an observation interval.
I’d like to note that the order of LSModel equation (1) is

not fixed, because any of the parameters aks can be zero. The
order is only limited by the value S, which we can assign at
our discretion.

Following [11-15], let’s introduce an auxiliary vector zzz(t)
with the following components:

z1(t)=e(t),

z2(t)=z
(1)
1 (t) − c1z1(t) −

K∑
k=1

ak1fk(t, y, g),
...
zS(t)=z

(1)
S−1(t)−cS−1z1(t)−

K∑
k=1

ak,S−1fk(t, y, g).

(2)

Let’s show that zzz(t) satisfies the equation of auxiliary LSModel in vector form

d

dt
zzz(t) = Czzz(t) +

K∑
k=1

aaak · fk(t, y, g), (3)

in this case, the residual e(t) satisfies the equation

e(S)(t)−
S∑

s=1

cse
(S−s)(t) = ε(t). (4)

Where C is a matrix with arbitrary coefficients cs, looking as follows:

C =


c1 1 0 · · · 0
c2 0 1 · · · 0
...

...
. . .

cS−1 0 0 · · · 1
cS 0 0 · · · 0

 ;

zzz(t) = [[[ z1(t)...zS(t) ]]]′ is the introduced auxiliary column-vector;
aaak = [[[ ak1...akS ]]]′ is a column-vector of parameters at fk and its derivatives.
Having substituted the first component z1(t)=e(t) into equation (2) for the second component z2(t) we get

z2(t)=e(1)(t)−c1e(t)−
K∑

k=1

ak1fk(t),

and now the obtained component z2(t) into the third one

z3(t)=
(
e(1)(t)−c1e(t)−

K∑
k=1

ak1fk(t)
)(1)

...−c2e(t)−
K∑

k=1

ak2fk(t)=e(2)(t)−c1e(1)(t)−c2e(t)−
K∑

k=1

2∑
s=1

aksf
(2−s)
k (t)

and so on and the obtained (S−1)-th into the S-th.
As a result, we get

zS(t)=e(S−1)(t)−c1e(S−2)(t)−...−cS−1e(t) ...−
K∑

k=1

S−1∑
s=1

aksf
(S−1−s)
k (t).
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Let’s differentiate the obtained expression

d

dt
zS(t)=e(S)(t)−c1e(S−1)(t)−...−cS−1e(t)(1) ...−

K∑
k=1

S−1∑
s=1

aksf
(S−s)
k (t).

From (4) it follows that

e(S)(t)−c1e(S−1)(t)−...−cS−1e(t)(1)=ε(t)+cSe(t)

and from (3) it follows that

K∑
k=1

S−1∑
s=1

aksf
(S−s)
k (t)=ε(t)−

K∑
k=1

akSf
(S−S)
k (t).

As a result

d

dt
zS(t)=ε(t)+cSe(t)−ε(t)+

K∑
k=1

akSf
(S−S)
k (t)=cSe(t) +

K∑
k=1

akSfk(t),

what proves our statement.
By direct substitution it is easy to make sure that a Cauchy

problem solution for the LSModel in vector form (3) with
initial conditions

zzz(0) = [[[ z10...zS0 ]]]′

can be written as an auxiliary LSModel in matrix form:

zzz(t) = Φ(t) · zzz(0) +

K∑
k=1

Rk(t) · aaak, (5)

where matrices Φ(t) and Rk(t) are solutions of the following
Cauchy problems:

d

dt
Φ(t) = CΦ(t), Φ(0) = E, (6)

d

dt
Rk(t) = CRk(t) + fk(t)E, Rk(0) = 0, (7)

(k = 1, . . . ,K);

where E is a unit matrix. The size of all matrices is S×S.

Let’s remark that the equations of these problems depend
only on functions fk(t) and do not depend on their derivatives.

Let’s remember that z1(t)=e(t), then the first row
of solution zzz(t) (5) can be noted in the form of
the auxiliary LSModel with residual:

S∑
s=1

φ1s(t)zs0 +

K∑
k=1

S∑
s=1

rk,1s(t)aks = e(t), (8)

where
φ1s(t) are elements of the first row of the matrix Φ(t),
rk,1s(t) are elements of the first rows of the matrices Rk(t).
The initial and the auxiliary LSModels with residual are

equivalent from the parameter identification point of view,
in other words, all solutions of the parameter identification
problem obtained using the auxiliary LSModel are solutions
to the initial problem and vice versa.

Let’s remark that all Cauchy Problems (6,7) and the
residual relation (4) have free parameters {cs: s=1, ..., S} and,
therefore, an additional problem of their selection may be set.

For example, the equation for the first element of the sth
column of the matrix Rk(ttt):

r
(S)
k,1s(ttt)− c1 r

(S−1)
k,1s (ttt)− · · · − cS−1 r(1)k,1s(ttt) ...− cS rk,1s(ttt)=f

(S−s)
k (ttt)

is an equation of a linear filter of LSModel element f (S−s)k (ttt),
that’s why it’s possible to choose the order S and arbitrary
coefficients cs of this and other equations based on
conditions of filtration of input functions f (S−s)k (ttt) into output
functions rk,1s(ttt).

It’s not by chance that the transformations of
elements f

(S−s)
k (ttt) of the initial LSModel to elements

of the auxiliary LSModel rk,1s(ttt) were called FR-
transformations.

In a new notation:

rk,1s(ttt)=FR
(
f
(S−s)
k (ttt)

)
, e(ttt)=FR

(
ε(ttt)

)
.

Based on the above, the following algorithm may be
proposed.

2.1. Iterative Algorithm of Identification of Order,
Parameters and State Estimation

Step 0 : Select initial LSModels (1) and auxiliary
LSModels with residual (8) and obtain the initial observation
data:
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f
[0]
k (t, y, g), t∈ttt k=1, ...,K.

Step 1 : Solve Cauchy problems for the calculation of
matrices Φ(ttt) (6) and Rk(ttt) (7) on the observation interval ttt.
Step 2 : Solve the problem of identification via the auxiliary

LSModel with residual (8), i.e. calculate

zs0, aks k=1, ...,K; s=1, ..., S.

Step 3 : Calculate z(t)z(t)z(t) (5), d/dtz(t)z(t)z(t) (3).
If the residual e(ttt)=z1(ttt) or other circumstances meet the

identification criterion,
finish the calculations.
If it is possible, again calculate components f [i]k (ttt) from

(2),
Go to Step 1 and continue calculations on the basis of the

newly calculated components f [i]k (ttt) of the state vector of the
initial LSModel. Here [i] is an iteration number.
End of iterative algorithm.
I’d like to note that all iterations are calculated without

additional measurements on the basis of the smoothing effect
(filtering) of the functions f [i]k (ttt).

