
Internet of Things and Cloud Computing

2025, Vol. 13, No. 1, pp. 15-27

https://doi.org/10.11648/j.iotcc.20251301.12

*Corresponding author:

Received: 10 March 2025; Accepted: 26 March 2025; Published: 19 April 2025

Copyright: © The Author(s), 2025. Published by Science Publishing Group. This is an Open Access article, distributed

under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0/), which

permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Research Article

QoS-Aware Task Scheduling Using Reinforcement Learning

in Long Rage Wide Area Network IoT Application

Ermias Melku Tadesse
1, *

, Haimanot Edmealem
1
, Tesfaye Belay

2
, Abubeker Girma

3

1
Information Technology Department, Kombolcha Institute of Technology, Wollo University, Kombolcha, Ethiopia

2
Department of Computer Science, Institute of Technology, Wollo University, Kombolcha, Ethiopia

3
Software Engineering Department, Kombolcha Institute of Technology, Wollo University, Kombolcha, Ethiopia

Abstract

In order to solve the problems of effective resource allocation in low-power wide-area networks, this thesis investigates the

scheduling of end devices in Internet of Things applications using LoRaWAN technology. The main goal of this research is to use

RL to improve QoS measures including energy efficiency, throughput, latency, and dependability. This was accomplished by

using a simulation-based approach that evaluated the effectiveness of the RL-based scheduling algorithm using NS3 simulations.

The main findings show that, in comparison to current scheduling practices, the RL agent greatly improves data transmission

reliability and improves network throughput. Furthermore, the suggested approach efficiently lowers average system latency and

overall energy usage, improving network resource utilization. These findings imply that using reinforcement learning (RL) for

job scheduling in LoRaWAN networks can offer a reliable and expandable solution to present problems, resulting in more

intelligent and environmentally friendly IoT systems. In the end, this study finds that using RL-based techniques can help

improve resource management in contexts that are dynamic and resource-constrained.

Keywords

IoT, LoRaWAN, Reinforcement Learning, Task Scheduling, QoS

1. Introduction

The Internet of Things (IoT) encompasses a vast network of

interconnected devices that communicate and exchange data

over the Internet, impacting various sectors such as smart

cities, healthcare, agriculture, and industry. The rapid expan-

sion of IoT applications has created a pressing need for effi-

cient resource allocation and task scheduling mechanisms to

optimize resource utilization while meeting Quality of Service

(QoS) requirements [1].

LoRaWAN (Long Range Wide Area Network) is high-

lighted as a significant enabler for IoT, designed to provide

long-range communication with low power consumption.

This wireless communication protocol is particularly opti-

mized for IoT devices, allowing them to transmit small

amounts of data over considerable distances. LoRaWAN's

capabilities make it suitable for applications requiring remote

monitoring and data acquisition, thus facilitating the expan-

sion of IoT solutions [2, 3]. For example, LoRaWAN which is

LPWAN technology can connect battery-powered devices at

http://www.sciencepg.com/journal/iotcc
http://www.sciencepg.com/journal/238/archive/2381301
http://www.sciencepg.com/journal/238/archive/2381301
http://www.sciencepg.com/
https://orcid.org/0009-0005-1187-9190

Internet of Things and Cloud Computing http://www.sciencepg.com/journal/iotcc

16

very long distances while consuming minimum power, hence

making it affordable [4].

LoRaWAN operates in the unlicensed ISM bands, which

vary according to region [5]. It employs chirp spread spectrum

modulation technique to attain long-distance communication

with low power [6]. One of the main advantages of Lo-

RaWAN is its remarkable coverage. For this reason, it can

transmit data within several kilometers in open settings such

as rural areas or large industrial facilities without the need for

cellular towers and other infrastructure items. Consequently,

LoRaWAN is best suitable for applications that need a wider

coverage area, such as smart agriculture, asset tracking, en-

vironmental monitoring, and smart city deployments [1].

Hence, LoRaWAN has become an attractive technology for

IoT applications due to its unique combination of long-range

capability, low power consumption, and cost-effective de-

ployment [7] and LoRaWAN relies on four key components

[8].

Figure 1 depicts the overall architecture of a LoRaWAN

network, highlighting its key components and their interac-

tions. The architecture consists of end devices (sensors),

gateways, a network server, and application servers, illus-

trating how data flows from the end devices to the application

layer. End devices communicate wirelessly with gateways

using LoRa technology, which then forward the data to the

network server, where it is processed and routed to the ap-

propriate application server for further analysis or action,

showcasing the hierarchical structure and functionality of the

LoRaWAN ecosystem.

Figure 1. LoRaWAN Network Architecture [8].

In LoRaWAN IoT applications, maintaining Quality of

Service (QoS) is crucial due to challenges like limited re-

sources, channel congestion, and varying QoS requirements,

which can lead to issues such as high latency and packet loss.

Reinforcement Learning (RL) is identified as the most suita-

ble machine learning approach for dynamic task scheduling in

LoRaWAN networks, as it can adapt to changing conditions

and optimize multiple QoS metrics simultaneously. By lev-

eraging RL, nodes can self-optimize scheduling performance,

enhancing reliability and efficiency in diverse applications

such as smart agriculture, industrial IoT, and smart city

management [9, 10, 7].

The study proposes the use of reinforcement learning (RL)

techniques to develop a scheduling algorithm that can adapt to

dynamic network conditions, optimize energy consumption,

and enhance overall system performance. By leveraging RL,

the proposed solution aims to improve latency, reliability, and

efficiency in LoRaWAN networks, ultimately contributing to

the sustainability and scalability of IoT deployments [11, 10].

Contributions of the Article

1) Development of an RL-Based Scheduling Algorithm:

The article presents a novel reinforcement learn-

ing-based task scheduling algorithm specifically de-

signed for LoRaWAN networks, enhancing resource

allocation and optimizing Quality of Service (QoS)

metrics.

2) Performance Evaluation: It provides a comprehensive

performance analysis of the proposed algorithm

through simulations, demonstrating its effectiveness in

improving throughput, reducing delay, and increasing

packet delivery ratios compared to existing scheduling

methods.

3) Insights for Future Research: The findings and meth-

odologies outlined in the article offer valuable insights

and a foundation for future research in the field of IoT

and LoRaWAN, encouraging further exploration of

adaptive and intelligent scheduling techniques to ad-

dress the evolving challenges in network management.

