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Abstract 

The examination of short-term interest-rate behaviour is of critical importance in financial analysis, risk management, and in 

formulating monetary policy. Fluctuations in financial markets in recent times have emphasised the need for strong and reliable 

models that can effectively model behaviors and dynamics involved in short-term interest-rate fluctuations. Conventional 

approaches, including Vasicek’s, have been universally embraced; yet such techniques often face difficulty in explaining 

clustering and autocorrelated volatility in real-world data. This study explores short-term interest rate models with stochastic 

volatility and evaluates their effectiveness in comparison to Autoregressive Conditional Heteroskedasticity (ARCH) and 

Generalised ARCH (GARCH) models. Using historical data from Nigerian financial instruments, we carried out Ljung-Box 

Q-statistic and ARCH tests to examine autocorrelation and volatility clustering. Results indicate that the data exhibits strong 

autocorrelation and significant volatility clustering. The predictive performance of our stochastic volatility model was measured 

by 10-day ahead volatility forecasts, which reached the sum of squared deviations of 1.3095, while ARCH had 2.0001 and 

GARCH had 2.1433. Our findings suggest that the stochastic volatility model outperforms the traditional ones, such as ARCH 

and GARCH, for interest rate change forecasting. Based on the performance realised, observed stochastic volatility models are 

recommended to better forecast interest rates, particularly for the emerging markets, where financial data could be volatile. 
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1. Introduction 

In financial terms, interest is basically the cost of borrowing 

money [2]. Just as in any free-market economy, price ulti-

mately comes down to supply and demand. Such that when 

demand is weak, lenders charge less for them to release their 

cash. However, when demand is great, they increase the price 

by charging a higher interest rate. Interest rate futures trading 

has grown dramatically during the previous two decades, with 

the introduction of various new products. Interest rate deriva-

tives are priced based on interest rate levels and models; hence, 

effective market practice and financial theory are dependent 
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on sound statistical analysis and interest rate modelling [1]. 

Similarly, interest rate characteristics are as common when 

economic conditions change. This is where the government 

plays a major role. 

Central banks like the Central Bank of Nigeria (CBN) tend 

to purchase government debt when an economy is experi-

encing a contraction, pumping much-needed cash into the 

stagnant economy for new loans [43]. This increased supply, 

coupled with weak demand, drives the interest rates down. 

During an upturn, this scenario is exactly opposite. Still, at 

face value, a hike or drop in interest rates is quite unsure. 

Therefore, a number of interest rate models have been de-

veloped over the years in the attempt to predict or assess the 

characteristics of various interest rates. An interest rate model 

is generally regarded as a probabilistic description of the fu-

ture development of interest rates [42]. In the context of rapid 

development, innovation, and expansion of the interest rate 

markets, it is increasingly important to keep pace with prac-

tical and theoretical advances. Future interest rates cannot be 

predicted, in fact, contemporary information-interest rate 

models characterise that uncertainty [26]. Models such as 

these have to be applied in quantitative analysis of securities 

with rate-dependent cash flows to find the present value of the 

uncertainty. Such models often possess stochastic volatility. 

The word stochastic could be seen as just another word for 

random or uncertain [6]. The concept of interest rate itself 

encompasses the time value of money; how money in the 

present value is worth more than money in the future [26]. 

With such a principle, lenders have to add on an interest 

component to balance the two values—the interest rate. How 

interest rates change as time goes by has an air of unpredict-

ability to it. And with uncertainties comes actuaries, which is 

used to develop models. 

In Nigeria for example, the CBN is responsible for setting the 

interest rates. Each country’s government just sets interest rates 

to what they feel is best for their country’s economic situation. 

Normally a government would set a higher interest rate to 

combat inflation or low-interest rates to try and increase growth 

[2]. In other words, a low-interest rate increases growth and a 

high-interest rate combat inflation. However, what would war-

rant these changes in interest rates is unpredictable or uncertain. 

This is where and why actuaries come in handy and interest rate 

models are developed [6]. Nevertheless, there is a myriad of 

interest rate models with stochastic volatility which are been 

used to predict interest rates. This research mainly analysed 

popular short rate models with stochastic volatility. 

Whilst there are several interest rate models for use, this 

research compares the performance of a wide variety of 

well-known short term interest models in capturing their sto-

chastic behaviour. This can serve as a common framework in 

which different models could be nested and their performance 

benchmarked. The research could equally serve as a resource 

material for scholars in the field of financial engineering and 

economics. 

2. Literature Review and Statement of 

Research Problem 

2.1. Conceptual Review 

2.1.1. Concept of Interest Rate and Modelling 

Interest is the percentage of a totality of money charged for 

its use; it is a price paid for borrowing money or payment 

received for lending money. Interest rate more particularly is 

―either the cost of borrowing money or the reward for saving it 

and it is calculated as a percentage of the amount borrowed‖ 

[7]. From the definition of the Bank of England, one can infer 

that an interest rate is the amount of interest due per period, as 

a proportion of the amount lent, deposited or borrowed [7]. 

This lent amount is often referred to as the principal sum. 

According to [2], ―interest rates rates represent the compen-

sation provided by a borrower (debtor) to a lender (creditor) 

for the utilisation of funds over a specified duration, expressed 

as an annual percentage.‖ 

As a standalone, ―interest‖ is of two types—simple and 

compound interest [1]. Simple interest is computed based on 

the initial or principal sum of a loan. In contrast to simple 

interest, the amount of compound interest will vary each year 

since it accounts for the interest accrued in prior periods. 

Characteristic to compound interest, interest rates can be ei-

ther in fixed or variable (floating) terms. Fixed interest rates 

are rates that do not change over the lifespan of the loan or 

investment—irrespective of any changing economic condi-

tions [2]. A variable or floating interest rate, on the other hand, 

is subject to change and is often secured to an underlying 

index such as the one-year Treasury Bill rate, or even the 

popular London Interbank Offering Rate (LIBOR) rate. The 

LIBOR rate is extensively published on short-term European 

money market loans and has affected the foreign lending rates 

of big banks in the United States of America, as well as re-

gional and smaller institutions, globally [1]. 