2.2. Properties of FR-transformations

Let’s prove the properties of solutions of Cauchy Problems
for the matrices Φ and Rk that make their calculation process
much easier.

Let’s consider the sth columns φφφs(t), rrrk,s(t) and eees of the
matrices Φ(t), Rk(t) and the identity matrix E. The following
relations are true for these columns:

eees−1 = Ceees,

φφφs−1(t) = Cφφφs(t),

rrrk,s−1(t) = Crrrk,s(t).

The validity of the first relation can be verified by direct
substitution.

To prove the second one, let’s write the Cauchy Problem for
the (s−1)th column

d

dt
φφφs−1(t) = Cφφφs−1(t), φφφs−1(0)=eees−1;

and, having pre-multiplied all equations by the matrixC, we
get

d

dt
Cφφφs−1(t) = C Cφφφs−1(t), Cφφφs−1(0)=Ceees−1.

And, taking the proved relations into account, we get

d

dt
φφφs(t) = Cφφφs(t), φφφs(0)=eees,

i.e. the Cauchy Problem for the sth column.

Let’s write the Cauchy Problem for the (s−1)th column of
the matrix Rk(t) in a similar way:

d

dt
rrrk,s−1(t) = Crrrk,s−1(t) + fk(t)eees−1, rrrk,s−1(0)=0;

having pre-multiplied all equations by the matrix C, we get

d

dt
Crrrk,s−1(t) = C Crrrk,s−1(t) + Cfk(t)eees−1,

Crrrk,s−1(0)=C 0.

Taking the proved relations into account, we get

d

dt
rrrk,s(t) = Crrrk,s(t) + fk(t)eees, rrrk,s(0)=0,

i.e. the Cauchy Problem for the sth column.
So, to solve the Cauchy Problems for the matrices Φ and

Rk, it’s necessary to solve the Cauchy Problems for the last
columns of these matrices and to calculate the other columns
according to relations. Such calculation process organization
results in much faster obtaining of solutions.

For example, from the properties it follows that the solution
of the Cauchy Problem

d

dt
R(t)=

 0 1 0
0 0 1
0 0 0

R(t)+f(t)

 1 0 0
0 1 0
0 0 1

, R(0)=

 0 0 0
0 0 0
0 0 0

,
looks like

R =

 r3 r2 r1
0 r3 r2
0 0 r3


where

r3(t)=

t∫
0

f(τ)dτ, r2(t)=

t∫
0

r3(τ)dτ, r1(t)=

t∫
0

r2(τ)dτ.

2.3. Analytical example

In this example, I’d like to demonstrate the basic principle of
object parameters identification using an auxiliary LSModel,
which consists in the fact that the general solution of the
problem for the main and auxiliary models coincide.

For this purpose let’s consider the object going throughout
the entire article and the measurements obtained in
experiment #1 g(x, t)=0.2 and w(x, t)=t+x(x−1)/2, only
this time we’ll take another model:

a1 wt(x, t) + a2 wxx(x, t) + a3 w(x, t) = g(x, t).

Let’s calculate wt(x, t)=1 and wxx(x, t)=1 and having



International Journal of Systems Engineering 2024; 8(2): 22-39 26

substituted them into the equation we get

a1·1 + a2·1 + a3(t+x(x−1)/2) = 0.2 .

Obviously, the parameter identification problem has an
ambiguous general solution: a1+a2=0.2, a3=0.

I’d like to draw your attention to the fact that in an
ambiguous solution, some parameters may be determined
unambiguously [12].

It is also interesting that having taken another model of our
object we got a3=0. This fact confirms that the previous model
with fewer elements is adequate, what has a certain physical
meaning.

Now we will analytically solve this problem with the help
of an auxiliary LSModel.

Let’s fix x=0 then w(0, t)=t, wxx(0, t)=const and

LSModel (1) is as follows:

a1 wt(0, t) + a3 w(0, t) + b 1(t) = 0,

where b=a2wxx(0, t)−g(0, t).
In notation of equation (1) f1(t)=w(0, t), f2(t)=1, K=2,

S=2, a11=a1, a12=a3, a21=0, a22=b.
For the sake of the simplicity of calculations here, let

c1=c2=0,

then the auxiliary vector zzz(t) (2) will have the following
components

z1(t) = 0,
z2(t) = −a1w(0, t),

and the auxiliary LSModel in vector form (3) will appear as
follows:

d

dt

[
z1(t)
z2(t)

]
=

[
0 1
0 0

] [
z1(t)
z2(t)

]
+ w(0, t)

[
a1
a3

]
+ 1

[
0
b

]
,

and the auxiliary LSModel in matrix form (5) will appear as follows:[
z1(t)
z2(t)

]
=Φ(t)

[
z1(0)
z2(0)

]
+R1(t)

[
a1
a3

]
+R2(t)

[
0
b

]
.

Here Φ(t), R1(t), R2(t) are the solutions of three Cauchy problems:

d

dt
Φ(t)=

[
0 1
0 0

]
Φ(t), Φ(0)=

[
1 0
0 1

]
;

d

dt
R1(t)=

[
0 1
0 0

]
R1 +

[
w(0, t) 0

0 w(0, t)

]
, R1(0)=

[
0 0
0 0

]
;

d

dt
R2(t)=

[
0 1
0 0

]
R2 +

[
1 0
0 1

]
, R2(0)=

[
0 0
0 0

]
.

Thus, we’ve got the auxiliary LSModel with residual (8):

φ11(t)z1(0) + φ12(t)z2(0) + ...+ r111(t)a1 + r112(t)a3 + r212(t)b = 0.

It is easy to show that

Φ(t)=

[
1 t
0 1

]
, R1(t)=

[
t2/2 t3/6

0 t2/2

]
, R2(t)=

[
t t2/2
0 t

]
,

then the auxiliary LSModel will be as follows:

1 z1(0) + t z2(0) + t2/2 a1 + t3/6 a3 + t2/2 b = 0.

The general solution of the identification problem is as
follows:

z1(0)=0, z2(0)=0, a1 + b = 0, a3=0.

Let me remind that z2(t)=−a1 w(0, t), consequently
d/dt z2(t)=−a1 wt(0, t), and from the model in vector form
it follows that d/dt z2(t)=w(0, t) a3 + 1 b=b.

Then wt(0, t)=−b/a1, and from the obtained general
solution b=−a1, in the result wt(0, t)=1.

And so with the help of an auxiliary model, we calculated
the general solution and derivative wt(0, t) without resorting
to differentiation of measurements, but only by solving Cauchy
problems.

