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Abstract 

In order to solve the problems of effective resource allocation in low-power wide-area networks, this thesis investigates the 

scheduling of end devices in Internet of Things applications using LoRaWAN technology. The main goal of this research is to use 

RL to improve QoS measures including energy efficiency, throughput, latency, and dependability. This was accomplished by 

using a simulation-based approach that evaluated the effectiveness of the RL-based scheduling algorithm using NS3 simulations. 

The main findings show that, in comparison to current scheduling practices, the RL agent greatly improves data transmission 

reliability and improves network throughput. Furthermore, the suggested approach efficiently lowers average system latency and 

overall energy usage, improving network resource utilization. These findings imply that using reinforcement learning (RL) for 

job scheduling in LoRaWAN networks can offer a reliable and expandable solution to present problems, resulting in more 

intelligent and environmentally friendly IoT systems. In the end, this study finds that using RL-based techniques can help 

improve resource management in contexts that are dynamic and resource-constrained. 
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1. Introduction 

The Internet of Things (IoT) encompasses a vast network of 

interconnected devices that communicate and exchange data 

over the Internet, impacting various sectors such as smart 

cities, healthcare, agriculture, and industry. The rapid expan-

sion of IoT applications has created a pressing need for effi-

cient resource allocation and task scheduling mechanisms to 

optimize resource utilization while meeting Quality of Service 

(QoS) requirements [1]. 

LoRaWAN (Long Range Wide Area Network) is high-

lighted as a significant enabler for IoT, designed to provide 

long-range communication with low power consumption. 

This wireless communication protocol is particularly opti-

mized for IoT devices, allowing them to transmit small 

amounts of data over considerable distances. LoRaWAN's 

capabilities make it suitable for applications requiring remote 

monitoring and data acquisition, thus facilitating the expan-

sion of IoT solutions [2, 3]. For example, LoRaWAN which is 

LPWAN technology can connect battery-powered devices at 
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very long distances while consuming minimum power, hence 

making it affordable [4]. 

LoRaWAN operates in the unlicensed ISM bands, which 

vary according to region [5]. It employs chirp spread spectrum 

modulation technique to attain long-distance communication 

with low power [6]. One of the main advantages of Lo-

RaWAN is its remarkable coverage. For this reason, it can 

transmit data within several kilometers in open settings such 

as rural areas or large industrial facilities without the need for 

cellular towers and other infrastructure items. Consequently, 

LoRaWAN is best suitable for applications that need a wider 

coverage area, such as smart agriculture, asset tracking, en-

vironmental monitoring, and smart city deployments [1]. 

Hence, LoRaWAN has become an attractive technology for 

IoT applications due to its unique combination of long-range 

capability, low power consumption, and cost-effective de-

ployment [7] and LoRaWAN relies on four key components 

[8]. 

Figure 1 depicts the overall architecture of a LoRaWAN 

network, highlighting its key components and their interac-

tions. The architecture consists of end devices (sensors), 

gateways, a network server, and application servers, illus-

trating how data flows from the end devices to the application 

layer. End devices communicate wirelessly with gateways 

using LoRa technology, which then forward the data to the 

network server, where it is processed and routed to the ap-

propriate application server for further analysis or action, 

showcasing the hierarchical structure and functionality of the 

LoRaWAN ecosystem. 

 
Figure 1. LoRaWAN Network Architecture [8]. 

In LoRaWAN IoT applications, maintaining Quality of 

Service (QoS) is crucial due to challenges like limited re-

sources, channel congestion, and varying QoS requirements, 

which can lead to issues such as high latency and packet loss. 

Reinforcement Learning (RL) is identified as the most suita-

ble machine learning approach for dynamic task scheduling in 

LoRaWAN networks, as it can adapt to changing conditions 

and optimize multiple QoS metrics simultaneously. By lev-

eraging RL, nodes can self-optimize scheduling performance, 

enhancing reliability and efficiency in diverse applications 

such as smart agriculture, industrial IoT, and smart city 

management [9, 10, 7]. 

The study proposes the use of reinforcement learning (RL) 

techniques to develop a scheduling algorithm that can adapt to 

dynamic network conditions, optimize energy consumption, 

and enhance overall system performance. By leveraging RL, 

the proposed solution aims to improve latency, reliability, and 

efficiency in LoRaWAN networks, ultimately contributing to 

the sustainability and scalability of IoT deployments [11, 10]. 

Contributions of the Article 

1) Development of an RL-Based Scheduling Algorithm: 

The article presents a novel reinforcement learn-

ing-based task scheduling algorithm specifically de-

signed for LoRaWAN networks, enhancing resource 

allocation and optimizing Quality of Service (QoS) 

metrics. 

2) Performance Evaluation: It provides a comprehensive 

performance analysis of the proposed algorithm 

through simulations, demonstrating its effectiveness in 

improving throughput, reducing delay, and increasing 

packet delivery ratios compared to existing scheduling 

methods. 

3) Insights for Future Research: The findings and meth-

odologies outlined in the article offer valuable insights 

and a foundation for future research in the field of IoT 

and LoRaWAN, encouraging further exploration of 

adaptive and intelligent scheduling techniques to ad-

dress the evolving challenges in network management. 

2. Related Work 

LPWANs like LoRaWAN have revolutionized the IoT by 

enabling long-range communication with battery-powered 

devices. However, IoT applications within the IoT domain 

demand reliable and expedited data delivery, posing chal-

lenges for LoRaWAN due to inherent limitations in range, 

latency, and energy constraints [12]. This review explores 

existing research related to Task Scheduling in LoRaWAN. 