An interest rate model is a hypothetical description of a 

complex process regarding the rate of interest. They are fre-

quently employed to calculate probable interest rate change. 

Interest rate models are pertinent in futures, bonds, money 

markets and/or other processes where the interest rate is ex-

tended or compounded over a period which may require pre-

dictive analysis. A model would try to identify the elements or 

conditions that are thought to explain the movements of in-

terest rates [21]. These factors are unpredictable or stochastic, 

hence it is impossible to forecast with certainty the future level 

of any factor. [48] opined that interest rate modelling involves 

formulas that can get complex. An unambiguous scheme of 

notation must be used and carried across a range of different 

models; which can equally be useful for calculations. Fur-

thermore, to produce a somewhat realistic depiction of interest 

rate behaviour, an interest-rate model must define a statistical 

procedure that characterises the stochastic nature of the ele-

ments thought to explain interest rate dynamics [21]. 
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Over the years, there have been several developments in 

interest rate models. This research mainly covers short interest 

rate models, nevertheless, there are other interest rate models 

such as instantaneous forward rate models and market-rate 

models. Even though some of these models has been used 

today, many of them can be calibrated and modified to suit 

unique conditions in contemporary times [16]. 

2.1.2. Short Rate Models 

When used in interest rate derivatives, the short rate model 

is a mathematical model that describes how the short rate will 

change over time to determine how interest rates will change 

in the future. It is represented by rt [5, 41]. 

The formula for the short rate model is given by: 

dr = (α + βr) dt + σ (ry) dZ             (1) 

Where: 

dr = change in interest rates 

dt = time interval 

σ = variance of the rate changes 

dZ = random variable 

r = risk-less interest rate 

According to [5], the spot rate at a certain moment in 

time—also known as the instantaneous interest rate—is the 

stochastic state variable in short rate modelling. As a result, 

the annualised, constantly compounded interest rate at which 

an organisation can borrow money for an incredibly short time 

t on the yield curve is known as the short rate, or rt. According 

to [32], defining the present short rate does not define the yield 

curve as a whole. However, if one models the evolution of rt as 

a stochastic process under a risk-neutral measure Q, then 

under some fairly relaxed technical conditions, no-arbitrage 

arguments based on [27] no-arbitrage theory demonstrate that 

the price at time t of a zero-coupon bond maturing at time T 

with a payoff of 1 is given by: 

𝑃(𝑡, 𝑇) = 𝐸𝑄 *exp (− ∫ 𝑟𝑠 𝑑𝑠
𝑇

𝑡
) |ℱ𝑡+  

Where ℱ is the natural filtration for the process. Natural 

filtration is the process that records the ―past behaviour‖ of a 

stochastic process at each time [22]. The interest rates indi-

cated by zero-coupon bonds constitute a yield curve, or, more 

specifically, a zero curve. As a result, specifying a short-term 

rate model determines future bond prices. This indicates that 

instantaneous forward rates are also specified by the typical 

formula: 

𝑓(𝑡, 𝑇) =  −
𝜕

𝜕𝑇
 ln(𝑃(𝑡, 𝑇))  

Interest rate term structure model may be grouped into 

endogenous and exogenous models [36, 51]. In an endogenous 

term structure model, the current term structure of rates is an 

output rather than an input of the model. Examples of the 

endogenous short rate models covered in this research include 

the Vasicek model of 1977 [49] and the Cox, Ingersoll and 

Ross model of 1985 [24]. Exogenous models are, in turn, so 

the currently adopted term structure of rates becomes input 

and not an outcome from a model. Representatives of exog-

enous short rate models include those: Hull-White model of 

1990 [30]; Black-Derman-Toy model of 1990 [12], as well as 

the Black-Karasinski model [10], this work would look into a 

part of all three these three kinds. These models were de-

scribed not only for their historical importance but also for 

letting one treat them more clearly. 

The interest rate model described by [49] stipulates the in-

terest rate movements that are driven by only one source of 

market risk. It provides the expected destination of interest 

rates at the close of a defined period, assuming prevailing 

volatility of the market, the long-term mean value of interest 

rate, and a market risk factor. The model assumed that, under 

the real-world measure, the instantaneous spot rate follows an 

Ornstein-Uhlenbeck process with constant coefficients [13]. 

Indeed [49], was the first model to incorporate mean reversion, 

which is a typical property of interest rates and sets them apart 

from other financial prices. 

Cox et al. [24] created a model that calculates interest rate 

movements as a function of current volatility, the mean rate, 

and spreads as a spinoff of the Vasicek model. The market risk 

component is also introduced by [24]. The model assumes 

mean reversion towards a long-term normal interest rate level 

and also introduces a square root factor that excludes negative 

rates. This is known as the CIR model, or Cox-Ingersoll-Ross 

model. As such, the CIR model is a one-factor equilibrium 

model that guarantees that the computed interest rates are 

always positive (non-negative) by using a ―square-root‖ dif-

fusion process. The Vasicek model is a one-factor modelling 

technique, just like the CIR model. 

However, interest rates can become negative in the Vasicek 

model since it lacks a square root component. 

This model, as developed by [29], assumes that short rates 

are normally distributed. Therefore, the Hull-White model 

assumes that the short rates are normally distributed and sub-

ject to mean reversion. It extends the Vasicek Model and part 

of the CIR model. [32] reported that volatility is likely to be 

low when the rates are around zero reflected in a bigger mean 

reversion in the Hull-White model. 

The study [12] introduced the Black-Derman-Toy (BDT) 

model, a yield-based model applied for pricing bonds and 

interest-rate options. The BDT is one of the most popular and 

celebrated models within the fixed-income interest rate theory 

[35]. The underlying concept of a BDT model is to calculate a 

binomial tree of the short-term rates of interest which would 

be adequately flexible in nature to fit into the data sets. The 

aim of the BDT model, thus, shall be to obtain correct pricing 

bond options, swaptions, and other related interest rate options. 