Now let’s fix t=0 then w(x, 0)=x(x−1)/2,
wt(x, 0)=const and LSModel (1) is as follows:

a2 wxx(x, 0) + a3 w(x, 0) + d 1(x) = 0,

where d=a1wt(x, 0)−g(x, 0).
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In notation of equation (1) f1(x)=w(x, 0), f2(x)=1, K=2,
S=3, a11=a2, a12=0, a13=a3, a21=0, a22=0, a23=d.

To simplify calculations here, let

c1=c2=c3=0,

then the auxiliary vector zzz(x) (2) will have the following
components

z1(x) = 0,
z2(x) = −a2w(x, 0),
z3(x) = −a2wx(x, 0),

and the auxiliary LSModel in vector form (3) will appear as
follows:

d

dx

 z1(x)
z2(x)
z3(x)

=

 0 1 0
0 0 1
0 0 0

 z1(x)
z2(x)
z3(x)

+ w(x, 0)

 a20
a3

+ 1

 0
0
d

,
and the auxiliary LSModel in matrix form (5) will appear as follows: z1(x)

z2(x)
z3(x)

=Φ(x)

 z1(0)
z2(0)
z3(0)

+R1(x)

 a20
a3

+R2(x)

 0
0
d

.
Here Φ(x), R1(x), R2(x) are the solutions of three Cauchy problems:

d

dx
Φ(x) =

 0 1 0
0 0 1
0 0 0

Φ(x), Φ(0)=

 1 0 0
0 1 0
0 0 1

 ;

d

dx
R1(x)=

 0 1 0
0 0 1
0 0 0

R1(x) + w(x, 0)

 1 0 0
0 1 0
0 0 1

, R1(0)=0;

d

dx
R2(x)=

 0 1 0
0 0 1
0 0 0

R2(x) +

 1 0 0
0 1 0
0 0 1

, R2(0)=0.

Thus, we’ve got the auxiliary LSModel with residual (8):

φ11(x)z1(0) + φ12(x)z2(0) + φ13(x)z3(0) + ...+ r111(x)a2 + r113(x)a3 + r213(x)d = 0.

It is easy to show that

Φ(x)=

 1 x x2/2
0 1 x
0 0 1

, R2(x)=

 x x2/2 x3/6
0 x x2/2
0 0 x

,
R1(x)=

 x3/6−x2/4 x4/24−x3/12 x5/120−x4/48
0 x3/6−x2/4 x4/24−x3/12
0 0 x3/6−x2/4

,
then the auxiliary LSModel will be as follows:

1 z1(0) + x z2(0) + (x2/2) z3(0) + ...+ (x3/6−x2/4)a2 + (x5/120−x4/48)a3 + (x3/6)d = 0.

The general solution of the identification problem is as follows:

z1(0)=0, z2(0)=0, z3(0)/2−a2/4=0, a2+d=0, a3=0.

Let me remind that z3(x)=−a2 wx(x, 0), and from the model in matrix form it follows that

z3(x) = φ33(x) z3(0)+r131(x) a2+r133(x) a3+r233(x) d= a2/2 + x d = a2/2− x a2,

then

wx(x, 0)=−z3(x)/a2 = x−1/2.
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From z3(x)=−a2 wx(x, 0) it also follows that
d/dx z3(x)=−a2 wxx(x, 0), and from the model in vector
form it follows that

d

dx
z3(x)=w(x, 0) a3 + 1 d=d.

then wxx(x, 0)=−d/a2, and from the obtained general
solution d=−a2, in the result wxx(x, 0)=1.

Let me remind that for t=0 d=a1wt(x, 0)−g(x, 0), and
g(x, t)=0.2, and now we have calculated that d=−a2. And
earlier for x=0 we have calculated that wt(0, t)=1. Having
substituted all calculations into the expression for d we’ll get
in the end −a2=a1−0.2 or a1+a2=0.2 .

Similarly, when x=0 b=a2wxx(0, t)−g(0, t) and b=−a1
and when t=0 wxx(x, 0)=1.

This time −a1=a2−0.2 or a1+a2=0.2 .
The total result of our calculations a1+a2=0.2, a3=0

completely coincides with the general solution of the
identification problem according to the basic model.

I’d like to draw your attention to the fact that despite the
fact that the general solution was ambiguous, we got exact
expressions for derivatives wt(0, t), wx(x, 0), wxx(x, 0). This
is not surprising, because the essence of the general solution
is that all models included in this solution have indiscernible
(identical) states.

In particular, this is why the normal solution obtained
using the least squares method has gained such popularity
in cybernetics, although it often does not give the correct
parameters, but being one of the solutions included in the
general solution, it allows you to assess the state of the object
correctly.

2.4. Example of Program

In contrast to the analytical example, let’s take the previous
model of our object to build the program:

a1 wt(x, t) + a2 wxx(x, t) + a3 g(x, t) = 0.

Let me remind you that experiment #3 guaranteed
identification (see part 1). However, now having fixed t=tj
we get

g(xxx, tj) = sin(xxx) sin(tj),

gt(xxx, tj) = sin(xxx) cos(tj),

gxx(xxx, tj) = −sin(xxx) sin(tj).

It is evident that now gt(xxx, tj) and gxx(xxx, tj) are
linearly dependent and experiment #3 does not guarantee
identification. Therefore, we will make a program for
experiment #4 in which

g(xxx, ttt) = sin(xxx) sin(ttt) + 0.8 ttt,

and then

gt(xxx, tj) = sin(xxx) cos(tj) + 0.8,

gxx(xxx, tj) = −sin(xxx) sin(tj).

Now gt(xxx, tj) and gxx(xxx, tj) are linear independent and
experiment #4 guarantees identification.

Simulation of the object measurements, as before, occupies
the beginning of the program. The full text of the program is
given in the appendix, hereinafter we will consider only the
main aspects.
Step 0 : Select initial LSModels (1) and auxiliary LSModels

with residual (8) and obtain the initial observation data.
The algorithm proposed in the analytical example was based

on the fact that wt(xxx, tj) and wxx(xi, ttt) are constants, what
simplified all calculations, but is incorrect in the general case.

Therefore, as before, we will calculate wt(xxx, tj) according
to formulas of central difference derivatives at every step of the
outer loop of iterations [i] :

w
[i]
t (xxx, tj)=

(
w[i](xxx, tj+1)−w[i](xxx, tj−1)

)
/(tj+1−tj−1)

and the initial LSModel will be as follows:

3∑
k=1

3∑
s=1

aksf
(S−s)
k (xxx, tj) = ε(xxx, tj),

here
f1=w

[i]
t (xxx, tj), a11=0, a12=0, a13=a1;

f2=w[i](xxx, tj), a21=a2, a22=0, a23=0;

f3=g(xxx, tj), a31=0, a32=0, a33=a3.
In this example, we fixed tj in order to calculate the

first derivative wt(xxx, tj), and not the second wxx(xi, ttt) when
fixing xi.