2. Related Work

LPWANs like LoRaWAN have revolutionized the IoT by

enabling long-range communication with battery-powered

devices. However, IoT applications within the IoT domain

demand reliable and expedited data delivery, posing chal-

lenges for LoRaWAN due to inherent limitations in range,

latency, and energy constraints [12]. This review explores

existing research related to Task Scheduling in LoRaWAN.

The paper [13] proposes a dynamic transmission Priority

Scheduling Technique (PST) based on an unsupervised

learning clustering algorithm for dense LoRaWAN networks.

The LoRa gateway classifies nodes into different priority

clusters, and the dynamic PST allows the gateway to config-

ure transmission intervals based on cluster priorities. This

approach aims to improve transmission delay, and decrease

energy consumption. Simulation results suggest that the

proposed work outperforms conventional LoRaWAN and

recent clustering and scheduling schemes, making it poten-

tially well suited for dense LoRaWAN deployments.

In [14] a Real-Time LoRa (RT-LoRa) communication

protocol for industrial Internet of things applications is in-

troduced. The real-time flow is processed by the RT-LoRa

using a medium access strategy. Static and movable nodes are

used to build the entire network. The QoS level is regarded as

being the same for every static node. Three classes-normal,

dependable, and most reliable-are used to categorize the QoS

http://www.sciencepg.com/journal/iotcc

Internet of Things and Cloud Computing http://www.sciencepg.com/journal/iotcc

17

level for flows produced by mobile nodes. The technique

distributes SF and CF based on the QoS level. A star topology

is used to arrange and connect the mobile and static nodes to

the gateway. The following are the important points raised in

this paper: For a single gateway network using single hop

communication, the general process is described. Even within

180 meters, this results in a significant transmission delay of

up to 28 seconds for the majority of dependable flows. This

study has not addressed the need for greater coverage and

reduced time delay for industrial data in real-time. There are

limitations in QoS provisioning because the QoS level is only

assigned to mobile nodes and all static node flows are given

the same priority level. All nodes need a lot of energy to

connect with the central gateway, and nodes farther from the

gateway use even more energy.

The paper [15] proposes a method to optimize the perfor-

mance of LoRaWAN networks through dynamically assign-

ing values for the Spreading Factor and Carrier Frequency

radio parameters. This assignment is formulated as a Mixed

Integer Linear Programming problem to maximize network

metrics like Data Extraction Rate and minimize packet colli-

sions. An approximation algorithm is also developed to solve

the problem more efficiently at scale. The results show im-

proved performance for metrics like DER and average 6-13%

fewer packet collisions compared to baseline policies. The

performance evaluation of the proposed optimization algo-

rithms is done through simulation using the LoRaSim simu-

lator. The optimization focuses on optimizing just the SF and

CF parameters of the LoRa radio configuration. Considering

additional parameters could lead to even better performance.

The simulations assume a single gateway setup. Therefore, in

summary, the key limitations are limited configuration pa-

rameters, static network assumptions and evaluation based on

few metrics.

In [16], the authors explore the viability of real-time

communication within LoRaWAN-based IoT systems. Lev-

eraging an integer linear programming (ILP) model, they

assess the feasibility of real-time communication during the

network design stage. This model not only determines feasi-

bility but also optimizes the number and placement of gate-

ways necessary to achieve real-time requirements. The paper

further validates the model's performance through various

scenarios, offering valuable insights into LoRaWAN's scala-

bility and real-time support limitations. However, it is im-

portant to note that the model primarily focuses on static

network design at deployment. This may not fully capture the

dynamic nature of real-world networks, where factors like

interference, congestion, and gateway availability can sig-

nificantly affect real-time QoS performance.

In [17], the authors present a low-overhead synchronization

and scheduling concept implemented on top of LoRaWAN

Class A. They design and deploy an end-to-end architecture

on STM32L0 microcontrollers (MCUs), where a central en-

tity provides synchronization metrics and allocate transmis-

sion slots. By measuring clock drift in devices, the system

defines slot lengths within the network. This approach

achieves 10-millisecond accuracy and demonstrates signifi-

cant improvements in packet delivery ratios compared to

Aloha-based setups, especially under high network loads.

Notably, the paper addresses the gap in the literature regard-

ing experimental approaches to LoRaWAN scheduling and

demonstrates the feasibility of the proposed concept. How-

ever, the paper does not delve into the energy consumption

impact of the implemented scheduling algorithms.

A number of existing studies have proposed different

methods to reduce the retransmissions, including adaptive

retry limits and error correction mechanisms. However, most

of these methods fundamentally fail to adapt dynamically

with changing network conditions, and this issue is addressed

in the proposed reinforcement learning-based scheduling

algorithm.

3. Research Methodology

3.1. Proposed Method

The research methodology focuses on designing and im-

plementing a reinforcement learning (RL)-based scheduling

algorithm for reliable data delivery in LoRaWAN networks. It

adopts a design science research (DSR) approach, which

emphasizes systematic development and evaluation of prac-

tical solutions to address inefficiencies in existing task

scheduling mechanisms. The methodology begins with a

detailed description of the research design, which emphasizes

the need for a task scheduling algorithm that can effectively

manage resources in dynamic environments. The study iden-

tifies the limitations of existing scheduling methods in Lo-

RaWAN networks, particularly their inability to meet the QoS

demands of modern IoT applications. To address these chal-

lenges, the research proposes a reinforcement learning (RL)

based algorithm that can adapt to varying network conditions

and optimize resource allocation.

3.2. Research Design

The research employs a mixed-methods approach, com-

bining quantitative research with design science to systemat-

ically design, develop, and assess a QoS-aware

task-scheduling algorithm. This approach allows for ad-

dressing questions related to the effectiveness of the proposed

algorithm in improving QoS in dynamic IoT environments.

3.3. Algorithm Design and Implementation

3.3.1. Algorithm Design

The design of the RL-based scheduling algorithm focuses

on creating an intelligent agent that optimizes task scheduling

in a LoRaWAN environment. Key components include de-

fining the state space, action space, and reward function,

http://www.sciencepg.com/journal/iotcc

Internet of Things and Cloud Computing http://www.sciencepg.com/journal/iotcc

18

which guide the agent's learning process to make optimal

scheduling decisions based on network conditions.