It works together to identify the mean-reverting behaviour of 

short-term rate with a lognormal distribution [35]. 

Black-Karasinski model developed by [10] defines interest 
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rate movements as conducted by one source of randomness. 

Black-Karasinski model, interest rate fluctuations are 

caused by a single source of randomness [10]. The model is an 

extension of the BDT model, which was created in 1990, the 

year prior. In its most basic version, the model may fit the 

current values of a series of floors, caps, or European swap-

tions, as well as the prices of zero-coupon bonds. Approxi-

mately thirty years have passed since [10] introduced their 

own mean-reverting lognormal short rate model for interest 

rates as a substitute for Hull-White’s normal model [30], 

which, while reasonably tractable, does not ensure positive 

rates [46]. The model has gained popularity among practi-

tioners and financial engineers because to its relatively strong 

fitting quality to market data, particularly the swaption vola-

tility surface [15]. 

The aforementioned short-rate models are known as 

one-factor short rate models. However, there are multi-

ple-factor short rate models that fall outside the scope of this 

study. Multi-short rate models include two-factor models like 

the Longstaff-Schwartz model and the Chen model, which has 

three factors. Multiple-factor short rate models assume more 

than one stochastic element, whereas short rate models assume 

that the future development of interest rates is determined by 

only one stochastic factor [31, 13]. Although unrealistic, the 

short rate models offer reasonable estimates of the term 

structure of interest rates, because the numerous factors that 

impact interest rates are intimately interconnected. 

2.2. Theoretical Review 

There are several theories of interest rate that related to this 

research, viz. the real/classical theory of interest rate; 

Black-Scholes option-pricing theory [11]; no-arbitrage theory 

[27] and Black-76 theory [9]. However, the no-arbitrage the-

ory and the Black-76 theory proved most useful to this re-

search. 

No-arbitrage theory is useful in this research since interest 

rate derivatives are priced using the no-arbitrage or arbi-

trage-free principle. To ensure that no trader may earn 

risk-free by purchasing one and selling the other, its price is 

fixed at the same level as the replicating portfolio’s value. [4] 

claim that any arbitrage opportunities that arise will vanish 

because traders who take advantage of them would drive the 

derivative’s price up until it matches the value of replicating 

portfolios. Finally, the Black-76 theory has much relevance to 

this research in a sense that it rests on several assumptions, 

among which the log-normal distribution of future prices and 

the expected change in the futures’ price being zero. The fact 

that Black’s updated model models the value of a futures 

option at maturity using forward prices rather than the spot 

prices Black-Scholes utilised is one significant distinction 

between their 1976 and 1973 models [40]. Additionally, it 

makes the assumption that volatility is time-dependent rather 

than constant. Additionally, recent forward market rate models 

are built to make sense with the interest rate caplet formula 

with its fixed maturity developed by [9]. 

2.3. Empirical Review 

A lot of work has gone into creating models for interest rate 

claims. However, the theoretical developments in this field 

have not kept pace with the empirical assessment of these 

models, particularly in the market. Furthermore, whilst many 

extant studies have focused on one to three interest rate mod-

els, very few have compared several interest rate models with 

stochastic volatility for interest rate claims. Building models 

to establish interest rates as a crucial financial key and esti-

mate has been the main economic emphasis in recent years. 

More specifically, a lot of work has gone into creating interest 

rate claim pricing models [6]. However, these models’ em-

pirical assessment has lagged, particularly in the LIBOR and 

swaption markets. Much of the literature on interest rate with 

stochastic volatility reviewed, focused on one to three interest 

rate models. Very few compared several interest rate models 

with stochastic volatility for interest rate claims. Therefore, 

despite the importance of analysing interest rates with sto-

chastic volatility, there is still a wide divergence of opinion on 

how best to value these claims. 

Of the previous studies reviewed, [43, 33, 17], did the most 

extensive comparison of different interest rate models with 

stochastic volatility. They carried out an empirical comparison 

over eight different interest rate models that were predomi-

nantly short term. [44, 45] equally carried out empirical 

comparisons of interest rate models but focused on three in-

terest rate models each. [45], assessed the risk measures and 

behaviours for bonds under stochastic short interest rate 

models like Merton [39], Vasicek and CIR models. Whereas 

[44] assessed two short rate models and one market model viz. 

the CIR model, the BDT model and the forward-LIBOR 

market model. [28] also reviewed works of literature on four 

interest rate models viz. Vasicek, CIR, Hull-White and HJM 

models but, carried out an empirical analysis on the Nel-

son-Siegel model. 

Some studies [3, 47] carried out analyses on the HJM model. 

They believed that the model is the best model that incorpo-

rated the stochastic volatility of bond prices not spanned by 

movements in the yield curve. However, using empirical ev-

idence [23] was able to identify short rate models like the 

Vasicek and CIR models with mean-reversion that equally 

exhibited unspanned stochastic volatility. [20] also studied the 

HJM framework, but for pricing of long-dated commodity 

derivatives. [34, 17], assessed optimal portfolio selection 

under stochastic volatility and stochastic interest rates. Whilst 

[34] used the Vasicek model a general model for the interest 

rate, [18] used the CIR model. However, both of them got 

similar results. 

In the bid to extend a short rate model with multifactor 

tendencies, [19, 37], extended the Hull-White [29] model. 

From their analyses, they developed a dual-curve short rate 

model with multi-factor stochastic volatility. Whilst [19] focus 
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their research on methods for approximating the pricing for-

mula, [37] measured the volatility with the SABR stochastic 

model. [38] averred that the SABR is a good feat for meas-

uring the volatility of interest rate. [50] equally extends a 

model with multifactor tendencies, rather than use any short 

rate model, he used a market model, since market models are 

easier to calibrate. [50] analysed the Lévy LIBOR model, as it 

appears to be a coherent framework that best incorporates 

negative interest rates. 

Even though several available research centred on building 

a model to establish interest rate claims, [26] carried out the 

study to conclude which of the different interest rate model-

ling approaches has the best estimate accuracy. Their finding 

gave insights on how best to estimate interest rates. 