The outer loop of iterations begins with the operators

j1=13; j2=15; % 69
% 70

wi=w; wi_t=w_t; % 71
% 72

while 1, Iteration=Iteration+1 %%%%%%%%%%%% 73
for j=j1:j2, % 74

Operators % 69 specify the interval [tj1 , tj2 ] over which further calculations will be performed.
Operators % 71 set initial values for
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w[i](xxx, ttt) : wi=w; and w
[i]
t (xxx, ttt) : wi_t=w_t;

The outer loop of iterations ends with the operators

end; %for tj %161
%162

it = input(’Continue? Y/N [Y]: ’, ’s’); %163
if isempty(it), it=’Y’; end; %164
if it==’n’ || it==’N’, break; end; %165

%166
if j2-j1>1 && j1>=1 && j2<=st , %167
for j = j1+1 : j2-1, %168
for i = 1 : sx, %169
wi_t(i,j)=(wi(i,j+1)-wi(i,j-1))... %170
/(t(j+1)-t(j-1)); %171
end; %172
end; %173
j1=j1+1; j2=j2-1; %174
else %175
disp(’Continuation is not possible.’); %176
break; %177
end; %178

%179
end %for Iteration %%%%%%%%%%%%%%%%%%%%%%180

After the interval [tj1 , tj2 ] (operator %161) is exhausted,
a question is asked whether to continue the outer loop of
iterations and, if the answer is positive, new values wt(xxx, tj)
(operators %168-173) are calculated and the interval narrows
by one on both sides (operators %174), as the derivative is

calculated on a reduced interval. If the interval [tj1 , tj2 ] is not
sufficient (operator %167), a message is displayed (operator
%176) and calculations are terminated (operator %177).

In the inner loop of iterations, which begins with the
operator

for i=1:2; %%%%%%%%%%%%%%%%%%%%%%%%%% 78

and ends with the operator

end; %for i %%%%%%%%%%%%%%%%%%%%%% 160

two internal iterations of the algorithm, which we discuss throughout the article, are performed.
Iterative algorithm of identification of order, parameters and state estimation:
Step 1: Solve Cauchy problems for the calculation of the matrices Φ(xxx, tj) (6) and Rk(xxx, tj) (7) on the observation

interval [xxx, tj ], begins with comments

%% Step 1 % 80
%% CAUCHY PROBLEMS % 81

and contains operators necessary to solve all Cauchy Problems,
except the Cauchy Problem for the matrix Φ(xxx, tj), which does
not depend on iterable variables and is solved in zero iteration
once (operators % 61-63).

To solve the Cauchy Problems, M-function ode45 is taken
as the most universal, although the choice must be made in
accordance with the peculiarity of the problem being solved.
To use it, you need a separate file named, for example,

OYuK_R2
(
to calculate the matrix R2(xxx)

)
containing M-

function, which is also called OYuK_R2, and calculates the
derivative d/dxR2(xxx) of the Cauchy Problem being solved.

To calculate derivatives of the matrices Rk(xxx, tj) cubic
spline approximation (M-function spline) is used, what makes
it possible to work with a given opt accuracy and with uneven
readings of measured signals, that spring up, in particular,
when anomalous measurements are removed (see part 1).

function[dR]=OYuK_R2(xr,R) %1
global x j wi C %2
dR = C*R + [ 0; 0; spline(x,wi(:,j),xr) ]; %3
end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%4
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The necessary information is passed to the functions via
shared variables global. The matrix C also sets the order
of the auxiliary model.

The Cauchy Problems are solved for the third columns,
for example, R2_3 of the matrix R2(xxx, tj). M-function

ode45 returns an array of dimension sx×3, and for further
calculations 3×sx is needed. Therefore, the result is
transposed Phi_3=Phi_3’ and then the previous columns of
the matrix Φ(xxx) are calculated by multiplying by the matrix C:

[xR2,R2_3]=ode45(@OYuK_R2,x,[0;0;0],opt); % 85
R2_3=R2_3’; % 86
R2_2=C*R2_3; R2_1=C*R2_2; % 87

Other necessary Cauchy Problems are solved in a similar
way.
Step 2 : Solve the problem of identification via the auxiliary

LSModel with residual (8), begins with comments

%% Step 2 %100

and contains three ways to calculate initial conditions and
parameters. Every method ends with the display of solutions
and singular numbers. By this I want to draw your attention to
the need for a singular analysis. The use of the auxiliary model
is just the beginning, because the general solution according
to the initial model and the general solution according to the
auxiliary model coincide. The choice of an unambiguous
correct solution occurs at this step and here you need to use
everything that was written earlier.

We have already discussed two methods: SVD and
MIXED LS & TLS, but, as you understand, it is both
possible and necessary to apply many others.

Below we’ll discuss PROJECTION on the FR-GUARANTORS
method.

In part 1 of this article, the method of projection onto the
hyperplane of guarantors was presented. In it, the elements of
the model were projected onto the span of guarantors.

Now the auxiliary model includes elements of the first
row φ1s of the matrix Φ and FR-transformed elements of the
initial model rk,1s=FR

(
f
(S−s)
k

)
, and, therefore the projection

should be carried out onto the span of the first row of the matrix
Φ and FR-transformed guarantors (span{φ1s, rk,1s}).

This is how calculations using this method look in the
program:

%% PROJECTION on the FR-guarantors %116
[Qpr,Tpr]=... %117
qr([Phi R4_3(1,:)’ R3_1(1,:)’]); %118
Ppr=Qpr’*[Phi R]; %119
[Upr,Spr,Vpr]=svd(Ppr(1:5,:),0); %120
z0a_pr=-Vpr(:,6)’/Vpr(6,6) %121
singular_value_pr=diag(Spr)’ %122
%% %123

Step2 ends with the choice of a method whose calculated initial conditions and parameters will participate in further
calculations:

%% CHOICE OF METHOD %124
%z0a=z0a_svd; disp(’SVD’); %125
%z0a=z0a_mix; disp(’MIXED LS & TLS’); %126
z0a=z0a_pr; disp(’PROJECTION’); %127
%% %128

The choice is made in the program by removing the % note sign. The current selection is displayed on the screen. The
PROJECTION on the FR-GUARANTORS method is chosen here.