The paper [13] proposes a dynamic transmission Priority 

Scheduling Technique (PST) based on an unsupervised 

learning clustering algorithm for dense LoRaWAN networks. 

The LoRa gateway classifies nodes into different priority 

clusters, and the dynamic PST allows the gateway to config-

ure transmission intervals based on cluster priorities. This 

approach aims to improve transmission delay, and decrease 

energy consumption. Simulation results suggest that the 

proposed work outperforms conventional LoRaWAN and 

recent clustering and scheduling schemes, making it poten-

tially well suited for dense LoRaWAN deployments. 

In [14] a Real-Time LoRa (RT-LoRa) communication 

protocol for industrial Internet of things applications is in-

troduced. The real-time flow is processed by the RT-LoRa 

using a medium access strategy. Static and movable nodes are 

used to build the entire network. The QoS level is regarded as 

being the same for every static node. Three classes-normal, 

dependable, and most reliable-are used to categorize the QoS 
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level for flows produced by mobile nodes. The technique 

distributes SF and CF based on the QoS level. A star topology 

is used to arrange and connect the mobile and static nodes to 

the gateway. The following are the important points raised in 

this paper: For a single gateway network using single hop 

communication, the general process is described. Even within 

180 meters, this results in a significant transmission delay of 

up to 28 seconds for the majority of dependable flows. This 

study has not addressed the need for greater coverage and 

reduced time delay for industrial data in real-time. There are 

limitations in QoS provisioning because the QoS level is only 

assigned to mobile nodes and all static node flows are given 

the same priority level. All nodes need a lot of energy to 

connect with the central gateway, and nodes farther from the 

gateway use even more energy. 

The paper [15] proposes a method to optimize the perfor-

mance of LoRaWAN networks through dynamically assign-

ing values for the Spreading Factor and Carrier Frequency 

radio parameters. This assignment is formulated as a Mixed 

Integer Linear Programming problem to maximize network 

metrics like Data Extraction Rate and minimize packet colli-

sions. An approximation algorithm is also developed to solve 

the problem more efficiently at scale. The results show im-

proved performance for metrics like DER and average 6-13% 

fewer packet collisions compared to baseline policies. The 

performance evaluation of the proposed optimization algo-

rithms is done through simulation using the LoRaSim simu-

lator. The optimization focuses on optimizing just the SF and 

CF parameters of the LoRa radio configuration. Considering 

additional parameters could lead to even better performance. 

The simulations assume a single gateway setup. Therefore, in 

summary, the key limitations are limited configuration pa-

rameters, static network assumptions and evaluation based on 

few metrics. 

In [16], the authors explore the viability of real-time 

communication within LoRaWAN-based IoT systems. Lev-

eraging an integer linear programming (ILP) model, they 

assess the feasibility of real-time communication during the 

network design stage. This model not only determines feasi-

bility but also optimizes the number and placement of gate-

ways necessary to achieve real-time requirements. The paper 

further validates the model's performance through various 

scenarios, offering valuable insights into LoRaWAN's scala-

bility and real-time support limitations. However, it is im-

portant to note that the model primarily focuses on static 

network design at deployment. This may not fully capture the 

dynamic nature of real-world networks, where factors like 

interference, congestion, and gateway availability can sig-

nificantly affect real-time QoS performance. 

In [17], the authors present a low-overhead synchronization 

and scheduling concept implemented on top of LoRaWAN 

Class A. They design and deploy an end-to-end architecture 

on STM32L0 microcontrollers (MCUs), where a central en-

tity provides synchronization metrics and allocate transmis-

sion slots. By measuring clock drift in devices, the system 

defines slot lengths within the network. This approach 

achieves 10-millisecond accuracy and demonstrates signifi-

cant improvements in packet delivery ratios compared to 

Aloha-based setups, especially under high network loads. 

Notably, the paper addresses the gap in the literature regard-

ing experimental approaches to LoRaWAN scheduling and 

demonstrates the feasibility of the proposed concept. How-

ever, the paper does not delve into the energy consumption 

impact of the implemented scheduling algorithms. 

A number of existing studies have proposed different 

methods to reduce the retransmissions, including adaptive 

retry limits and error correction mechanisms. However, most 

of these methods fundamentally fail to adapt dynamically 

with changing network conditions, and this issue is addressed 

in the proposed reinforcement learning-based scheduling 

algorithm. 

3. Research Methodology 

3.1. Proposed Method 

The research methodology focuses on designing and im-

plementing a reinforcement learning (RL)-based scheduling 

algorithm for reliable data delivery in LoRaWAN networks. It 

adopts a design science research (DSR) approach, which 

emphasizes systematic development and evaluation of prac-

tical solutions to address inefficiencies in existing task 

scheduling mechanisms. The methodology begins with a 

detailed description of the research design, which emphasizes 

the need for a task scheduling algorithm that can effectively 

manage resources in dynamic environments. The study iden-

tifies the limitations of existing scheduling methods in Lo-

RaWAN networks, particularly their inability to meet the QoS 

demands of modern IoT applications. To address these chal-

lenges, the research proposes a reinforcement learning (RL) 

based algorithm that can adapt to varying network conditions 

and optimize resource allocation. 

3.2. Research Design 

The research employs a mixed-methods approach, com-

bining quantitative research with design science to systemat-

ically design, develop, and assess a QoS-aware 

task-scheduling algorithm. This approach allows for ad-

dressing questions related to the effectiveness of the proposed 

algorithm in improving QoS in dynamic IoT environments. 