1. State Space: The state space encompasses various

network parameters, such as node status, channel con-

ditions, and traffic patterns, allowing the agent to assess

the current environment effectively.

2. Action Space: The action space includes possible

scheduling actions, such as channel selection, task pri-

oritization, and gateway allocation, enabling the agent

to make informed decisions to enhance QoS metrics.

3. Reward Function: The reward function is designed to

provide feedback to the agent based on its actions, en-

couraging behaviors that lead to improved QoS out-

comes, such as reduced delay, increased packet delivery

ratio, and minimized packet error rates.

4. Policy (π): The policy defines the strategy the agent

uses to select actions based on the observed state, ena-

bling it to balance exploration and exploitation during

learning.

5. Learning Algorithm: A suitable reinforcement learning

algorithm, such as Deep Q-Networks (DQN), is em-

ployed to enable the agent to learn from its experiences

and improve its scheduling decisions over time.

Figure 2 illustrates the architecture of a Deep Q-Network

(DQN), which combines Q-learning with deep neural net-

works to enable reinforcement learning in complex environ-

ments. The architecture typically consists of the following key

components:

1. Input Layer: This layer receives the state representation

of the environment, which can include various features

relevant to the task at hand. The input is often a

high-dimensional vector that captures the current state

of the system.

2. Hidden Layers: The DQN architecture includes multi-

ple fully connected hidden layers (in this case, two

layers) that process the input data. Each hidden layer

consists of a specified number of neurons (e.g., 128),

which are responsible for extracting features and

learning non-linear relationships between the input state

and potential actions. ReLU (Rectified Linear Unit)

activation functions are commonly used to introduce

non-linearity.

3. Output Layer: The output layer generates Q-values for

each possible action based on the processed input state.

These Q-values represent the expected future rewards

for taking specific actions in the given state, allowing

the agent to make informed decisions about which ac-

tion to take.

4. Experience Replay: Although not explicitly shown in

the architecture diagram, experience replay is an inte-

gral part of the DQN framework. It involves storing

past experiences (state, action, reward, next state) in a

replay memory, which is sampled during training to

improve learning stability and efficiency.

Figure 2. DQN Architecture [18].

The diagram shows the agent taking an action in the envi-

ronment, receiving a new state and reward, and updating its

policy based on the experience. This iterative process allows

the agent to learn an optimal policy for maximizing rewards in

the environment.

Here's a breakdown of the diagram's elements:

1) Agent: This is the decision-making entity. It receives

the current state of the environment (s) and uses its

policy (π) to select an action (a). The policy is typically

implemented as a neural network (DNN) with param-

eters θ.

2) Environment: This is the external world the agent in-

teracts with. It receives the agent's action (a) and pro-

vides the agent with a new state (s') and a reward (r).

3) State (s): The current situation or observation of the

environment.

4) Action (a): The decision or move made by the agent.

5) Reward (r): A scalar value indicating the outcome of

the agent's action. Positive rewards encourage behav-

iors, while negative rewards discourage them.

6) Policy (π): A function that maps states to actions. In

DRL, it's often represented as a neural.

7) network.

a). Training Phase of the Proposed Scheduling Algorithm

Figure 3 outlines the training phase of the proposed

scheduling algorithm, which utilizes a Deep Q-Network

(DQN) approach to optimize task scheduling in a LoRaWAN

environment. The training phase consists of several key steps:

1. Initialization of DQN Parameters: The training process

begins with the initialization of essential DQN param-

eters, including the learning rate, which determines how

much the Q-values are updated during training; epsilon,

which controls the exploration-exploitation trade-off;

and the experience replay buffer, which stores past

experiences to enhance training stability.

2. Observation of Current State: The agent interacts with

the OpenAI Gym environment to observe the current

state of the network. This state includes various pa-

rameters such as network conditions, task queue status,

and other relevant metrics that influence scheduling

decisions.

3. Action Selection and Execution: Based on the observed

state, the agent selects an action using an epsi-

lon-greedy policy, balancing exploration of new actions

http://www.sciencepg.com/journal/iotcc

Internet of Things and Cloud Computing http://www.sciencepg.com/journal/iotcc

19

and exploitation of known rewarding actions. The se-

lected action is then executed within the environment.

4. Reward Calculation: After executing the action, the

agent receives feedback in the form of a reward, which

quantifies the effectiveness of the action taken in terms

of QoS metrics such as delay, throughput, and packet

delivery ratio.

5. Experience Storage and Learning: The agent stores the

experience (state, action, reward, next state) in the re-

play buffer. A mini-batch of experiences is sampled

from this buffer to update the Q-values, allowing the

agent to learn from past actions and improve its sched-

uling policy over time.

6. Iteration and Convergence: The training process con-

tinues iteratively, with the agent observing new states,

selecting actions, and updating Q-values until a prede-

fined maximum number of training iterations is reached

or the performance converges to an acceptable level.

Figure 3. Training Phase of the Proposed Scheduling Algorithm.

b). The Trained Proposed Scheduling Algorithm Diagram

Figure 4 presents a diagram of the trained proposed

scheduling algorithm, illustrating the workflow and key

components involved in the task scheduling process within a

LoRaWAN environment. The diagram outlines the following

steps:

1. Receive Task Request: The process begins with the

system receiving a new task-scheduling request, which

includes critical parameters such as deadlines and

network context. This initiates the scheduling cycle.

2. Retrieve Network State: The algorithm retrieves the

current network state, which encompasses various

factors like Signal-to-Interference-plus-Noise Ratio

(SINR), existing task queue, and other relevant network

conditions that influence scheduling decisions.

3. Generate Schedule: Utilizing the learned policy from

the training phase, the reinforcement learning (RL)

agent generates a schedule by assigning tasks to spe-

cific gateways. This assignment is optimized based on

Quality of Service (QoS) metrics and the deadlines

specified in the task request.

4. Evaluate Schedule Feasibility: The generated schedule

is assessed for feasibility, ensuring that it meets all re-

quired constraints and QoS criteria. This step is crucial

to confirm that tasks can be completed within their

deadlines and adhere to the necessary QoS standards.

5. Feasibility Check: If the schedule is deemed feasible, it

is sent to the relevant gateways for execution. If not, the

algorithm enters an adjustment phase to refine the

schedule.