Step 3: Calculate z(x)z(x)z(x) (5), d/dxz(x)z(x)z(x) (3), begins with comment

%% Step 3 %129

and contains operators for calculation of z(x)z(x)z(x)

z0=z0a(1:3); a=z0a(4:6); %130
z=Phi_1*z0(1)+Phi_2*z0(2)+Phi_3*z0(3)... %131
+R1_3*a(1) +R2_1*a(2) +R3_3*a(3); %132

and d/dxz(x)z(x)z(x)
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dz=C*z; %139
dz(1,:)=dz(1,:)+a(2)*wi(:,j)’; %140
dz(3,:)=dz(3,:)... %141
+a(1)*wi_t(:,j)’+a(3)*g(:,j)’; %142

Let me remind that
z1(xxx, tj) = e(xxx, tj),

z2(xxx, tj) = z
(1)
1 (xxx, tj) − c1z1(xxx, tj) − a2w

[i](xxx, tj),

z3(xxx, tj) = z
(1)
2 (xxx, tj) − c2z1(xxx, tj).

and assuming that e(xxx, tj)≈0, then its derivative e(1)(xxx, tj)=z
(1)
1 (xxx, tj)≈0 too, and hence

w[i](xxx, tj)=−z2(xxx, tj)/a2, w
[i]
x (xxx, tj)=−z3(xxx, tj)/a2,

w
[i]
xx(xxx, tj)=− d

dxz3(xxx, tj)/a2.
In the program it looks like this

wi(:,j)=-z(2,:)’/a(2); %136
wi_x(:,j)=-z(3,:)’/a(2); %137
wi_xx(:,j)=-dz(3,:)’/a(2); %143

To check the assumptions about the smallness of e(xxx, tj), the program calculates the T-norm of z1(xxx, tj)

z1max=max(abs(z(1,:))) %134

Next, plots of the calculated model states are displayed on
the screen (operators %145-158) and the internal iteration is
repeated one more time.

In practice, of course, the need for repetition should
proceed from the convergence of the algorithm, which can be
controlled by T-norm of the residual, or other considerations
based on the specifics of the identification problem.

The proposed auxiliary model assumes that the order of the
differential equation of the initial model is unknown, but is
limited by the value S. The class of models (1) is very wide,

so the convergence of the identification algorithm cannot be
guaranteed.

Hereinafter I want to consider another auxiliary model,
for fixed-order equations S, which leads to a simple
iteration w[i+1]=Ψ(w[i]).

3. Auxiliary Linear Structure Model 2

Let’s consider the following Linear Structure Model [15]

w(S)(t)+
S∑

s=1
a0sw

(S−s)(t)+
K∑

k=1

S∑
s=1

aksf
(S−s)
k (t, w, g)=0,

w̃(t) = w(t) + ∆w(t),
where

– aks are LSModel parameters;
– fk(t, w, g) are LSModel elements, depending on input g=g(t), output w=w(t) and on independent variable t (t∈ttt);
– f (S−s)k (t, w, g) are (S−s)-derivatives of function fk(t, w, g) with respect to t;
– w̃(t) output measurements w(t);
– ttt is an observation interval.

Let’s introduce a state vector zzz(t) with the following components:

z1(t)=w(t),

z2(t)=z
(1)
1 (t) − a0,1w(t) −

K∑
k=1

ak1fk(t, w, g),
...
zS(t)=z

(1)
S−1(t) − a0,S−1w(t) −

K∑
k=1

ak,S−1fk(t, w, g).

Then it’s possible to write the initial model as

d

dt
zzz(t) = Azzz(t) +

K∑
k=1

aaakfk(t, w, g),

where

A =


a01 1 0 · · · 0
a02 0 1 · · · 0
...

...
. . .

a0,S−1 0 0 · · · 1
a0S 0 0 · · · 0

 , aaak =

 ak1
...
akS

 .
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Having added cccz1(t)−cccw(t)=0, ccc=[c1...cS ]′ to the left
side of the equation and denoted w(t)=f0(t) we get the
following auxiliary LSModel in vector form:

d

dt
zzz(t) = Czzz(t) +

K∑
k=0

âaak · fk(t, w[i], g),

where

C =


c1 1 0 · · · 0
c2 0 1 · · · 0
...

...
. . .

cS−1 0 0 · · · 1
cS 0 0 · · · 0

 ,
ccc=[c1...cS ]′ are free auxiliary LSModel parameters;
â̂âak=[âk1...âkS ]′ are auxiliary LSModel parameters;
w[i](t) is the ith estimation of w(t) and the primary

measurement of w(t) is w[0](t)=w(t)+∆w(t).
Notice that when ccc+â̂âa0=aaa0, â̂âak=aaak (k=1...K) and

w[i](ttt)=w(ttt) the auxiliary LSModel and the initial LSModel
are equivalent in parameters and state.

As before, let’s write the solution of the Cauchy Problem
via the auxiliary LSModel in vector form (2) with initial
conditions zzz(0)=[ z

[i]
10 ... z

[i]
S0 ]′ as the auxiliary LSModel in

matrix form:

zzz(t) = Φ[i](t)zzz(0) +

K∑
k=0

R
[i]
k (t) â̂âak,

where the matrices Φ[i](t) and R
[i]
k (t) are solutions of the

following Cauchy Problems:

d

dt
Φ[i](t) = CΦ[i](t), Φ[i](0)=E;

d

dt
R

[i]
k (t) = CR

[i]
k (t) + fk(t, w[i], g)E, R

[i]
k (0)=0;

where E is an identity matrix.
All matrixes have (S×S)-dimension and all vectors have

S-dimension.
Let’s introduce two auxiliary LSModels: with the residual

e
[i]
1 (t) and with the basic model element w[i](t):

S∑
s=1

φ
[i]
1s(t) · zs0 +

K∑
k=0

S∑
s=1

r
[i]
k,1s(t) · âks = w[i](t) + e

[i]
1 (t)

and with the residual e
[i]
2 (t) and with the basic model

element w̃(t):

S∑
s=1

φ
[i]
1s(t)zs0 +

K∑
k=0

S∑
s=1

r
[i]
k,1s(t)âks = w̃(t) + e

[i]
2 (t),

where φ[i]1s(t) are elements of the first row of the matrix Φ[i](t),
r
[i]
k,1s(t) are elements of the first rows of the matrices R[i]

k (t).
The first auxiliary LSModel with residual is equivalent to

z1(t) = w[i](t) + e
[i]
1 (t),

and now, minimizing e[i]1 (t) as a residual, we are going to move
z1(ttt) to w[i](ttt) in the first model.

The second auxiliary LSModel with residual is equivalent to

z1(t) = w̃(t) + e
[i]
2 (t),

and minimizing e[i]2 (t) as a residual and taking

w[i+1](ttt) = z
[i]
1 (ttt)

for the next iteration we will get

w[i+1](ttt) = w̃(t) + e
[i]
2 (t),

or

e
[i]
2 (t) = −∆w(t)

in the second model.
Thus, the uncertainty in the LSModel became a residual in

the auxiliary LSModel.
Let’s take w[0](t):=w̃(t), ccc[0]:=ccc.
Let’s solve the corresponding Cauchy Problems and obtain

matrices Φ[i](ttt) and R[i]
k (ttt).