3.3. Algorithm Design and Implementation 

3.3.1. Algorithm Design 

The design of the RL-based scheduling algorithm focuses 

on creating an intelligent agent that optimizes task scheduling 

in a LoRaWAN environment. Key components include de-

fining the state space, action space, and reward function, 
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which guide the agent's learning process to make optimal 

scheduling decisions based on network conditions. 

1.  State Space: The state space encompasses various 

network parameters, such as node status, channel con-

ditions, and traffic patterns, allowing the agent to assess 

the current environment effectively. 

2.  Action Space: The action space includes possible 

scheduling actions, such as channel selection, task pri-

oritization, and gateway allocation, enabling the agent 

to make informed decisions to enhance QoS metrics. 

3.  Reward Function: The reward function is designed to 

provide feedback to the agent based on its actions, en-

couraging behaviors that lead to improved QoS out-

comes, such as reduced delay, increased packet delivery 

ratio, and minimized packet error rates. 

4.  Policy (π): The policy defines the strategy the agent 

uses to select actions based on the observed state, ena-

bling it to balance exploration and exploitation during 

learning. 

5.  Learning Algorithm: A suitable reinforcement learning 

algorithm, such as Deep Q-Networks (DQN), is em-

ployed to enable the agent to learn from its experiences 

and improve its scheduling decisions over time. 

Figure 2 illustrates the architecture of a Deep Q-Network 

(DQN), which combines Q-learning with deep neural net-

works to enable reinforcement learning in complex environ-

ments. The architecture typically consists of the following key 

components: 

1.  Input Layer: This layer receives the state representation 

of the environment, which can include various features 

relevant to the task at hand. The input is often a 

high-dimensional vector that captures the current state 

of the system. 

2.  Hidden Layers: The DQN architecture includes multi-

ple fully connected hidden layers (in this case, two 

layers) that process the input data. Each hidden layer 

consists of a specified number of neurons (e.g., 128), 

which are responsible for extracting features and 

learning non-linear relationships between the input state 

and potential actions. ReLU (Rectified Linear Unit) 

activation functions are commonly used to introduce 

non-linearity. 

3.  Output Layer: The output layer generates Q-values for 

each possible action based on the processed input state. 

These Q-values represent the expected future rewards 

for taking specific actions in the given state, allowing 

the agent to make informed decisions about which ac-

tion to take. 

4.  Experience Replay: Although not explicitly shown in 

the architecture diagram, experience replay is an inte-

gral part of the DQN framework. It involves storing 

past experiences (state, action, reward, next state) in a 

replay memory, which is sampled during training to 

improve learning stability and efficiency. 

 
Figure 2. DQN Architecture [18]. 

The diagram shows the agent taking an action in the envi-

ronment, receiving a new state and reward, and updating its 

policy based on the experience. This iterative process allows 

the agent to learn an optimal policy for maximizing rewards in 

the environment. 

Here's a breakdown of the diagram's elements: 

1) Agent: This is the decision-making entity. It receives 

the current state of the environment (s) and uses its 

policy (π) to select an action (a). The policy is typically 

implemented as a neural network (DNN) with param-

eters θ. 

2) Environment: This is the external world the agent in-

teracts with. It receives the agent's action (a) and pro-

vides the agent with a new state (s') and a reward (r). 

3) State (s): The current situation or observation of the 

environment. 

4) Action (a): The decision or move made by the agent. 

5) Reward (r): A scalar value indicating the outcome of 

the agent's action. Positive rewards encourage behav-

iors, while negative rewards discourage them. 

6) Policy (π): A function that maps states to actions. In 

DRL, it's often represented as a neural. 

7) network. 

a). Training Phase of the Proposed Scheduling Algorithm 

Figure 3 outlines the training phase of the proposed 

scheduling algorithm, which utilizes a Deep Q-Network 

(DQN) approach to optimize task scheduling in a LoRaWAN 

environment. The training phase consists of several key steps: 

1.  Initialization of DQN Parameters: The training process 

begins with the initialization of essential DQN param-

eters, including the learning rate, which determines how 

much the Q-values are updated during training; epsilon, 

which controls the exploration-exploitation trade-off; 

and the experience replay buffer, which stores past 

experiences to enhance training stability. 

2.  Observation of Current State: The agent interacts with 

the OpenAI Gym environment to observe the current 

state of the network. This state includes various pa-

rameters such as network conditions, task queue status, 

and other relevant metrics that influence scheduling 

decisions. 

3.  Action Selection and Execution: Based on the observed 

state, the agent selects an action using an epsi-

lon-greedy policy, balancing exploration of new actions 
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and exploitation of known rewarding actions. The se-

lected action is then executed within the environment. 

4.  Reward Calculation: After executing the action, the 

agent receives feedback in the form of a reward, which 

quantifies the effectiveness of the action taken in terms 

of QoS metrics such as delay, throughput, and packet 

delivery ratio. 

5.  Experience Storage and Learning: The agent stores the 

experience (state, action, reward, next state) in the re-

play buffer. A mini-batch of experiences is sampled 

from this buffer to update the Q-values, allowing the 

agent to learn from past actions and improve its sched-

uling policy over time. 

6.  Iteration and Convergence: The training process con-

tinues iteratively, with the agent observing new states, 

selecting actions, and updating Q-values until a prede-

fined maximum number of training iterations is reached 

or the performance converges to an acceptable level. 