Much of the available literature on interest rates with sto-

chastic volatility, focused on one to three interest rate models. 

Very few compared several interest rate models with stochas-

tic volatility for interest rate claims. Even those who have 

empirically compared interest models like [43, 33, 17], only 

focused on short rate models empirically tested in the United 

States. More understanding on interest rate models would 

come to be should the short rate models be tested in Africa, 

typically with the Central Bank of Nigeria. This presented a 

geographical gap that this research seeks to cover. 

2.4. Statement of Research Problem 

Across the various categories of interest rates, over 20 dif-

ferent interest models have been developed. Even, several of 

the classical short-rate models have been extended to produce 

some sort of hybrid models to fit particular scenarios. Also, 

most of these interest rate models are still been used in con-

temporary times. However, relatively little is known regarding 

how well these models represent the fundamental behaviour of 

the short-term riskless rate. This is most likely due to the 

absence of a standard framework that would allow many 

models to be layered and their performance to be compared. 

Furthermore, it is challenging to evaluate comparable per-

formance accurately without a common framework. This 

represents the thrust of this research. 

This study examines how effectively a wide range of 

well-known models capture the stochastic behaviour of the 

short-term rate using a straightforward econometric frame-

work. Our method takes use of the fact that several sin-

gle-factor and multifactor term structure models suggest dy-

namics for the short-term riskless rate r that may be nested 

inside equation (1). The idea is to find a way some of the 

popular interest rate models with stochastic volatility can 

compare with each other. Even though each model differs 

fundamentally. 

3. Methodology 

The conditional variance in this section was modelled using 

the Autoregressive Conditional Heteroscedasticity (ARCH) and 

Generalised Autoregressive Conditional Heteroscedasticity 

(GARCH) models. [25] was the first to offer ARCH models. 

The ARCH processes contain constant unconditional variances 

but non-constant variances that depend on the past. The vari-

ance in these procedures is expressed as a linear function of the 

squared errors’ recent historical values. 

3.1. General Specifications of Short Rate Models 

The class of continuous-time Markov processes, whose 

dynamics are controlled by an Ito process, is commonly used 

to describe the behaviour of the instantaneous interest rate. 

This model’s features include the inclusion of both conditional 

variance and conditional mean variables. The following pro-

cedure is considered to be the generic stochastic differential 

equation of the interest rate: 

𝑑𝑟𝑡 =  (𝛼 + 𝛽𝑟𝑡)𝑑𝑡 + 𝜎𝑟𝑡
𝛾

𝑑𝑊𝑡         (2) 

Where 𝑟𝑡 is the interest rate, 𝑑𝑊𝑡  is a standard Brownian 

motion, 𝜎  is a constant, and 𝛼 , 𝛽 , and 𝛾  are parameters. 

This model implies that the dynamics of interest rate changes 

are determined by its conditional mean and variance. 

The short rate’s dynamics under the risk-neutral measure 

have been modelled in a number of ways. These models out-

line a certain type of 𝜇(𝑡, 𝑟(𝑡) and 𝜎(𝑡, 𝑟(𝑡). Most short rate 

models are either normally or lognormally distributed [13]. 

Remark 3.1.1. Short rate models that are normally distrib-

uted include Vasicek model and Hull-White model. 

Remark 3.1.2. Short rate models that are lognormally dis-

tributed include: Black-Karasinki and Black-Derman-Toy. 

Since the Cox-Ingersolt-Ross (CIR) model is a non-central 

Chi-squared distribution model with a regularly distributed 

(Gaussian) short rate as the most analytically tractable, it does 

not fall into any of these two categories [15]. 

3.2. Selected Short Rate Models 

The table below represents the short rate models empiri-

cally analysed in this research. 

Table 1. Selected Short Rate Models. 

Model Drift 𝝁(𝒕, 𝒓(𝒕) 
Diffusion 

𝝈(𝒕, 𝒓(𝒕) 

Vasicek 𝜃 − 𝛼𝑟(𝑡)  𝜎  

Hull-White 𝜃(𝑡) − 𝛼𝑟(𝑡)  𝜎(𝑡)  

Black-Karasinki 𝑟(𝑡)(𝜃(𝑡) − 𝛼 ln 𝑟 (𝑡))  𝜎𝑟(𝑡)  

Black-Derman-Toy 𝜃(𝑡)𝑟(𝑡)  𝜎(𝑡)𝑟(𝑡)  

Cox-Ingersolt-Ross 𝛼(𝛽 − 𝑟(𝑡))  𝜎√𝑟(𝑡)  
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3.3. Vasicek Model 

Definition 3.3.1. (Short rate dynamics in the Vasicek Model) 

In the Vasicek model, the short rate according to [49] is as-

sumed to satisfy the following stochastic differential equation 

(SDE): 

𝑑𝑟𝑡 =  (𝜃 − 𝛼𝑟𝑡)𝑑𝑡 + 𝜎𝑑𝑊𝑡          (3) 

Where 𝜃, 𝛼, 𝜎 > 0, and 𝑊  falls within the risk measure 

and is a typical Brownian motion. The Q-measure, often re-

ferred to as a risk-neutral measure, is a method of calculating 

probability in which the total of the anticipated future payouts, 

discounted at the risk-free rate, represents the current worth of 

a financial asset. 