Let’s solve the Identification Problem via one of auxiliary
LSModels with residual and find z[i]s0 and a[i]ks.

Let’s substitute the found matrices and parameters into the
right part of solution of the Cauchy Problem of the auxiliary
LSModel in matrix form and let’s define the value zzz[i](ttt) as
follows:

zzz[i](ttt):=Φ[i](ttt)zzz[i](0) +

K∑
k=0

R
[i]
k (ttt) â̂âa

[i]
k ,

and calculate

d

dt
zzz[i](ttt):=C [i]zzz[i](ttt) +

K∑
k=0

fk(ttt, z
[i]
1 , g) â̂âa

[i]
k

from the equation of the auxiliary LSModel in vector form.
Then for the next iteration let’s take

w[i+1](ttt):= z
[i]
1 (ttt).

To assess the convergence of the identification process, the
t-norm of the residual

||e[i]1 (ttt)||t:= max
t∈ttt
|w[i+1](t)− w[i](t)|,

may be used and may be calculated

∆w[i](ttt):= w̃(ttt)− w[i](ttt).
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We may change the value of the matrix C [i+1] by taking,
for example ccc[i+1]=aaa

[i]
0 , and we may not change C [i], what is

more practical from the point of view of solution of Cauchy
Problems for the matrices Φ[i](t) and R[i]

k (t).

3.1. Example of Nonlinear LSModel

Let’s consider a nonlinear model from part 1:

α1wt(xxx, ttt) + α2wxx(xxx, ttt) + α3w(xxx, ttt)...+ β1
(
wx(xxx, ttt)

)2
+ β2 g(xxx, ttt) = 0.

Let’s fix ttt=tj , then the initial LSModel will be as follows:

wxx(xxx, tj) + a02 w(xxx, tj)...+ a12 wt(xxx, tj) + a22 w
2
x(xxx, tj) + a32 g(xxx, tj) = 0,

here
a02=α3/α2, a12=α1/α2, a22=β1/α2, a32=β2/α2,

the others aks=0.
The state vector zzz(xxx, tj) has the following components:

z1(xxx, tj) = w(xxx, tj),

z2(xxx, tj) = z(1)(xxx, tj)− a01 w(xxx, tj) = wx(xxx, tj),

because a01=0.
The auxiliary LSModel in vector form will be as follows:

d

dx
zzz(xxx, tj) =

[
c1 1
c2 0

]
zzz(xxx, tj) +

[
â01
â02

]
w(xxx, tj) ...+

[
0
â12

]
wt(xxx, tj) +

[
0
â22

]
w2

x(xxx, tj) +

[
0
â32

]
g(xxx, tj),

here â01=−c1 ( because a01=0 ), â02=a02−c2 , â12=a12 , â22=a22 , â32=a32 .
Step 0:

Let’s take w[0](xxx, tj):=w̃(xxx, tj).
Let’s calculate w[0]

t (xxx, tj) and w[0]
x (xxx, tj) according to formulas of central-difference derivatives:

w
[0]
t (xi, tj):=

(
w̃(xi, tj+1)−w̃(xi, tj−1)

)
/(tj+1−tj−1), w[0]

x (xi, tj):=
(
w̃(xi+1, tj)−w̃(xi−1, tj)

)
/(xi+1−xi−1).

Let’s solve the Cauchy Problem:

d

dx

[
φ12(xxx)
φ22(xxx)

]
=

[
c1 1
c2 0

] [
φ12(xxx)
φ22(xxx)

]
,

[
φ12(0)
φ22(0)

]
=

[
0
1

]
;

and calculate [
φ11(xxx)
φ21(xxx)

]
:=

[
c1 1
c2 0

] [
φ12(xxx)
φ22(xxx)

]
.

Step 1:
Let’s solve the Cauchy Problem:

d

dx

[
r0,12(xxx)
r0,22(xxx)

]
=

[
c1 1
c2 0

] [
r0,12(xxx)
r0,22(xxx)

]
+

[
0

w[i](xxx, tj)

]
,

[
r0,12(0)
r0,22(0)

]
=

[
0
0

]
;

and calculate [
r0,11(xxx)
r0,21(xxx)

]
:=

[
c1 1
c2 0

] [
r0,12(xxx)
r0,22(xxx)

]
;

and the Cauchy Problem:

d

dx

[
r1,12(xxx)
r1,22(xxx)

]
=

[
c1 1
c2 0

] [
r1,12(xxx)
r1,22(xxx)

]
+

[
0

w
[i]
t (xxx, tj)

]
,

[
r1,12(0)
r1,22(0)

]
=

[
0
0

]
;

and the Cauchy Problem:
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d

dx

[
r2,12(xxx)
r2,22(xxx)

]
=

[
c1 1
c2 0

] [
r2,12(xxx)
r2,22(xxx)

]
+

[
0(

w
[i]
x (xxx, tj)

)2 ], [ r2,12(0)
r2,22(0)

]
=

[
0
0

]
;

and the Cauchy Problem:

d

dx

[
r3,12(xxx)
r3,22(xxx)

]
=

[
c1 1
c2 0

] [
r3,12(xxx)
r3,22(xxx)

]
+

[
0

g(xxx, tj)

]
,

[
r3,12(0)
r3,22(0)

]
=

[
0
0

]
.

I’d like to note that all Cauchy Problems are linear with constant coefficients, despite the fact that the equation of the initial
model is nonlinear.

In particular, this circumstance makes it possible to solve analytical examples very easily, even for nonlinear models.
Step 2:
Let’s solve the Identification Problem via one of auxiliary LSModels with residual and find z[i]s0 and a[i]ks:

φ11(xxx) z
[i]
10 +φ12(xxx) z

[i]
20 − r0,11(xxx) c1− r0,12(xxx) c2...+ r0,12(xxx) a

[i]
02 + r1,12(xxx) a

[i]
12 + r2,12(xxx) a

[i]
22...+ r3,12(xxx) a

[i]
32 = w[i](xxx, tj)

or

φ11(xxx) z
[i]
10 +φ12(xxx) z

[i]
20 − r0,11(xxx) c1− r0,12(xxx) c2...+ r0,12(xxx) a

[i]
02 + r1,12(xxx) a

[i]
12 + r2,12(xxx) a

[i]
22...+ r3,12(xxx) a

[i]
32 = w̃(xxx, tj).