 
Figure 3. Training Phase of the Proposed Scheduling Algorithm. 

b). The Trained Proposed Scheduling Algorithm Diagram 

Figure 4 presents a diagram of the trained proposed 

scheduling algorithm, illustrating the workflow and key 

components involved in the task scheduling process within a 

LoRaWAN environment. The diagram outlines the following 

steps: 

1.  Receive Task Request: The process begins with the 

system receiving a new task-scheduling request, which 

includes critical parameters such as deadlines and 

network context. This initiates the scheduling cycle. 

2.  Retrieve Network State: The algorithm retrieves the 

current network state, which encompasses various 

factors like Signal-to-Interference-plus-Noise Ratio 

(SINR), existing task queue, and other relevant network 

conditions that influence scheduling decisions. 

3.  Generate Schedule: Utilizing the learned policy from 

the training phase, the reinforcement learning (RL) 

agent generates a schedule by assigning tasks to spe-

cific gateways. This assignment is optimized based on 

Quality of Service (QoS) metrics and the deadlines 

specified in the task request. 

4.  Evaluate Schedule Feasibility: The generated schedule 

is assessed for feasibility, ensuring that it meets all re-

quired constraints and QoS criteria. This step is crucial 

to confirm that tasks can be completed within their 

deadlines and adhere to the necessary QoS standards. 

5.  Feasibility Check: If the schedule is deemed feasible, it 

is sent to the relevant gateways for execution. If not, the 

algorithm enters an adjustment phase to refine the 

schedule. 

6.  Adjust Schedule with RL Agent: In cases where the 

initial schedule is infeasible, the RL agent recalibrates 

the task assignments to meet the QoS requirements, it-

eratively adjusting the schedule until it becomes feasi-

ble or the maximum number of attempts is reached. 

7.  Re-evaluate Schedule Feasibility: The adjusted sched-

ule undergoes another feasibility evaluation to ensure 

compliance with the required constraints. 
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8.  Final Outcome: If a feasible schedule is produced, it is 

transmitted to the gateways for execution. If a feasible 

schedule cannot be achieved within the maximum at-

tempts, a failure report is generated, indicating that the 

task scheduling request could not be fulfilled. 

Overall, Figure 4 effectively illustrates the structured 

workflow of the trained scheduling algorithm, highlighting 

the interaction between task requests, network state retrieval, 

schedule generation, feasibility evaluation, and adjustments 

made by the RL agent to optimize task scheduling in a Lo-

RaWAN network. 

 
Figure 4. The trained proposed scheduling algorithm diagram. 

3.3.2. Algorithm Implementation 

The implementation of the RL-based scheduling algorithm 

involves translating the designed components into a func-

tional system that operates within the simulated LoRaWAN 

environment. This process includes several key steps: 

1.  Initialization: The algorithm initializes the RL agent, 

setting up the state space, action space, and reward 

structure, along with any necessary parameters for the 

learning process. 

2.  Training Phase: The agent interacts with the environ-

ment through a reinforcement learning loop, where it 

observes the current state, selects actions based on its 

policy, receives rewards, and updates its knowledge 

(Q-values) to improve future decision-making. 

3.  Integration with Simulation: The algorithm is integrated 

with the network simulator (NS-3), allowing for re-

al-time interaction with the simulated LoRaWAN 

network. This integration enables the agent to adapt its 

scheduling decisions based on dynamic network con-

ditions and traffic patterns. 

4.  Evaluation: The performance of the implemented al-

gorithm is evaluated using various QoS metrics, such as 

delay, packet delivery ratio, and packet error rate, to 

assess its effectiveness in optimizing task scheduling in 

the LoRaWAN environment. 

Overall, the implementation phase focuses on creating a 

working model of the algorithm that can learn and adapt to 

improve network performance in real-time scenarios. 

3.4. Pseudocode for Task Scheduling Algorithm 

The LoRaWAN networks improved task scheduling algo-

rithm focuses on channel selection, task priority, and adaptive 

gateway placement in order to achieve better QoS parameters. 

The RL agent interacts with the LoRaWAN environment, 
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observes network states, selects actions based on policy, re-

ceives rewards, and updates its knowledge to optimize QoS 

metrics like delay, reliability, throughput, and energy effi-

ciency. 

1.  Pseudocode Structure 

1) Initialization 

2) State Observation 

3) Action Selection 

4) Environment Interaction (OpenAI Gym Integration) 

5) Reward Calculation 

6) Q-Value Update (Learning) 

7) Training Loop 

8) Policy Improvement and Execution 

2.  Algorithm 1 Initialization 

1) Initialize Q-network with random weights 

2) Initialize target Q-network with the same weights as 

Q-network 

3) Initialize Replay Memory D with capacity N 

4) Set ϵ for ϵ-greedy policy 

5) Set learning rate α, discount factor γ, and batch size 

6) Define action space A = {channel selection, task 

prioritization, gateway allocation} 

7) Define state space S = {channel status, signal 

strength, gateway congestion, task deadlines} 

8) Define reward function R(s, a) based on QoS metrics 

9) Periodically synchronize target Q-network with 

Q-network weights every K episodes 

3.  Algorithm 2 State Observation 

1) Function ObserveState() 

2) Initialize state as an empty list 

3) Normalize current channel status, signal strength 

(SINR), gateway congestion, and task deadlines 

4) Append normalized values to state 

5) return state 

4.  Algorithm 3 Action Selection using ϵ-Greedy Policy 

1) Function SelectAction(state, ϵ) 

2) Generate a random number rand ∈ [0, 1] 