Vasicek used a mean-reverting drift to simulate the short 

rate, which is regarded as the first realistic model of the short 

rate. The drift is positive when 𝑟𝑡 is below 
𝜃

𝛼
 

The SDE for r(t) can be solved explicitly observe that: 

( ( ))at t t
td e r t e dt e dW               (4) 

Integrating from 𝑡 to time 𝑠 ≥  𝑡, and multiplying both 

sides of the equality by 𝑒*−𝛼𝑠+, we get: 

( ) ( ) ( )( ) ( ) ( )
s s

s t s u s u

t t
r s r t e du e dW t             (5) 

The short rate is normally distributed under the risk-neutral 

measure Q, as shown by equation (5), with mean and variance 

dependent on 𝐹(𝑠) 

( )

0
( ( ) | ( ) (0)

s
s s uE r t F s r e e du       

(1 )
(0)

s
s e

r e


 




 

 

 

and variance given by the Isometry as 

2 2

0
( ) ( )

t

I t u du E E               (6) 

2 2 ( )

0
( ( ))

s
s uVar r s e du     

2 2(1 )

2

se 






 

Remark 3.4.1. Convergence: For any time t, the short rate rt 

has a positive probability of being negative. This is one of the 

Vasicek model’s main shortcomings. Nonetheless, the Vasicek 

model’s short rate is mean reverting, meaning that rates return 

to their historical mean level because 

( ( ))  as r s s



 E , 

 
1

( ( )) (0) (0)(0) 1 0  as 
s

s e
r s r e r s


  


  




 
        

 

E  

3.4. Vasicek Bond Pricing Formula 

Computing the integral of r(s) from 𝑡 to 𝑇 in the equation (6), we have 

( ) ( ) ( )( ) ( ) ( )
T T T s T s

s t T u T u

t t t t t t
r s ds r t e ds e du ds e dW t ds           

     
                     (7) 

Let us denote the integral in the first term on the right-hand 

side of equation (7) by 

( )
( ) 1

( , )
T tT

s t

t

e
D t T e ds






 
  

   

To compute the second and third terms observe that 

( ) ( )
s s

s u s u

t t
d e du ds e du ds       

    
          (8) 

( ) ( )( ) ( ) (
s s

s u s u

t t
d e dW u d s e dW u ds        

    
      (9) 

Hence 

( )
( ) 1 s us s
s u

t t

e
e du ds d du






 
 

  
        

   

( , )
s

t
d D u s du
 

  
 
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Also, 

( )
( ) 1

( )
s us s

s u

t t

e
e du ds d dW u






 
 

  
        

  . 

( , ) ( )
s

t
d D u s dW u
 

  
 

 

Integrating from 𝑡 to 𝑇, we have 

( ) ( ) ( , ) ( , ) ( , ) ( )
T T T

t t t
r s ds r t D t T D u T du D u T dW u       (10) 

It follows that 

( , ) ( , ) ( )
T T

t t
X D u T du D u T dW u           (11) 

is a random variable independent of 𝐹𝑡, normally distributed 

with mean 

( , )
T

t
m D u T du                (12) 

and variance is given by the Ito Isometry as 

2 2

0
( ) ( )

t

I t u du E E .            (13) 

2 2 2( , )
T

t
s D u T du                (14) 

Remark 3.5.1. Under the risk-neutral measure 𝑄. The ex-

pectation of xe  is 
21

2
m s

e
 

. Hence, using the Merton bond 

pricing formula by [39], we arrive at the result above. 

3.5. Black-Karasinki Model (Exponential 

Vasicek) 

Definition 3.5.1. In the Black-Karasinki model, the short 

rate is given by 

( ) ( ) ( ) ln ( )yr t e t y t r t           (15) 

Therefore, the Black-Karasinki model is 

ln ( ) ( ln ( )) ( )d r t k r t dt dW t    , 

where , , 0k     and 𝑊  is a Brownian motion under the 

risk-neutral measure. 

Theorem 3.6.1. According to [10], the short rate in the 

Black-Karasinki model satisfies the stochastic differential 

equation 

2

( ) ( ln( ( )) ) ( ) ( )
2

dr t k k r t dt r t dW t


        (16) 

let 0 s t T    Then ( )r t  is given by 

and is conditionally on 𝐹(𝑠) lognormally distributed with 

( ) ( ) ( ) ( )( ) exp ln( ( )) (1 )
t

k t s k t s k t u dW t

s
r t r s e e e       

    
                        (17) 

 
2

( ) 2 ( )
( )( ( ) | ) exp{ln ( ) (1 ( )) (1 )

4

k t s k t s
sr t F r s e e k t s e

k


         E                  (18) 

 

 

( ) ( )
( )

2 2
2 ( ) 2 ( )

( ( ) | ) exp 2ln( ( )) 2 (1 )

exp (1 ) exp 1
2 2

k t s k t s
s

k t s k t s

Var r t F r s e e

e e
k k



 

   

   

   

       
     

        

                         (19) 

and 

Remark 3.5.1. The Black-Karasinki model’s short rate rt is 

always positive since it is lognormally distributed. The ina-

bility of P(t, T) to be clearly estimated is a drawback. 

Remark 3.5.2. Convergence Criterion: An advantage of the 

Black- Karasinki model is that r  is always mean-reverting 

provided 

* ( )

0
lim ( )

t
k t u

t
k u e du   



 
  

            (20) 

exist, and then 
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2
*

( )( ( ) | ) exp( )
4

sr t F
k


 E  as t   

and 

2 2
*( ( ) | ( )) exp 2 exp( ) 1

2 4
Var r t F s

k k

 


   
      

    
 as 

t   

3.6. Hull-White Model (Extended Vasicek) 

A time-varying parameter is required in order to replicate 

the original zero-coupon curve precisely [32]. The purpose of 

this parameter is to precisely mirror the original word structure. 

The Hull-White model [29] is arguably the most widely used 

model with time-dependent parameters, with the values cor-

responding to θ and σ that shows in the Vasicek model are 

selected to be functions of time that are deterministic; 

( ) ( ( ) ( )) ( ) ( )dr t t r t dt t dW t           (21) 

where   is constant and tW  is a Brownian motion under the 

risk-neutral measure Q . 

Integrating (3.19)equation  from t  to s t , we have 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )
s s

s t s u s u

t t
r s r t e u e du u e dW u             (22) 

( )r t  is conditionally on ( )F s  normally distributed with 

( ) ( )( ( ) | ( )) ( ) ( )
s

s t s u

t
r t F s r t e u e du       E     (23) 

and 

 
2

2 ( )( ( ) | ( )) 1
2

s tVar r t F s e 



                 (24) 

Remark 3.6.1. As in the Vasicek model, the short rate ( )r t  

in the extended Vasicek model, for each time t , can be nega-

tive with positive probability, namely with probability 

0

2

( ) ( ) ( )

2
(1 )

2

t
t

t

r o e u e s t du

e 

  










 
  
 
 

 
 


          (25) 

which is often negligible in practice. 