6. Adjust Schedule with RL Agent: In cases where the

initial schedule is infeasible, the RL agent recalibrates

the task assignments to meet the QoS requirements, it-

eratively adjusting the schedule until it becomes feasi-

ble or the maximum number of attempts is reached.

7. Re-evaluate Schedule Feasibility: The adjusted sched-

ule undergoes another feasibility evaluation to ensure

compliance with the required constraints.

http://www.sciencepg.com/journal/iotcc

Internet of Things and Cloud Computing http://www.sciencepg.com/journal/iotcc

20

8. Final Outcome: If a feasible schedule is produced, it is

transmitted to the gateways for execution. If a feasible

schedule cannot be achieved within the maximum at-

tempts, a failure report is generated, indicating that the

task scheduling request could not be fulfilled.

Overall, Figure 4 effectively illustrates the structured

workflow of the trained scheduling algorithm, highlighting

the interaction between task requests, network state retrieval,

schedule generation, feasibility evaluation, and adjustments

made by the RL agent to optimize task scheduling in a Lo-

RaWAN network.

Figure 4. The trained proposed scheduling algorithm diagram.

3.3.2. Algorithm Implementation

The implementation of the RL-based scheduling algorithm

involves translating the designed components into a func-

tional system that operates within the simulated LoRaWAN

environment. This process includes several key steps:

1. Initialization: The algorithm initializes the RL agent,

setting up the state space, action space, and reward

structure, along with any necessary parameters for the

learning process.

2. Training Phase: The agent interacts with the environ-

ment through a reinforcement learning loop, where it

observes the current state, selects actions based on its

policy, receives rewards, and updates its knowledge

(Q-values) to improve future decision-making.

3. Integration with Simulation: The algorithm is integrated

with the network simulator (NS-3), allowing for re-

al-time interaction with the simulated LoRaWAN

network. This integration enables the agent to adapt its

scheduling decisions based on dynamic network con-

ditions and traffic patterns.

4. Evaluation: The performance of the implemented al-

gorithm is evaluated using various QoS metrics, such as

delay, packet delivery ratio, and packet error rate, to

assess its effectiveness in optimizing task scheduling in

the LoRaWAN environment.

Overall, the implementation phase focuses on creating a

working model of the algorithm that can learn and adapt to

improve network performance in real-time scenarios.

3.4. Pseudocode for Task Scheduling Algorithm

The LoRaWAN networks improved task scheduling algo-

rithm focuses on channel selection, task priority, and adaptive

gateway placement in order to achieve better QoS parameters.

The RL agent interacts with the LoRaWAN environment,

http://www.sciencepg.com/journal/iotcc

Internet of Things and Cloud Computing http://www.sciencepg.com/journal/iotcc

21

observes network states, selects actions based on policy, re-

ceives rewards, and updates its knowledge to optimize QoS

metrics like delay, reliability, throughput, and energy effi-

ciency.

1. Pseudocode Structure

1) Initialization

2) State Observation

3) Action Selection

4) Environment Interaction (OpenAI Gym Integration)

5) Reward Calculation

6) Q-Value Update (Learning)

7) Training Loop

8) Policy Improvement and Execution

2. Algorithm 1 Initialization

1) Initialize Q-network with random weights

2) Initialize target Q-network with the same weights as

Q-network

3) Initialize Replay Memory D with capacity N

4) Set ϵ for ϵ-greedy policy

5) Set learning rate α, discount factor γ, and batch size

6) Define action space A = {channel selection, task

prioritization, gateway allocation}

7) Define state space S = {channel status, signal

strength, gateway congestion, task deadlines}

8) Define reward function R(s, a) based on QoS metrics

9) Periodically synchronize target Q-network with

Q-network weights every K episodes

3. Algorithm 2 State Observation

1) Function ObserveState()

2) Initialize state as an empty list

3) Normalize current channel status, signal strength

(SINR), gateway congestion, and task deadlines

4) Append normalized values to state

5) return state

4. Algorithm 3 Action Selection using ϵ-Greedy Policy

1) Function SelectAction(state, ϵ)

2) Generate a random number rand ∈ [0, 1]

3) if rand < ϵ then

4) Choose a random action from action space A

5) else

6) Compute Q-values for all actions using Q-network

7) Choose action argmax(Q-values) // Select action

with the highest Q-value

8) end if

9) return action

5. Algorithm 4 Environment Interaction

1) Function PerformAction(action)

2) Initialize the OpenAI Gym environment

3) if action == "channel selection" then

4) Select channel with lowest interference and load

5) else if action == "task prioritization" then

6) Prioritize tasks based on deadlines

7) else if action == "gateway allocation" then

8) Assign tasks to gateways with optimal load balanc-

ing and signal quality

9) end if

10) Execute the selected action in the LoRaWAN envi-

ronment via OpenAI Gym

11) Observe the resulting state, reward, and whether the

episode is done using GetEnvironmentFeedback()

from Gym environment

12) return new state, reward, done

6. Algorithm 5 Reward Calculation

1) Function CalculateReward(state, action)

2) Initialize reward = 0

3) if QoS metrics are improved then

4) reward += k // Positive reward for improved QoS

metrics

5) else

6) reward -= k // Negative reward for decreased QoS

metrics

7) end if

8) return reward

7. Algorithm 6 Q-Value Update (Learning)

1) Function UpdateQNetwork()

2) Sample a random minibatch of transitions (state,

action, reward, next state) from Replay Memory D

3) for each transition in minibatch do

4) target = reward

5) if not done then

6) target += γ × max(target Q-network.predict(next

state))

7) end if

8) Compute loss as Mean Squared Error (MSE) be-

tween target and Q- network.predict(state, action)

9) Perform gradient descent step to minimize loss

10) end for

11) Periodically synchronize target Q-network with

Q-network weights

8. Algorithm 7 Training Loop

1) for episode in range(total_episodes) do

2) state = ObserveState()

3) done = False

4) while not done do

5) action = SelectAction(state, ϵ)

6) new_state, reward, done = PerformAction(action)

7) Store transition (state, action, reward, new_state,

done) in Replay Memory D

8) if len(Replay Memory) > batch size then

9) UpdateQNetwork()

10) end if

11) state = new_state

12) end while

13) if ϵ > ϵ_min then

14) ϵ *= epsilon_decay // Decay exploration rate

15) end if

16) if episode % evaluation_interval == 0 then

17) EvaluatePolicyPerformance()

18) end if

19) end for

http://www.sciencepg.com/journal/iotcc

Internet of Things and Cloud Computing http://www.sciencepg.com/journal/iotcc

22

9. Algorithm 8 Policy Improvement and Execution

1) Function EvaluatePolicyPerformance()

2) Initialize performance metrics

3) for test_episode in range(test episodes) do

4) state = ObserveState()

5) done = False

6) while not done do

7) action = SelectAction(state, ϵ = 0) // Greedy action

selection during evaluation

8) new state, reward, done = PerformAction(action)

9) Update performance metrics based on reward and

QoS metrics

10) state = new_state

11) end while

12) end for

13) Return metrics

3.5. Algorithm Complexity Analysis

The algorithm complexity analysis encompasses three main

aspects: time complexity, space complexity, and scalability

and feasibility.