3) if rand < ϵ then 

4) Choose a random action from action space A 

5) else 

6) Compute Q-values for all actions using Q-network 

7) Choose action argmax(Q-values) // Select action 

with the highest Q-value 

8) end if 

9) return action 

5.  Algorithm 4 Environment Interaction 

1) Function PerformAction(action) 

2) Initialize the OpenAI Gym environment 

3) if action == "channel selection" then 

4) Select channel with lowest interference and load 

5) else if action == "task prioritization" then 

6) Prioritize tasks based on deadlines 

7) else if action == "gateway allocation" then 

8) Assign tasks to gateways with optimal load balanc-

ing and signal quality 

9) end if 

10) Execute the selected action in the LoRaWAN envi-

ronment via OpenAI Gym 

11) Observe the resulting state, reward, and whether the 

episode is done using GetEnvironmentFeedback() 

from Gym environment 

12) return new state, reward, done 

6.  Algorithm 5 Reward Calculation 

1) Function CalculateReward(state, action) 

2) Initialize reward = 0 

3) if QoS metrics are improved then 

4) reward += k // Positive reward for improved QoS 

metrics 

5) else 

6) reward -= k // Negative reward for decreased QoS 

metrics 

7) end if 

8) return reward 

7.  Algorithm 6 Q-Value Update (Learning) 

1) Function UpdateQNetwork() 

2) Sample a random minibatch of transitions (state, 

action, reward, next state) from Replay Memory D 

3) for each transition in minibatch do 

4) target = reward 

5) if not done then 

6) target += γ × max(target Q-network.predict(next 

state)) 

7) end if 

8) Compute loss as Mean Squared Error (MSE) be-

tween target and Q- network.predict(state, action) 

9) Perform gradient descent step to minimize loss 

10) end for 

11) Periodically synchronize target Q-network with 

Q-network weights 

8.  Algorithm 7 Training Loop 

1) for episode in range(total_episodes) do 

2) state = ObserveState() 

3) done = False 

4) while not done do 

5) action = SelectAction(state, ϵ) 

6) new_state, reward, done = PerformAction(action) 

7) Store transition (state, action, reward, new_state, 

done) in Replay Memory D 

8) if len(Replay Memory) > batch size then 

9) UpdateQNetwork() 

10) end if 

11) state = new_state 

12) end while 

13) if ϵ > ϵ_min then 

14) ϵ *= epsilon_decay // Decay exploration rate 

15) end if 

16) if episode % evaluation_interval == 0 then 

17) EvaluatePolicyPerformance() 

18) end if 

19) end for 
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9.  Algorithm 8 Policy Improvement and Execution 

1) Function EvaluatePolicyPerformance() 

2) Initialize performance metrics 

3) for test_episode in range(test episodes) do 

4) state = ObserveState() 

5) done = False 

6) while not done do 

7) action = SelectAction(state, ϵ = 0) // Greedy action 

selection during evaluation 

8) new state, reward, done = PerformAction(action) 

9) Update performance metrics based on reward and 

QoS metrics 

10) state = new_state 

11) end while 

12) end for 

13) Return metrics 

3.5. Algorithm Complexity Analysis 

The algorithm complexity analysis encompasses three main 

aspects: time complexity, space complexity, and scalability 

and feasibility. 

1.  Time Complexity: The training time complexity of the 

RL-based scheduling algorithm is O(T × (|S| × |A| + L × 

N² + B log E)), where T is the number of training epi-

sodes, |S| is the number of states, |A| is the number of 

actions, L is the number of layers, N is the number of 

neurons per layer, B is the mini-batch size, and E is the 

total experiences stored. This complexity arises from 

exploring the state-action space, performing neural 

network computations, and sampling experiences. 

2.  Space Complexity: The space complexity is defined as 

O(L × N² + E × M), where L × N² accounts for the 

neural network parameters and E × M represents the 

memory required for the replay buffer, with M being 

the memory space per experience tuple. This indicates 

the memory requirements for both the neural network 

and the experience replay mechanism. 

3.  Scalability and Feasibility: The DQN-based algorithm 

is computationally intensive during the training phase 

due to the complexity of state-action exploration and 

neural network computations. However, once trained, 

the decision-making phase is efficient, requiring only a 

single forward pass through the neural network, making 

it suitable for real-time scheduling tasks in LoRaWAN 

networks and enabling scalability to handle large 

numbers of devices. 

Overall, the analysis highlights the algorithm's computa-

tional demands and its potential for effective deployment in 

resource-constrained environments. 

3.6. Reward Function Design 

The reward function design is a critical component of the 

proposed scheduling algorithm, as it directly influences the 

learning process of the reinforcement learning (RL) agent and 

the quality of scheduling decisions. The reward function is 

structured as a weighted sum of various Quality of Service 

(QoS) metrics, including delay minimization, reliability 

maximization, and throughput optimization. 

1.  QoS Metrics: The design incorporates positive rewards 

for actions that improve QoS metrics, such as reducing 

task completion times, increasing successful packet 

delivery rates, and enhancing overall network 

throughput. Conversely, negative rewards are assigned 

for actions that lead to excessive delays, packet losses, 

or increased network congestion. 

2.  Balancing Trade-offs: The reward function aims to 

balance trade-offs among different QoS metrics, en-

suring that the RL agent can make informed scheduling 

decisions that optimize overall network performance 

while adhering to specific constraints. 