Remark 3.6.2. Convergence Criterion: The short rate in the 

Hull-White model is mean-reverting provided. 

* ( )

0
lim ( )

s
s u

t
u e du    



 
  

               (26) 

exist, and then 

*( ( ))r t E  as t   

3.7. Hull-White Zero Coupon Bond Price 

Adopting an approval analogous to that in the Vasicek 

model, we can derive an analytic expression for the Ze-

ro-Coupon bond price using the risk-neutral pricing formula 

from the Merton model [14]. This yields 

2 2( , ) exp ( ) ( , ) ( ) ( , )
T

t
B t T r t D t T u D u T du

 
   

    (27) 

Where the time-dependent parameter ( )t  can be chosen 

to match the current term structure. From equation (26) it can 

be seen that what is really needed is an expression for the 

integral 
0

( ) ( , ) ( ) ( , )
T T

t
u D u T du u D u T du    rather than 

( )t  itself, Hence, we take 

2 2

0 0

2 2 2

0

ln (0, )
(0)( (0, ) (0, )) ( ) ( , )

(0., )

1
( )( ( , ) ( , )) ( ) ( , )

2

1
( ) ( ( , ) ( , ) )

2

T

t

t t

t

B T
r D r D t u D u T du

B T

u D u T D u T du u D u t du

u D u T D u t du



 



    

  





 



                         (28) 

The integrals from 0 to t  can be rewritten by using the relation 

( , ) ( , ) ( , ) ( , )tD u T D u t D u t D t T                                  (29) 

where ( , )tD u t  is the partial derivative of ( , )D u t  with respect to t , to yield 
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2 2

0 0

2

0

2 2 2 2

0

ln (0, )
(0) (0, ) (0, ) ( ) ( , )

(0., )

1
( , ) ( ) ( , ) ( ) ( , )

2

( , ) ( ) ( , ) ( , )

1
( , ) ( )( ( , ) ( , ) )

2

T

t
t

t t

t

t

t

t

B T
r D r D t u D u T du

B T

D t T u D u T du u D u t du

D t T u D u T D u t du

t T u D u T D u t du



 



 

   

 







 





                      (30) 

From equation (27), the formula for the instantaneous forward rate. We then obtain 

2

0 0
(0, ) (0) (0, ) ( ) ( , ) ( ) ( , ) ( , )

t t

t t tf t r D t u D u t du u D u t D u t                          (31) 

It follows that 

2 2 2 2 2

0

(0, )
ln (0, ) ( , ) ( ) ( , )

(0., )

1 1
( ) ( , ) ( , ) ( ) ( , )

2 2

T

t
t

T t

t
t

B T
f t D t T u D u T du

B T

u D u t du D t T u D u t du



 

   





 
                        (32) 

Equation (30) gives the desired expression for 

( ) ( , )
T

t
u D u T du  in terms of (0, ), (0, ) and ( , )B t B T f o t  

that is in terms of the current term structure. Substituting this 

expression into equation (28), we get the following result. 

Proposition 3.8.1. In the Hull white model, the zero bond 

price at time 0t   that gives an exact fit to the term structure 

of interest rates at time 0 is 

2 2 2

0

(0, ) 1
( , ) exp ( ( ) (0, )) ( , ) ( , ) ( ) ( , )

(0, ) 2

t

t

B T
B t T r t f t D t T D t T u D u t du

B t


 
    

                    (33) 

where ( , )D t T  is given by equation (8). 

3.8. Black-Derman-Toy (BDT) Model 

The Black-Derman-Toy Model (BDT) is a well-known 

short rate model in mathematical finance that is used to price 

bond options, swaptions, and other interest rate derivatives [35, 

40]. The short-rate’s mean-reverting characteristic was ini-

tially combined with a log-normal distribution in the model. 

The short rate is assumed in the BDT model satisfies the sto-

chastic differential equation; 

1

ln( ) ln( )t
t t t

t

d r r dt dW


 


 
   
  

        (34) 

where, 

r  = the instantaneous short rate at time t 

t  = value of the underlying asset at option expiry 

t  = instant short rate volatility 

tW  = a standard Brownian motion under a risk-neutral 

probability measure. 

For constant (time-independent) short rate volatility  , the 

model is 

ln( ) t td r dt dW                          (35) 

3.9. Data Description 

A one-month interest rate is used as a stand-in for the short 

interest rate. A range of one-month rates were employed: 

Federal Government of Nigeria bonds (FGN): Weekly ob-

servations of a one-month data stream from January 2011 to 

December 2020 for Federal Government of Nigeria bonds 

(FGN), yielding 522 observations for each series. 

Open Market Operation (OMO): Weekly observations to-

talling 1079 observations from January 2005 to September 

2020. 

Nigeria Treasury Bill yields (NTB): 307 observations are 

included in the sample period, which runs from January 2020 

to December 2020. 

3.10. ARCH, GARCH and Discretisation 

Methods 

As earlier mentioned, we used the ARCH and Generalised 

ARCH (GARCH) models to model the conditional variance. It 

was [25] who first introduced the ARCH models used in re-
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search today. There are constant unconditional variances in the 

ARCH processes, but non-constant variations that depend on 

the past. A linear function of the recent historical values of the 

squared errors is used to characterise the variance in these 

processes. 

3.10.1. Discretisation 

To draw inferences about the time series data, we have to 

rely on 3 discrete realisations. Thus, the sample period [0, T] 

are divided into 3 intervals corresponding to the discrete-time 

data of Central Bank of Nigeria (CBN) securities [FBN Bond, 

OMO, NTB]. Then, the continuous-time process is replaced 

with a piecewise constant process and in each interval 

1[ , )i it t   1,2, , 1i N  . It is assumed that the process is 

constant but from one interval to the next it is changing. 