1. Time Complexity: The training time complexity of the

RL-based scheduling algorithm is O(T × (|S| × |A| + L ×

N² + B log E)), where T is the number of training epi-

sodes, |S| is the number of states, |A| is the number of

actions, L is the number of layers, N is the number of

neurons per layer, B is the mini-batch size, and E is the

total experiences stored. This complexity arises from

exploring the state-action space, performing neural

network computations, and sampling experiences.

2. Space Complexity: The space complexity is defined as

O(L × N² + E × M), where L × N² accounts for the

neural network parameters and E × M represents the

memory required for the replay buffer, with M being

the memory space per experience tuple. This indicates

the memory requirements for both the neural network

and the experience replay mechanism.

3. Scalability and Feasibility: The DQN-based algorithm

is computationally intensive during the training phase

due to the complexity of state-action exploration and

neural network computations. However, once trained,

the decision-making phase is efficient, requiring only a

single forward pass through the neural network, making

it suitable for real-time scheduling tasks in LoRaWAN

networks and enabling scalability to handle large

numbers of devices.

Overall, the analysis highlights the algorithm's computa-

tional demands and its potential for effective deployment in

resource-constrained environments.

3.6. Reward Function Design

The reward function design is a critical component of the

proposed scheduling algorithm, as it directly influences the

learning process of the reinforcement learning (RL) agent and

the quality of scheduling decisions. The reward function is

structured as a weighted sum of various Quality of Service

(QoS) metrics, including delay minimization, reliability

maximization, and throughput optimization.

1. QoS Metrics: The design incorporates positive rewards

for actions that improve QoS metrics, such as reducing

task completion times, increasing successful packet

delivery rates, and enhancing overall network

throughput. Conversely, negative rewards are assigned

for actions that lead to excessive delays, packet losses,

or increased network congestion.

2. Balancing Trade-offs: The reward function aims to

balance trade-offs among different QoS metrics, en-

suring that the RL agent can make informed scheduling

decisions that optimize overall network performance

while adhering to specific constraints.

3. Implementation in Learning: The reward function is

integrated into the learning process, guiding the agent's

actions based on the observed outcomes and facilitating

the continuous improvement of the scheduling policy

through experience replay and Q-value updates.

Overall, the reward function design is pivotal in shaping the

agent's behavior, promoting effective scheduling strategies

that meet the dynamic demands of LoRaWAN networks.

4. Result and Analysis

4.1. Simulation Setup and Scenarios

The simulation setup and scenarios section outlines the envi-

ronment and parameters used to evaluate the proposed scheduling

algorithm in a LoRaWAN context.

1. Simulation Environment: The simulations were conducted

using the NS-3 simulator, specifically utilizing the

ns-3-lora-module to accurately emulate LoRaWAN network

characteristics. This environment allows for realistic simu-

lations of long-range, low-power communication in an un-

licensed spectrum, with a defined area of 200m x 200m and

a maximum distance of 200m to the gateway.

2. Parameters: Key simulation parameters include three gate-

ways, 100 IoT devices, one network server, a LoRa Log

Normal Shadowing propagation model, a frequency band of

868MHz, and a maximum of five retransmissions. These

parameters were selected to create a medium-scale Lo-

RaWAN network that balances complexity, communication

reliability, and computational efficiency.

3. Tuning Strategies: The performance of the reinforcement

learning-based scheduling algorithm is highly dependent on

the choice of parameters, such as learning rate, batch size,

and discount factor. The section discusses the importance of

optimizing these parameters to enhance the convergence rate

and overall effectiveness of the algorithm, ensuring it can

adapt to varying network conditions and QoS requirements.

Overall, this section emphasizes the careful design of the simu-

http://www.sciencepg.com/journal/iotcc

Internet of Things and Cloud Computing http://www.sciencepg.com/journal/iotcc

23

lation environment and parameters to facilitate a comprehensive

analysis of the proposed scheduling algorithm's performance in

realistic scenarios.

Table 1 outlines the key parameters used in the simulation of the

LoRaWAN network to evaluate the proposed scheduling algo-

rithm. The parameters include:

(1) Number of Gateways: Set to 3, indicating the infrastructure

available for communication within the network.

(2) Number of IoT Devices: A total of 100 devices are simu-

lated, representing the end-user devices that will com-

municate through the gateways.

(3) Network Server: There is 1 network server managing the

communication and data processing for the IoT devices.

(4) Environment Size: The simulation area is defined as 200m

x 200m, providing a controlled space for the network oper-

ations.

(5) Maximum Distance to Gateway: The maximum commu-

nication distance for devices to the gateway is set at 200m,

reflecting the range capabilities of LoRaWAN technology.

(6) Propagation Model: The LoRa Log Normal Shadowing

Model is used to simulate realistic signal propagation con-

ditions, accounting for environmental factors.

(7) Number of Retransmissions: A maximum of 5 retransmis-

sions is allowed for packet delivery attempts, enhancing re-

liability.

(8) Frequency Band: The simulation operates on the 868MHz

frequency band, commonly used for LoRaWAN commu-

nications.

(9) Spreading Factor: Set to SF7, which determines the data

rate and range of communication.

These parameters are carefully chosen to create a realistic me-

dium-scale LoRaWAN environment, enabling the investigation of

Quality of Service (QoS) metrics and the effectiveness of the

scheduling algorithm.

Table 1. Simulation parameters.