3.  Implementation in Learning: The reward function is 

integrated into the learning process, guiding the agent's 

actions based on the observed outcomes and facilitating 

the continuous improvement of the scheduling policy 

through experience replay and Q-value updates. 

Overall, the reward function design is pivotal in shaping the 

agent's behavior, promoting effective scheduling strategies 

that meet the dynamic demands of LoRaWAN networks. 

4. Result and Analysis 

4.1. Simulation Setup and Scenarios 

The simulation setup and scenarios section outlines the envi-

ronment and parameters used to evaluate the proposed scheduling 

algorithm in a LoRaWAN context. 

1.  Simulation Environment: The simulations were conducted 

using the NS-3 simulator, specifically utilizing the 

ns-3-lora-module to accurately emulate LoRaWAN network 

characteristics. This environment allows for realistic simu-

lations of long-range, low-power communication in an un-

licensed spectrum, with a defined area of 200m x 200m and 

a maximum distance of 200m to the gateway. 

2.  Parameters: Key simulation parameters include three gate-

ways, 100 IoT devices, one network server, a LoRa Log 

Normal Shadowing propagation model, a frequency band of 

868MHz, and a maximum of five retransmissions. These 

parameters were selected to create a medium-scale Lo-

RaWAN network that balances complexity, communication 

reliability, and computational efficiency. 

3.  Tuning Strategies: The performance of the reinforcement 

learning-based scheduling algorithm is highly dependent on 

the choice of parameters, such as learning rate, batch size, 

and discount factor. The section discusses the importance of 

optimizing these parameters to enhance the convergence rate 

and overall effectiveness of the algorithm, ensuring it can 

adapt to varying network conditions and QoS requirements. 

Overall, this section emphasizes the careful design of the simu-
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lation environment and parameters to facilitate a comprehensive 

analysis of the proposed scheduling algorithm's performance in 

realistic scenarios. 

Table 1 outlines the key parameters used in the simulation of the 

LoRaWAN network to evaluate the proposed scheduling algo-

rithm. The parameters include: 

(1) Number of Gateways: Set to 3, indicating the infrastructure 

available for communication within the network. 

(2) Number of IoT Devices: A total of 100 devices are simu-

lated, representing the end-user devices that will com-

municate through the gateways. 

(3) Network Server: There is 1 network server managing the 

communication and data processing for the IoT devices. 

(4) Environment Size: The simulation area is defined as 200m 

x 200m, providing a controlled space for the network oper-

ations. 

(5) Maximum Distance to Gateway: The maximum commu-

nication distance for devices to the gateway is set at 200m, 

reflecting the range capabilities of LoRaWAN technology. 

(6) Propagation Model: The LoRa Log Normal Shadowing 

Model is used to simulate realistic signal propagation con-

ditions, accounting for environmental factors. 

(7) Number of Retransmissions: A maximum of 5 retransmis-

sions is allowed for packet delivery attempts, enhancing re-

liability. 

(8) Frequency Band: The simulation operates on the 868MHz 

frequency band, commonly used for LoRaWAN commu-

nications. 

(9) Spreading Factor: Set to SF7, which determines the data 

rate and range of communication. 

These parameters are carefully chosen to create a realistic me-

dium-scale LoRaWAN environment, enabling the investigation of 

Quality of Service (QoS) metrics and the effectiveness of the 

scheduling algorithm. 

Table 1. Simulation parameters. 

Parameter Value 

Number of Gateways 3 

Number of IoT Devices 100 

Network Server 1 

Environment Size 200m x 200m 

Maximum Distance to Gateway 200m 

Propagation Model 
LoRa Log Normal Shadowing 

Model 

Number of Retransmissions 5(Max) 

Frequency Band 868MHz 

Spreading Factor 
SF7, SF8, SF9, SF10, SF11, 

SF12 

Number of Rounds 1000 

Parameter Value 

Voltage 3.3v 

Bandwidth 125kHz 

Payload Length 10 bytes 

Timeslot Technique CSMA10 

Data Rate (Max) 250kbps 

Number of Channels 5 

Simulation Time 600 Seconds 

The above parameters have been chosen in order to perform 

a realistic LoRaWAN environment and investigate the QoS 

metrics in IoT applications. The selected parameters aim to 

simulate a realistic medium-scale LoRaWAN IoT network 

that offers a good balance between the complexity of the 

network and communication reliability and computational 

efficiency for reinforcement learning. They rely on widely 

adopted real-world LoRaWAN configurations but provide the 

flexibility needed to effectively test a range of QoS and 

scheduling algorithms. 

4.2. Parameters and Tuning Strategies 

The selection of the algorithm's parameters generally af-

fects a sizable portion of the outcomes of the RL-based 

scheduling method. The ensuing sections outline the recom-

mended practices for modifying the primary parameters as 

well as how the modifications affect algorithms. 

The parameters and tuning strategies for the algorithm are 

crucial for optimizing performance: 

1.  Learning Rate (α): Set at 0.001, it determines how much 

new information influences existing knowledge, bal-

ancing convergence speed and stability. 

2.  Exploration-Exploitation Balance (ε in ε-greedy strat-

egy): The exploration rate starts at 1 and decays to 0.1, 

allowing the agent to explore initially while gradually 

favoring known actions. 

3.  Discount Factor (γ): Optimized at 0.95, it affects the 

importance of future rewards, promoting a balance 

between long-term and short-term rewards. 

4.  Batch Size for Training: An optimal batch size of 128 is 

used to achieve faster convergence and effective gen-

eralization, avoiding overfitting or underfitting issues 

associated with larger or smaller sizes. 