Remark 3.10.1. We adopted the Euler Scheme for the dis-

cretisation of our data. 

3.10.2. ARCH Model 

Consider the process 

0 1 1 1,| | 1t t tr r                   (36) 

with the error term 

t t tu                    (37) 

where ru  has a standard normal distribution, the conditional 

variance of t  given 1t   

2 2
1( | ) ( ) ( )t t t t t t tVar Var u Var u            (38) 

the autocorrelation in volatility is modelled by allowing the 

conditional variance of the error term 
2
t  to depend on the 

immediately previous value of the squared error. 

2 2
0 1 1t t                                 (39) 

Remark 3.10.2. As 0 1 and    are constant, the above 

model is known as an ARCH(1), since the conditional vari-

ance depends only on one lagged squared error. The general-

isation of this model can be gotten by including more lags of 

t . 

Thus ARCH(q) model is 

2 2 2
0 1

2
2

0

1

 

= 

t t r q t q

i t i

i

     

  

 





   


             (40) 

The unconditional variance is denoted 2  and defined as 

2 2 2
0 0 1( ) ( ( ) ( )t t q t qE E E E               (41) 

using 2 2 2 2
1 0 1 1( )t t i t q t qE              

2 2 2
0 1 1t q           

to arrive at 

2 0

1

1

q

i

i










               (42) 

Stationarity of the ARCH(q) models imposes condition on 

the i  coefficients. ARCH(1) model has stationary moments 

of order 2 and  , if 23 1  , and these moments are 

2 0

1

( )
1

tE








                (43) 

2 2
0 1

2 2
1 1

3 1
( )

(1 ) 1 3
tE   


 




 
              (44) 

2
1

2 2
1

( ) 3(1 )
3

( ( )) 1 3

t

t

E
k

E





 

 


  


         (45) 

where 3k   for the normal distribution; 3k   indicates left 

kurtosis. 

3.10.3. Generalised ARCH (GARCH) Model 

GARCH models were created separately as an extension of 

ARCH models in order to produce more adaptable outcomes. 

The conditional variance equation is expressed as follows 

because the GARCH models let the conditional variance to 

depend on valuable own lags, such that: 

2 2 2
0 1 1 1t t t                             (46) 

This model is known as GARCH(1, 1) and may be ex-

panded to a GARCH(p, q) formulation, where the present 

conditional variance is parameterised to rely on q lags of the 

squared error and p lags of the conditional variance 

2 0

1 1

1

q p

i j

i i




 
 



  
               (47) 

3.10.4. Parameter Estimation Using Method of 

Moments 

Consider the model 
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1t t t tr r Z                   (48) 

1 2 1t t tx                   (49) 

From (3.48)equation  we get 

1 1t t t tZ r r                    (50) 

Taking the expectations of both sides, we have 

1 1( ) ( )t t t tE Z E r r                 (51) 

Since any expectation can be written in the form of condi-

tional expectation and 1t   is 1tF   measurable, then 

1 1 1 1 1( ) [ ( ) | ] [ ( | )] 0t t t t t t t tE Z E E Z F E E Z F          (52) 

Thus, 

1( ) 0t tE r r                 (53) 

If we take the square of both sides in equation (51) and then 

take the expectation of both sides we get 

2 2 2
1 1( ) [( ) ]t t t tE Z E r r              (54) 

since 

2 2 2 2 2 2 2
1 1 1 1 1 1( ) [ ( ) | ] [ ( | )] ( )t t t t t t t t tE Z E E Z F E E Z F E            (55) 

then, 

2 2
1 1[( ) ] ( )t t tE r r E                 (56) 

Remark 3.10.3. Let Z  be a random variable with standard 

normal distribution, i.e. ~ (0,1)Z N , then 

( 1)( 3) for  even
( )

0 for  odd

t t t
E Z

t

  
 


           (57) 

Using the above remark, and taking expectations of equa-

tion (51) we get 

3
( ) 1[( ) ] 0t tE r r                         (58) 

4 4
( ) 1 1[( ) ] 3 ( )t t tE r r E                  (59) 

2( )E   and 
4( )E   are the second and fourth moments of 

  respectively. Thus, we can calculate these moments using 

the moment generating function for  .   has the normal 

distribution with mean 
1

x
M





 and variance 

2 2
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





 . Therefore the moment generating function for 

  is 

2 2

( )
2

t
v t exp Mt

  
  

  
           (60) 

From this function, we can find that 

2 (2) 2 2( ) (0)E v M                (61) 

and 

4 (4) 4 4 2 2( ) (0) 3 6E v M M          (62) 

Thus we have the following system of equations 

( ) 1

2 2 2
( ) 1

3
( ) 1

4 4 4 2 2
( ) 1

[( )] 0

[( ) ]

[( ) ] 0

[( ) ] 3( 3 6 )

t t

t t

t t

t t

E r r

E r r M

E r r

E r r M M

 

  

 

   









  

   

  

    

   (63) 

Remark 3.10.4. The solutions of the system of equation (63) 

are the estimates of our model’s parameters. The MATLAB 

function ―fmincon‖ was used in Chapter Four to estimate the 

parameters. 

3.10.5. Data Analysis Procedure 

The following steps were adopted in the analysis of our 

data. 

Step 1: We apply Ljung-Box Q-statistic (LBQ) and ARCH 

Test to check whether the data have autocorrelation or not. 

Step 2: We use equation (63) to estimate the parameters of 

the short rate models (𝛼, 𝛽, the mean 𝑀, and variance  ). 

Step 3: ARCH(1) and GARCH(1,1) models are established. 

Step 4: Finally, the out of sample performance of our sto-

chastic volatility model—against ARCH and GARCH, the 

models were tested. 

4. Results and Discussion 

4.1. Autocorrelation Test 

First, we determine if the data has autocorrelation or not. 

For this, we used the Ljung-Box Q-statistic, and the results are 

shown in this section: 

The table below displays the short rate models empirically 

examined in this study. 
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Table 2. Ljung-Box Q-statistics. 