Parameter Value

Number of Gateways 3

Number of IoT Devices 100

Network Server 1

Environment Size 200m x 200m

Maximum Distance to Gateway 200m

Propagation Model
LoRa Log Normal Shadowing

Model

Number of Retransmissions 5(Max)

Frequency Band 868MHz

Spreading Factor
SF7, SF8, SF9, SF10, SF11,

SF12

Number of Rounds 1000

Parameter Value

Voltage 3.3v

Bandwidth 125kHz

Payload Length 10 bytes

Timeslot Technique CSMA10

Data Rate (Max) 250kbps

Number of Channels 5

Simulation Time 600 Seconds

The above parameters have been chosen in order to perform

a realistic LoRaWAN environment and investigate the QoS

metrics in IoT applications. The selected parameters aim to

simulate a realistic medium-scale LoRaWAN IoT network

that offers a good balance between the complexity of the

network and communication reliability and computational

efficiency for reinforcement learning. They rely on widely

adopted real-world LoRaWAN configurations but provide the

flexibility needed to effectively test a range of QoS and

scheduling algorithms.

4.2. Parameters and Tuning Strategies

The selection of the algorithm's parameters generally af-

fects a sizable portion of the outcomes of the RL-based

scheduling method. The ensuing sections outline the recom-

mended practices for modifying the primary parameters as

well as how the modifications affect algorithms.

The parameters and tuning strategies for the algorithm are

crucial for optimizing performance:

1. Learning Rate (α): Set at 0.001, it determines how much

new information influences existing knowledge, bal-

ancing convergence speed and stability.

2. Exploration-Exploitation Balance (ε in ε-greedy strat-

egy): The exploration rate starts at 1 and decays to 0.1,

allowing the agent to explore initially while gradually

favoring known actions.

3. Discount Factor (γ): Optimized at 0.95, it affects the

importance of future rewards, promoting a balance

between long-term and short-term rewards.

4. Batch Size for Training: An optimal batch size of 128 is

used to achieve faster convergence and effective gen-

eralization, avoiding overfitting or underfitting issues

associated with larger or smaller sizes.

Table 2 presents the key parameters utilized in the rein-

forcement learning-based scheduling algorithm, which are

crucial for its performance and effectiveness. The parameters

include:

1. Number of Hidden Layers: Set to 2, indicating the depth

of the neural network used in the scheduling algorithm.

2. Number of Neurons per Layer: Each hidden layer con-

tains 128 neurons, which influences the network's ca-

http://www.sciencepg.com/journal/iotcc

Internet of Things and Cloud Computing http://www.sciencepg.com/journal/iotcc

24

pacity to learn complex patterns and relationships in the

data.

3. Learning Rate (α): Fixed at 0.001, this parameter con-

trols the magnitude of updates to the network weights

during training, impacting convergence speed and sta-

bility.

4. Discount Factor (Gamma): Set to 0.95, this factor bal-

ances the importance of immediate rewards versus fu-

ture rewards, guiding the agent's long-term deci-

sion-making.

5. Exploration Rate (Epsilon): Initialized at 1.0, this rate

determines the likelihood of the agent exploring new

actions versus exploiting known actions, promoting

exploration in the early training stages.

6. Exploration Decay Rate: Set at 0.995, this parameter

gradually reduces the exploration rate over time, al-

lowing the agent to focus more on exploitation as it

learns.

7. Minimum Exploration Rate: Fixed at 0.01, this ensures

that the agent retains a small chance of exploring new

actions even after extensive training.

8. Replay Buffer Size: Set to 30,000, this parameter de-

fines the capacity of the experience replay buffer, which

stores past experiences for training stability.

9. Batch Size: Fixed at 64, this parameter determines the

number of experiences sampled for each training itera-

tion, balancing convergence speed and generalization.

10. Target Network Update Frequency: Set to every 500

steps, this parameter specifies how often the target

network's weights are synchronized with the main

Q-network, aiding in stable learning.

These algorithm parameters are essential for tuning the

performance of the scheduling algorithm, ensuring effective

learning and adaptation to the dynamic conditions of the

LoRaWAN network.

Table 2. Algorithm parameters.

Parameter Value

Number of Hidden Layers 2

Number of Neurons per Layer 128

Learning Rate 0.001

Discount Factor (Gamma) 0.95

Exploration Rate (Epsilon) 1.0

Exploration Decay Rate 0.995

Minimum Exploration Rate 0.01

Replay Buffer Size 30,000

Batch Size 64

Target Network Update Frequency Every 500 steps

Activation Function ReLU

Parameter Value

Optimizer Adam

Loss Function Mean Squared Error

4.3. Performance Metrics Analysis

The Performance Metrics Analysis evaluates the effec-

tiveness of the proposed algorithm using key indicators such

as delay, reliability, and throughput. The analysis demon-

strates significant improvements in these metrics compared to

baseline policies, highlighting the algorithm's ability to op-

timize QoS in LoRaWAN networks. Overall, the results in-

dicate that the RL-based scheduling approach enhances net-

work performance, particularly in managing overlapping QoS

requirements.

4.3.1. Network Delay

Figure 5 illustrates the relationship between network delay

and the number of nodes in a LoRaWAN environment.

1. Trend Analysis: The graph typically shows that as the

number of nodes increases, the delay experienced in the

network also increases. This trend is indicative of the

growing contention for communication resources,

leading to longer wait times for packet transmission.

2. Comparison of Algorithms: The figure likely compares

the delay performance of different scheduling algo-

rithms, such as the proposed RL-based algorithm versus

traditional methods like LoRa+ and RT-LoRa. The

RL-based algorithm is expected to demonstrate signif-

icantly lower delays, showcasing its effectiveness in

optimizing resource allocation and scheduling tasks.

3. Implications for QoS: The results presented in this fig-

ure highlight the importance of efficient scheduling in

maintaining low latency, especially in scenarios with a

high density of nodes. This is crucial for applications

requiring real-time data transmission, emphasizing the

need for advanced algorithms to manage network per-

formance effectively.

Overall, Figure 5 provides valuable insights into how

network delay is affected by node density and the perfor-

mance advantages of the proposed scheduling approach.

Figure 5. Delay vs number of nodes.

http://www.sciencepg.com/journal/iotcc

Internet of Things and Cloud Computing http://www.sciencepg.com/journal/iotcc

25

4.3.2. Packet Delivery Ratio (PDR)

Figure 6 depicts the relationship between the Packet De-

livery Ratio (PDR) and the number of nodes in a LoRaWAN

network.