Table 2 presents the key parameters utilized in the rein-

forcement learning-based scheduling algorithm, which are 

crucial for its performance and effectiveness. The parameters 

include: 

1. Number of Hidden Layers: Set to 2, indicating the depth 

of the neural network used in the scheduling algorithm. 

2. Number of Neurons per Layer: Each hidden layer con-

tains 128 neurons, which influences the network's ca-
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pacity to learn complex patterns and relationships in the 

data. 

3. Learning Rate (α): Fixed at 0.001, this parameter con-

trols the magnitude of updates to the network weights 

during training, impacting convergence speed and sta-

bility. 

4. Discount Factor (Gamma): Set to 0.95, this factor bal-

ances the importance of immediate rewards versus fu-

ture rewards, guiding the agent's long-term deci-

sion-making. 

5. Exploration Rate (Epsilon): Initialized at 1.0, this rate 

determines the likelihood of the agent exploring new 

actions versus exploiting known actions, promoting 

exploration in the early training stages. 

6. Exploration Decay Rate: Set at 0.995, this parameter 

gradually reduces the exploration rate over time, al-

lowing the agent to focus more on exploitation as it 

learns. 

7. Minimum Exploration Rate: Fixed at 0.01, this ensures 

that the agent retains a small chance of exploring new 

actions even after extensive training. 

8. Replay Buffer Size: Set to 30,000, this parameter de-

fines the capacity of the experience replay buffer, which 

stores past experiences for training stability. 

9. Batch Size: Fixed at 64, this parameter determines the 

number of experiences sampled for each training itera-

tion, balancing convergence speed and generalization. 

10. Target Network Update Frequency: Set to every 500 

steps, this parameter specifies how often the target 

network's weights are synchronized with the main 

Q-network, aiding in stable learning. 

These algorithm parameters are essential for tuning the 

performance of the scheduling algorithm, ensuring effective 

learning and adaptation to the dynamic conditions of the 

LoRaWAN network. 

Table 2. Algorithm parameters. 

Parameter Value 

Number of Hidden Layers 2 

Number of Neurons per Layer 128 

Learning Rate 0.001 

Discount Factor (Gamma) 0.95 

Exploration Rate (Epsilon) 1.0 

Exploration Decay Rate 0.995 

Minimum Exploration Rate 0.01 

Replay Buffer Size 30,000 

Batch Size 64 

Target Network Update Frequency Every 500 steps 

Activation Function ReLU 

Parameter Value 

Optimizer Adam 

Loss Function Mean Squared Error 

4.3. Performance Metrics Analysis 

The Performance Metrics Analysis evaluates the effec-

tiveness of the proposed algorithm using key indicators such 

as delay, reliability, and throughput. The analysis demon-

strates significant improvements in these metrics compared to 

baseline policies, highlighting the algorithm's ability to op-

timize QoS in LoRaWAN networks. Overall, the results in-

dicate that the RL-based scheduling approach enhances net-

work performance, particularly in managing overlapping QoS 

requirements. 

4.3.1. Network Delay 

Figure 5 illustrates the relationship between network delay 

and the number of nodes in a LoRaWAN environment. 

1.  Trend Analysis: The graph typically shows that as the 

number of nodes increases, the delay experienced in the 

network also increases. This trend is indicative of the 

growing contention for communication resources, 

leading to longer wait times for packet transmission. 

2.  Comparison of Algorithms: The figure likely compares 

the delay performance of different scheduling algo-

rithms, such as the proposed RL-based algorithm versus 

traditional methods like LoRa+ and RT-LoRa. The 

RL-based algorithm is expected to demonstrate signif-

icantly lower delays, showcasing its effectiveness in 

optimizing resource allocation and scheduling tasks. 

3.  Implications for QoS: The results presented in this fig-

ure highlight the importance of efficient scheduling in 

maintaining low latency, especially in scenarios with a 

high density of nodes. This is crucial for applications 

requiring real-time data transmission, emphasizing the 

need for advanced algorithms to manage network per-

formance effectively. 

Overall, Figure 5 provides valuable insights into how 

network delay is affected by node density and the perfor-

mance advantages of the proposed scheduling approach. 

 
Figure 5. Delay vs number of nodes. 
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4.3.2. Packet Delivery Ratio (PDR) 

Figure 6 depicts the relationship between the Packet De-

livery Ratio (PDR) and the number of nodes in a LoRaWAN 

network. 

1.  PDR Trends: The graph typically shows that as the 

number of nodes increases, the PDR may initially rise 

but eventually plateaus or declines. This behavior in-

dicates that while more nodes can enhance network 

coverage, increased contention and potential collisions 

can negatively impact the successful delivery of pack-

ets. 

2.  Algorithm Comparison: The figure highlights the per-

formance of the proposed RL-Based Algorithm (DQN) 

in achieving the highest PDR compared to other algo-

rithms like RT-LoRa and LoRa+. This superiority 

suggests that the RL-based approach effectively man-

ages scheduling and resource allocation, minimizing 

packet losses. 

3.  Significance for Network Performance: The PDR is a 

critical metric for assessing the reliability of commu-

nication in IoT networks. A higher PDR indicates better 

performance and reliability, which is essential for ap-

plications that require consistent data transmission, re-

inforcing the importance of advanced scheduling tech-

niques in optimizing network performance. 

Overall, Figure 6 emphasizes the impact of node density 

on packet delivery success and showcases the advantages of 

the proposed algorithm in maintaining high delivery ratios. 