 H P-value Qstat Critical value 

LBQ test 1 0 L4400e + 004 31.4104 

In this test, the null hypothesis is H0, which means there is no auto-

correlation. Since the results gave H = 1, we reject the null hypothe-

sis. 

We also performed the ARCH Test to the data, and the re-

sults are reported as follows: 

Table 3. ARCH Test. 

 H P-value Qstat Critical value 

ARCH Test 1 0 775.1894 3.8415 

Since the results give H = 1, then we reject the null hypothesis (H0 = 

there is no ARCH effect) of the ARCH Test. 

Remark 4.1.1. From the above tests, we conclude that the 

data have autocorrelation, so it is convenient to work on. 

4.2. Results 

The findings of applying the ARCH and GARCH models to 

our data are shown in this section. We provide the Bayesian 

Information Criteria (BIC) and Akaike Information Criteria 

(AIC) values for a few ARCH processes in the table that fol-

lows. AIC and BIC are mathematical techniques for assessing 

how well a model fits the data from which it was created [8]. 

Table 4. AIC and BIC for ARCH models. 

 ARCH(1) ARCH(2) ARCH(3) ARCH(4) 

AIC 5187.8 5188.6 5190.5 5192.5 

BIC 5201.7 5207.2 5213.8 5223.2 

Both AIC and BIC were employed in the study to choose 

the model order. Models that minimise the criterion are pref-

erable when employing either AIC or BIC. For our data, 

ARCH(1) and ARCH models are supported by AIC and BIC. 

The following table lists the AIC and BIC values for a few 

GARCH models. For our data, AIC and BIC support 

GARCH(1,1) among GARCH models. 

Table 5. AIC and BIC for GARCH models. 

 G(1,1) G(2,1) G(1,2) G(2,2) G(1,3) G(2,3) G(3,3) 

AIC 5188.5 5190.5 5190.5 5192.2 5192.5 5194.4 5196.5 

BIC 5207.2 5213.9 5213.9 5220.5 5220.5 5227.2 5233.8 

 

We can determine that ARCH(1) is the best model for our 

data by comparing the AIC and BIC values for the ARCH and 

GARCH models. Using the ARCH(1) and GARCH(1,1) 

models, we can obtain the following parameters for our data. 

Table 6. Parameter value for ARCH(1) and GARCH(1,1) models. 

 𝜶𝟎  𝜶𝟏  𝜷𝟏  

ARCH(1) 0.2657 1  

GARCH(1,1) 0.2107 0.8948 0.1052 

So the ARCH(1) model is 

 

and the GARCH(1,1) model is 

 

4.3. Testing the Performance of Our Model 

The results of our stochastic volatility model’s sample 

performance were compared to the ARCH and GARCH 

models in this section. We make advantage of the models’ 

10-day volatility estimates. The next table displays the model 

predictions as well as the observed volatility (we used inno-

vations as the volatility): 

 

2 2

10.2657t t   

2 2 2

1 10.2107 0.8948 0.1052t t t     
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Table 7. Volatility Forecast. 

 𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5 

SV 18.9445 18.8877 18.8311 18.7747 18.7185 18.6625 

ARCH(1) 18.9445 18.9515 18.9585 18.9655 18.9725 18.9795 

GARCH(1,1) 18.9445 18.9753 18.9808 18.9863 18.9918 18.9973 

OBSERVED 18.9445 18.7956 18.1177 18.2731 18.4042 18.5750 

 𝑡 = 6 𝑡 = 7 𝑡 = 8 𝑡 = 9 𝑡 = 10  

SV 18.6066 18.5510 18.4956 18.4403 18.3853  

ARCH(1) 18.9865 18.9935 19.0005 19.0075 19.0145  

GARCH(1,1) 19.0028 19.0083 19.0138 19.0193 19.0248  

OBSERVED 18.7002 18.8284 18.8387 18.8492 18.6372  

 

The sum of squares of the deviations from the observed 

volatility for each model’s forecasts are as follows: 

Table 8. Sum of Squared Deviations. 

 SV ARCH GARCH(1,1) 

 

1.3095 2.0001 2.1433 

Remark 4.3.1. Findings from our results show that the sto-

chastic volatility model gives closer predictions to the ob-

served volatility than ARCH and GARCH models for our data 

in the studied time interval. 

5. Conclusion and Recommendation 

5.1. Conclusion 

In this work, we examined the stochastic volatility of short 

rate models. We introduced ARCH processes and presented 

several parameters estimate methods. Using chosen short 

rate models, we built a stochastic volatility model and then 

worked on it. We utilised the moment approach to estimate 

the parameters. In the application section, we used interest 

rate data from FGN Bond, NTB, and OMO. We determined 

the parameters for our stochastic volatility model as well as 

the ARCH and GARCH models. Then we evaluated our 

model’s out-of-sample performance against the ARCH and 

GARCH models. The findings demonstrated that in the 

tested time frame, our stochastic volatility model provides 

closer forecasts of the stock market than ARCH and GARCH 

models. 

5.2. Recommendation 

From the results of the ARCH, GARCH and the observed 

stochastic volatility, the use of observed volatility over ARCH 

and GARCH models is recommended for forecasting and 

analysis of interest rate models. 

5.3. Contribution to Knowledge 

Findings from the study show that higher volatility in-

dicates a larger risk of a declining market, and lower vola-

tility indicates a higher probability of a rising market. In-

vestors can use this information on long-term stock market 

volatility to align their portfolios with the predicted returns. 

Furthermore, by allowing prices to fluctuate, stochastic 

volatility models enhanced the accuracy of calculations and 

forecasts. 

Abbreviations 

ARCH Autoregressive Conditional 

Heteroskedasticity 

BDT Black-Derman-Toy 

CBN Central Bank of Nigeria 

CIR Cox-Ingersoll-Ross 

GARCH Generalised Autoregressive Conditional 

Heteroskedasticity 

HJM Heath-Jarrow-Morton 

LIBOR London Interbank Offering Rate 

SABR Stochastic Alpha Beta Rho 

Q-statistic Ljung-Box Q-statistic 
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