1. PDR Trends: The graph typically shows that as the

number of nodes increases, the PDR may initially rise

but eventually plateaus or declines. This behavior in-

dicates that while more nodes can enhance network

coverage, increased contention and potential collisions

can negatively impact the successful delivery of pack-

ets.

2. Algorithm Comparison: The figure highlights the per-

formance of the proposed RL-Based Algorithm (DQN)

in achieving the highest PDR compared to other algo-

rithms like RT-LoRa and LoRa+. This superiority

suggests that the RL-based approach effectively man-

ages scheduling and resource allocation, minimizing

packet losses.

3. Significance for Network Performance: The PDR is a

critical metric for assessing the reliability of commu-

nication in IoT networks. A higher PDR indicates better

performance and reliability, which is essential for ap-

plications that require consistent data transmission, re-

inforcing the importance of advanced scheduling tech-

niques in optimizing network performance.

Overall, Figure 6 emphasizes the impact of node density

on packet delivery success and showcases the advantages of

the proposed algorithm in maintaining high delivery ratios.

Figure 6. Packet delivery ratio (PDR) vs Number of Nodes.

4.3.3. Packet Error Rate (PER)

Figure 7 illustrates the relationship between Packet Error

Rate (PER) and the number of nodes in a LoRaWAN network.

1. PER Trends: The graph typically shows that as the

number of nodes increases, the PER tends to rise, in-

dicating a higher percentage of packets experiencing

errors during transmission. This trend reflects the in-

creased likelihood of packet collisions and interference

in a congested network environment.

2. Algorithm Performance: The figure highlights that the

RL-Based Algorithm exhibits the lowest PER com-

pared to other algorithms like RT-LoRa and LoRa+.

This lower PER is attributed to the dynamic optimiza-

tion of scheduling and resource allocation performed by

the RL-based approach, which effectively reduces

packet collisions and transmission errors.

3. Implications for Network Reliability: A lower PER is

crucial for ensuring reliable communication in IoT ap-

plications, as it directly impacts the overall performance

and efficiency of the network. The results presented in

this figure underscore the importance of employing

advanced scheduling algorithms to enhance network

reliability and minimize transmission errors, especially

in scenarios with a high number of nodes.

Overall, Figure 7 emphasizes the correlation between node

density and packet error rates, showcasing the effectiveness of

the proposed RL-based algorithm in maintaining low error

rates in a congested network.

Figure 7. Packet Error Rate (PER) vs Number of Nodes.

4.3.4. Throughput

Figure 8 illustrates the relationship between throughput and

the number of nodes in a LoRaWAN network. It shows that as

the number of nodes increases, the throughput achieved by the

RL-Based Algorithm (DQN) remains significantly higher

compared to other algorithms like RT-LoRa and LoRa+. This

superior performance is attributed to the RL-Based Algo-

rithm's dynamic optimization of scheduling decisions, which

effectively balances network load and minimizes collisions,

resulting in enhanced data transmission rates even as node

density increases.

Figure 8. Throughput vs Number of Nodes.

http://www.sciencepg.com/journal/iotcc

Internet of Things and Cloud Computing http://www.sciencepg.com/journal/iotcc

26

5. Conclusion and Recommendations

5.1. Conclusion

This section concludes us our investigation into creating a

reinforcement learning-based task-scheduling algorithm for

LoRaWAN IoT applications that is QoS-aware. Researchers

investigated how current scheduling techniques fall short of

satisfying the various QoS needs of contemporary IoT appli-

cations, especially in dynamic and expansive LoRaWAN

networks. In order to overcome this difficulty, we developed

and assessed a task scheduling algorithm based on rein-

forcement learning with the goal of optimizing important QoS

metrics including throughput, latency, and reliability. Our

study showed that reinforcement learning has a great deal of

promise for improving task scheduling in LoRaWAN net-

works. We compared the performance of our RL-based

scheduler to baseline techniques, such as RT-LoRa and Lo-

Ra+, utilizing a thorough simulation-based analysis with

NS-3. Our research showed that the RL-based method has

significant benefits in a number of situations. Especially in

situations with dynamic traffic, the RL scheduler continu-

ously beat baseline algorithms. Especially during periods of

high network traffic, it successfully adjusted and obtained a

noticeably decreased average delay. In comparison to base-

lines, our RL scheduler continuously showed lower packet

error rates and greater packet delivery ratios, indicating in-

creased reliability. Higher average throughput was also at-

tained by the RL-based method, demonstrating its efficiency

in managing heavy network loads and optimizing data transfer

rates.

We have demonstrated that the difficulties of current Lo-

RaWAN scheduling techniques may be successfully ad-

dressed by using reinforcement learning, especially when it

comes to meeting QoS requirements like throughput, latency,

and reliability. For real-world LoRaWAN deployments to

optimize QoS, our RL-based scheduler must be able to learn

and adjust to dynamically changing network conditions, traf-

fic patterns, and device attributes. For the development of

intelligent scheduling systems for LoRaWAN networks

across multiple sectors, our study offers a solid basis. Nu-

merous applications, such as industrial automation, smart

cities, and remote healthcare monitoring, may perform better

thanks to the optimized scheduling method.

5.2. Prospects for Further Research

Even though our study offers insightful information about

RL's potential for LoRaWAN scheduling, there are still a

number of aspects that require further study and advancement:

1) Further enhancements in scheduling performance may

result by evaluating additional reinforcement learning

algorithms, such as deep reinforcement learning archi-

tectures, policy gradient methods, or other cutting-edge

techniques.

2) Deploying dependable and secure IoT applications re-

quires addressing security and privacy issues in Lo-

RaWAN scheduling. How to incorporate security

measures into the RL-based algorithm can be investi-

gated in future studies.

3) Extensive testing and assessment in realistic contexts

are necessary for the proposed scheduler's real-world

implementation in order to validate its performance in

the context of network dynamics, communication la-

tency, and device heterogeneity.