Step 3:
Now we can calculate[

z
[i]
1 (xxx)

z
[i]
2 (xxx)

]
:=

[
φ11(xxx)
φ21(xxx)

]
z
[i]
10 +

[
φ12(xxx)
φ22(xxx)

]
z
[i]
20 ...−

[
r0,11(xxx)
r0,21(xxx)

]
c1 +

[
r0,12(xxx)
r0,22(xxx)

]
(a

[i]
02−c2) ...

+

[
r1,12(xxx)
r1,22(xxx)

]
a
[i]
12 +

[
r2,12(xxx)
r2,22(xxx)

]
a
[i]
22 +

[
r3,12(xxx)
r3,22(xxx)

]
a
[i]
32,

e[i+1](xxx):= z
[i]
1 (xxx)−w[i](xxx, tj), ||e[i+1](xxx)||t:= max

x∈xxx
|e[i+1](x)|, e[i+1]

x (xxx):= z
[i]
2 (xxx)−w[i]

x (xxx, tj), ||e[i+1]
x (xxx)||t:= max

x∈xxx
|e[i+1]

x (x)|,

and can take

w[i+1](xxx, tj):=z
[i]
1 (xxx), w[i+1]

x (xxx, tj):= z
[i]
2 (xxx),∆w[i+1](xxx, tj):= w̃(xxx, tj)− w[i+1](xxx, tj).

Go to Step 1.
The reader is invited to perform the calculation of the

analytical example and create a program independently. And
the main thing is to check the program and theory for a
complete match. I warn you right away that most likely there
will be errors both in the theoretical part and in the program.
But a match will mean that the program is ready for use.

I hope that I have corrected my mistakes. If you find any,
would you, please, take the trouble to write to the mail. I will
be pleased that you have read my article carefully.

4. Conclusion

The auxiliary model method itself is analytical, but its
software implementation has a lot of options that depend on:

1. measurement filtering method (matrix C and S model
order);

2. method of solving the Cauchy Problem;
3. approximation method and measurement frequency;

4. method for solving the auxiliary problem of parameter
and initial state identification.

All this gives good opportunities to adjust the program to
the conditions of the problem you are facing.

In this part of the article examples are given in which only
the problems of organizing calculations using the auxiliary
model method are discussed. But do not forget about the
problems described in two previous parts of the article, which
have now become the problem of identification of the auxiliary
LSModel parameters.

Abbreviations

LSModel Linear Structure Model
LSModels Linear Structure Model Class
M-function MATLAB function



35 Oleg Yu. Kopysov: Identification of Physical Dynamical Processes Via Linear Structure Models (Part 2)

ORCID
0009-0005-0593-1685 (Oleg Yu. Kopysov)

Author Contributions
Oleg Yu. Kopysov is the sole author. The author read and approved the final manuscript.

Conflicts of Interest
The author declare no conflicts of interest.

Appendix: MATLAB Program
These program files were transferred to the article by copying from the MATLAB editor. You can copy each file back to the

MATLAB editor without changing anything. The line numbers on the right are comments of the MATLAB language and do not
affect the operation of the program. After copying to the MATLAB editor, you will see the line numbers on the left, they must
match the numbers on the right. Next, you need to save the file with the appropriate name.

File OYuK (main program)

clear; clf; format short e % 1
opt=odeset(’RelTol’, 2ˆ(-24)); % 2

% 3
global x t j wi wi_t g g_t C % 4

% 5
%% HEAT EQUATION %% 6
%% 0.8 w_t(x,t) - 0.6 w_xx(x,t) = g(x,t) %% 7

% 8
Experiment=4 %%%%%%%%%%%%%%%%%%%%%%%%%%%% 9
hx=2ˆ(-3); x1=0; xf=6; % 10
ht=2ˆ(-2); t1=-1*ht; tf=6+ht; % 11

% 12
x=(x1:hx:xf); sx=size(x,2); % 13
t=(t1:ht:tf); st=size(t,2); % 14

% 15
g0=zeros(sx,st); g0_t=zeros(sx,st); % 16
w0=zeros(sx,st); w0_t=zeros(sx,st); % 17
w0_x=zeros(sx,st); w0_xx=zeros(sx,st); % 18
F0=zeros(sx*st,3); % 19
m=0; teta=-atan(4/3); % 20
for i=1:sx, for j=1:st, % 21
g0(i,j)=sin(x(i))*sin(t(j))-0.8*t(j); % 22
g0_t(i,j)=sin(x(i))*cos(t(j))-0.8; % 23
w0(i,j)=sin(x(i))*sin(t(j)+teta)-t(j)ˆ2/2; % 24
w0_t(i,j)=sin(x(i))*cos(t(j)+teta)-t(j); % 25
w0_x(i,j)=cos(x(i))*sin(t(j)+teta); % 26
w0_xx(i,j)=-sin(x(i))*sin(t(j)+teta); % 27
m=m+1; % 28
F0(m,:)=[w0_t(i,j) w0_xx(i,j) g0(i,j)]; % 29
end; end; % 30

% 31
[U0,S0,V0]=svd(F0,0); a0=-V0(:,3)/V0(3,3); % 32

% 33
deviation=0.01 % 34
w=w0+deviation*randn([sx,st]); % 35
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g=g0; % 36
% 37

g0=g0(:,2:st-1); g0_t=g0_t(:,2:st-1); % 38
w0=w0(:,2:st-1); w0_t=w0_t(:,2:st-1); % 39
w0_x =w0_x(:,2:st-1); % 40
w0_xx=w0_xx(:,2:st-1); % 41

% 42
Iteration=0; %%%%%%%%%%%%%%%%%%%%%%%%%%%% 43

% 44
w_t=zeros((sx),(st-2)); % 45
g_t=zeros((sx),(st-2)); % 46
for i=1:sx, for j=2:st-1, % 47
w_t(i,j-1)=(w(i,j+1)-w(i,j-1))... % 48
/(t(j+1)-t(j-1)); % 49
g_t(i,j-1)=(g(i,j+1)-g(i,j-1))... % 50
/(t(j+1)-t(j-1)); % 51
end; end; % 52

% 53
t=t(2:st-1); % 54
g=g(:,2:st-1); w=w(:,2:st-1); % 55
st=st-2; % 56

% 57
c1=-1; c2=-2ˆ2; c3=0; % 58
C=[ c1 1 0; c2 0 1; c3 0 0 ]; % 59

% 60
[xP,Phi_3]=ode45(@OYuK_Phi,x,[0;0;1],opt); % 61
Phi_3=Phi_3’; % 62
Phi_2=C*Phi_3; Phi_1=C*Phi_2; % 63
Phi=[Phi_1(1,:)’ Phi_2(1,:)’ Phi_3(1,:)’]; % 64