 
Figure 6. Packet delivery ratio (PDR) vs Number of Nodes. 

4.3.3. Packet Error Rate (PER) 

Figure 7 illustrates the relationship between Packet Error 

Rate (PER) and the number of nodes in a LoRaWAN network. 

1.  PER Trends: The graph typically shows that as the 

number of nodes increases, the PER tends to rise, in-

dicating a higher percentage of packets experiencing 

errors during transmission. This trend reflects the in-

creased likelihood of packet collisions and interference 

in a congested network environment. 

2.  Algorithm Performance: The figure highlights that the 

RL-Based Algorithm exhibits the lowest PER com-

pared to other algorithms like RT-LoRa and LoRa+. 

This lower PER is attributed to the dynamic optimiza-

tion of scheduling and resource allocation performed by 

the RL-based approach, which effectively reduces 

packet collisions and transmission errors. 

3.  Implications for Network Reliability: A lower PER is 

crucial for ensuring reliable communication in IoT ap-

plications, as it directly impacts the overall performance 

and efficiency of the network. The results presented in 

this figure underscore the importance of employing 

advanced scheduling algorithms to enhance network 

reliability and minimize transmission errors, especially 

in scenarios with a high number of nodes. 

Overall, Figure 7 emphasizes the correlation between node 

density and packet error rates, showcasing the effectiveness of 

the proposed RL-based algorithm in maintaining low error 

rates in a congested network. 

 
Figure 7. Packet Error Rate (PER) vs Number of Nodes. 

4.3.4. Throughput 

Figure 8 illustrates the relationship between throughput and 

the number of nodes in a LoRaWAN network. It shows that as 

the number of nodes increases, the throughput achieved by the 

RL-Based Algorithm (DQN) remains significantly higher 

compared to other algorithms like RT-LoRa and LoRa+. This 

superior performance is attributed to the RL-Based Algo-

rithm's dynamic optimization of scheduling decisions, which 

effectively balances network load and minimizes collisions, 

resulting in enhanced data transmission rates even as node 

density increases. 

 
Figure 8. Throughput vs Number of Nodes. 
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5. Conclusion and Recommendations 

5.1. Conclusion 

This section concludes us our investigation into creating a 

reinforcement learning-based task-scheduling algorithm for 

LoRaWAN IoT applications that is QoS-aware. Researchers 

investigated how current scheduling techniques fall short of 

satisfying the various QoS needs of contemporary IoT appli-

cations, especially in dynamic and expansive LoRaWAN 

networks. In order to overcome this difficulty, we developed 

and assessed a task scheduling algorithm based on rein-

forcement learning with the goal of optimizing important QoS 

metrics including throughput, latency, and reliability. Our 

study showed that reinforcement learning has a great deal of 

promise for improving task scheduling in LoRaWAN net-

works. We compared the performance of our RL-based 

scheduler to baseline techniques, such as RT-LoRa and Lo-

Ra+, utilizing a thorough simulation-based analysis with 

NS-3. Our research showed that the RL-based method has 

significant benefits in a number of situations. Especially in 

situations with dynamic traffic, the RL scheduler continu-

ously beat baseline algorithms. Especially during periods of 

high network traffic, it successfully adjusted and obtained a 

noticeably decreased average delay. In comparison to base-

lines, our RL scheduler continuously showed lower packet 

error rates and greater packet delivery ratios, indicating in-

creased reliability. Higher average throughput was also at-

tained by the RL-based method, demonstrating its efficiency 

in managing heavy network loads and optimizing data transfer 

rates. 

We have demonstrated that the difficulties of current Lo-

RaWAN scheduling techniques may be successfully ad-

dressed by using reinforcement learning, especially when it 

comes to meeting QoS requirements like throughput, latency, 

and reliability. For real-world LoRaWAN deployments to 

optimize QoS, our RL-based scheduler must be able to learn 

and adjust to dynamically changing network conditions, traf-

fic patterns, and device attributes. For the development of 

intelligent scheduling systems for LoRaWAN networks 

across multiple sectors, our study offers a solid basis. Nu-

merous applications, such as industrial automation, smart 

cities, and remote healthcare monitoring, may perform better 

thanks to the optimized scheduling method. 

5.2. Prospects for Further Research 

Even though our study offers insightful information about 

RL's potential for LoRaWAN scheduling, there are still a 

number of aspects that require further study and advancement: 

1) Further enhancements in scheduling performance may 

result by evaluating additional reinforcement learning 

algorithms, such as deep reinforcement learning archi-

tectures, policy gradient methods, or other cutting-edge 

techniques. 

2) Deploying dependable and secure IoT applications re-

quires addressing security and privacy issues in Lo-

RaWAN scheduling. How to incorporate security 

measures into the RL-based algorithm can be investi-

gated in future studies. 

3) Extensive testing and assessment in realistic contexts 

are necessary for the proposed scheduler's real-world 

implementation in order to validate its performance in 

the context of network dynamics, communication la-

tency, and device heterogeneity. 
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CF Carrier Frequency 

DER Data Extraction Rate 

DNN Deep Neural Network  

DQN Deep Q-Network 

DRL Deep Reinforcement Learning 

DSR Design Science Research 
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IoT Internet of Things 
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LoRa Long Range 

LoRaSim LoRa Network Simulator 

LoRaWAN Long Range Wide Area Network 

LPWAN Low Power Wide Area Network 
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MCUs Microcontrollers 

MILP Mixed Integer Linear Programming 

NS-3 Network Simulator-3 

PDR Packet Delivery Ratio 
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