Abbreviations

AI Artificial Intelligence

CF Carrier Frequency

DER Data Extraction Rate

DNN Deep Neural Network

DQN Deep Q-Network

DRL Deep Reinforcement Learning

DSR Design Science Research

ILP Integer Linear Programming

IoT Internet of Things

ISM Industrial, Scientific, and Medical

LoRa Long Range

LoRaSim LoRa Network Simulator

LoRaWAN Long Range Wide Area Network

LPWAN Low Power Wide Area Network

MAC Medium Access Control

MCUs Microcontrollers

MILP Mixed Integer Linear Programming

NS-3 Network Simulator-3

PDR Packet Delivery Ratio

PER Packet Error Rate

PST Priority Scheduling Technique

QoS Quality of Service

ReLU Rectified Linear Unit

RL Reinforcement learning

RT-LoRa Real-Time LoRa

SF Spreading Factor

SINR Signal-to-Interference-plus-Noise Ratio

TCP/IP Transmission Control Protocol/Internet

Protocol

Author Contributions

Ermias Melku Tadesse: Conceptualization, Investigation,

Methodology, Project administration, Writing – original draft

Haimanot Edmealem: Funding acquisition, Resources,

Writing – review & editing

Tesfaye Belay: Data curation, Validation, Visualization

Abubeker Girma: Formal Analysis, Software, Supervi-

sion

http://www.sciencepg.com/journal/iotcc

Internet of Things and Cloud Computing http://www.sciencepg.com/journal/iotcc

27

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] N. H. Mahmood, N. Marchenko, M. Gidlund, and P. Popovski,

Wireless Networks and Industrial IoT: Applications,

Challenges and Enablers. 2020.

https://doi.org/10.1007/978-3-030-51473-0

[2] L. R. de Oliveira, P. de Moraes, L. P. S. Neto, and A. F. da

Conceição, “Review of LoRaWAN Applications,” 2020,

[Online]. Available: http://arxiv.org/abs/2004.05871

[3] J. M. Marais, R. Malekian, and A. M. Abu-Mahfouz, “LoRa

and LoRaWAN testbeds: A review,” 2017 IEEE AFRICON Sci.

Technol. Innov. Africa, AFRICON 2017, pp. 1496–1501, 2017,

https://doi.org/10.1109/AFRCON.2017.8095703

[4] K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, “Overview of

Cellular LPWAN Technologies for IoT Deployment: Sigfox,

LoRaWAN, and NB-IoT,” 2018 IEEE Int. Conf. Pervasive

Comput. Commun. Work. PerCom Work. 2018, pp. 197–202,

2018, https://doi.org/10.1109/PERCOMW.2018.8480255

[5] T. Bouguera, J. F. Diouris, J. J. Chaillout, R. Jaouadi, and G.

Andrieux, “Energy consumption model for sensor nodes based

on LoRa and LoRaWAN,” Sensors (Switzerland), vol. 18, no. 7,

pp. 1–23, 2018, https://doi.org/10.3390/s18072104

[6] A. Augustin, J. Yi, T. Clausen, and W. M. Townsley, “A study

of Lora: Long range & low power networks for the internet of

things,” Sensors (Switzerland), vol. 16, no. 9, pp. 1–18, 2016,

https://doi.org/10.3390/s16091466

[7] M. Ragnoli, G. Barile, A. Leoni, G. Ferri, and V. Stornelli, “An

autonomous low-power lora-based flood-monitoring system,”

J. Low Power Electron. Appl., vol. 10, no. 2, 2020,

https://doi.org/10.3390/jlpea10020015

[8] J. Haxhibeqiri, I. Moerman, and J. Hoebeke, “Low overhead

scheduling of LoRa transmissions for improved scalability,”

IEEE Internet Things J., vol. 6, no. 2, pp. 3097–3109, 2019,

https://doi.org/10.1109/JIOT.2018.2878942

[9] R. S. Sutton and A. G. Barto, “Reinforcement learning_Peter,”

Learning, vol. 3, no. 9, 2012, [Online]. Available:

http://incompleteideas.net/sutton/book/the-book.html%5Cn

[10] J. Petäjäjärvi, K. Mikhaylov, M. Pettissalo, J. Janhunen, and J.

Iinatti, “Performance of a low-power wide-area network based

on lora technology: Doppler robustness, scalability, and

coverage,” Int. J. Distrib. Sens. Networks, vol. 13, no. 3, 2017,

https://doi.org/10.1177/1550147717699412

[11] T. Polonelli, D. Brunelli, A. Marzocchi, and L. Benini, “Slotted

ALOHA on LoRaWAN-design, analysis, and deployment,”

Sensors (Switzerland), vol. 19, no. 4, 2019,

https://doi.org/10.3390/s19040838

[12] M. Alenezi, K. K. Chai, A. S. Alam, Y. Chen, and S. Jimaa,

“Unsupervised learning clustering and dynamic transmission

scheduling for efficient dense LoRaWAN networks,” IEEE

Access, vol. 8, pp. 191495–191509, 2020,

https://doi.org/10.1109/ACCESS.2020.3031974

[13] L. Leonardi, F. Battaglia, and L. Lo Bello, “RT-LoRa: A

Medium Access Strategy to Support Real-Time Flows Over

LoRa-Based Networks for Industrial IoT Applications,” IEEE

Internet Things J., vol. 6, no. 6, pp. 10812–10823, 2019,

https://doi.org/10.1109/JIOT.2019.2942776

[14] E. Sallum, N. Pereira, M. Alves, and M. Santos, “Improving

quality-of-service in LOra low-power wide-area networks

through optimized radio resource management,” J. Sens.

Actuator Networks, vol. 9, no. 1, pp. 1–26, 2020,

https://doi.org/10.3390/jsan9010010

[15] M. Micheletto, P. Zabala, S. F. Ochoa, R. Meseguer, and R.

Santos, “Determining Real-Time Communication Feasibility

in IoT Systems Supported by LoRaWAN,” Sensors, vol. 23, no.

9, pp. 1–27, 2023, https://doi.org/10.3390/s23094281

[16] C. Garrido-Hidalgo et al., “LoRaWAN Scheduling: From

Concept to Implementation,” IEEE Internet Things J., vol. 8,

no. 16, pp. 12919–12933, 2021,

https://doi.org/10.1109/JIOT.2021.3064430

[17] U. F. Siddiqi, S. M. Sait, and M. Uysal, “Deep Reinforcement

Based Power Allocation for the Max-Min Optimization in

Non-Orthogonal Multiple Access,” IEEE Access, vol. 8, pp.

211235–211247, 2020,

https://doi.org/10.1109/ACCESS.2020.3038923

http://www.sciencepg.com/journal/iotcc