% 65
wi_x =zeros(sx,st); % 66
wi_xx=zeros(sx,st); % 67

% 68
j1=13; j2=15; % 69

% 70
wi=w; wi_t=w_t; % 71

% 72
while 1, Iteration=Iteration+1 %%%%%%%%%%%% 73
for j=j1:j2, % 74

% 75
fprintf(’%s%d%s%1.3f\n’,’t(’,j,’)=’,t(j)); % 76

% 77
for i=1:2; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 78

% 79
%% Step 1 % 80
%% CAUCHY PROBLEMS % 81
[xR1,R1_3]=ode45(@OYuK_R1,x,[0;0;0],opt); % 82
R1_3=R1_3’; % 83

% 84
[xR2,R2_3]=ode45(@OYuK_R2,x,[0;0;0],opt); % 85
R2_3=R2_3’; % 86
R2_2=C*R2_3; R2_1=C*R2_2; % 87

% 88
[xR3,R3_3]=ode45(@OYuK_R3,x,[0;0;0],opt); % 89
R3_3=R3_3’; % 90
R3_2=C*R3_3; R3_1=C*R3_2; % 91

% 92
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[xR4,R4_3]=ode45(@OYuK_R4,x,[0;0;0],opt); % 93
R4_3=R4_3’; % 94

% 95
R=[R1_3(1,:)’ R2_1(1,:)’ R3_3(1,:)’ ]; % 96

% 97
if 1, clf; plot([Phi R]); pause(2); end; % 98

% 99
%% Step 2 %100
%% SVD %101
[Ux,Sx,Vx]=svd([Phi R],0); %102
z0a_svd=-Vx(:,6)’/Vx(6,6) %103
singular_value=diag(Sx)’ %104
%% %105
%% MIXED LS & TLS %106
[Q,T]=qr([Phi R3_3(1,:)’]); %107
T1=T(1:4,1:4)ˆ(-1); %108
P=Q’*[R1_3(1,:)’ R2_1(1,:)’]; %109
[Up,Sp,Vp]=svd(P(5:st,:),0); %110
b=-T1*P(1:4,:)*Vp(:,2); %111
z0a_mix=[b(1) b(2) b(3) Vp(:,2)’ b(4)]’; %112
z0a_mix=-z0a_mix’/z0a_mix(6) %113
singular_value_mix=diag(Sp)’ %114
%% %115
%% PROJECTION on the FR-guarantors %116
[Qpr,Tpr]=... %117
qr([Phi R4_3(1,:)’ R3_1(1,:)’]); %118
Ppr=Qpr’*[Phi R]; %119
[Upr,Spr,Vpr]=svd(Ppr(1:5,:),0); %120
z0a_pr=-Vpr(:,6)’/Vpr(6,6) %121
singular_value_pr=diag(Spr)’ %122
%% %123
%% CHOICE OF METHOD %124
%z0a=z0a_svd; disp(’SVD’); %125
%z0a=z0a_mix; disp(’MIXED LS & TLS’); %126
z0a=z0a_pr; disp(’PROJECTION’); %127
%% %128
%% Step 3 %129
z0=z0a(1:3); a=z0a(4:6); %130
z=Phi_1*z0(1)+Phi_2*z0(2)+Phi_3*z0(3)... %131
+R1_3*a(1) +R2_1*a(2) +R3_3*a(3); %132

%133
z1max=max(abs(z(1,:))) %134

%135
wi(:,j)=-z(2,:)’/a(2); %136
wi_x(:,j)=-z(3,:)’/a(2); %137

%138
dz=C*z; %139
dz(1,:)=dz(1,:)+a(2)*wi(:,j)’; %140
dz(3,:)=dz(3,:)... %141
+a(1)*wi_t(:,j)’+a(3)*g(:,j)’; %142
wi_xx(:,j)=-dz(3,:)’/a(2); %143

%144
clf; xtj=[’(x,’,num2str(t(j),3),’)’]; %145
subplot(221); %146
plot(x,wi(:,j),’r’,’LineWidth’,2); %147
title([’{\bfwˆ{[i]}}’ xtj ]); %148
subplot(222); %149
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plot(x,wi_t(:,j),’c’,’LineWidth’,2); %150
title([’{\bfw_tˆ{[i]}}’ xtj ]); %151
subplot(223); %152
plot(x,wi_x(:,j),’m’,’LineWidth’,2); %153
title([’{\bfwˆ{[i]}_x}’ xtj ]); %154
subplot(224); %155
plot(x,wi_xx(:,j),’b’,’LineWidth’,2); %156
title([’{\bfwˆ{[i]}_{xx}}’ xtj ]); %157
pause(3); %158

%159
end; %for i %%%%%%%%%%%%%%%%%%%%%%%%%%%160
end; %for tj %161

%162
it = input(’Continue? Y/N [Y]: ’, ’s’); %163
if isempty(it), it=’Y’; end; %164
if it==’n’ || it==’N’, break; end; %165

%166
if j2-j1>1 && j1>=1 && j2<=st , %167
for j = j1+1 : j2-1, %168
for i = 1 : sx, %169
wi_t(i,j)=(wi(i,j+1)-wi(i,j-1))... %170
/(t(j+1)-t(j-1)); %171
end; %172
end; %173
j1=j1+1; j2=j2-1; %174
else %175
disp(’Continuation is not possible.’); %176
break; %177
end; %178
end %for Iteration %%%%%%%%%%%%%%%%%%%%%%179

File OYuK Phi for calculation of the 3rd column of Φ(xxx, tj)

function[dPhi]=OYuK_Phi(x_p,Phi) %1
global C %2
dPhi = C*Phi; %3
end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%4

File OYuK R1 for calculation of the 3rd column of R1(xxx, tj)

function[dR]=OYuK_R1(xr,R) %1
global x j wi_t C %2
dR = C*R + [ 0; 0; spline(x,wi_t(:,j),xr) ]; %3
end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%4

File OYuK R2 for calculation of the 3rd column of R2(xxx, tj)

function[dR]=OYuK_R2(xr,R) %1
global x j wi C %2
dR = C*R + [ 0; 0; spline(x,wi(:,j),xr) ]; %3
end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%4

File OYuK R3 for calculation of the 3rd column of R3(xxx, tj)

function[dR]=OYuK_R3(xr,R) %1
global x j g C %2
dR = C*R + [ 0; 0; spline(x,g(:,j),xr) ]; %3
end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%4
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File OYuK R4 for calculation of the 3rd column of R4(xxx, tj)

function[dR]=OYuK_R4(xr,R) %1
global x j g_t C %2
dR = C*R + [ 0; 0; spline(x,g_t(:,j),xr) ]; %3
end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%4
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