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Abstract 

This paper introduces an optimized method for reducing operational costs by integrating a microgrid consisting of photovoltaic 

(PV) panels and battery energy storage systems (BESS), thereby decreasing dependence on the main grid. Traditionally, 

electricity demands have been met primarily by the main grid. However, with the increased use of renewable energy sources and 

BESS in microgrids, it's now possible to lower generation costs, improve environmental sustainability, and enhance energy 

efficiency. In this study, the optimization problem is tackled using the SPEA2 algorithm, focusing on three main objectives: (i) 

minimizing technical issues like power losses and voltage fluctuations in the grid, (ii) maximizing financial returns for 

distribution network operators, and (iii) reducing grid imports. The paper provides a comprehensive set of numerical results, 

leveraging detailed data on energy demand, local solar irradiance, and energy storage systems to validate the proposed method. 

The obtained results, based on two case studies, confirm that the optimal energy combination between power units and the main 

grid at each time can reduce power losses, voltage deviation and improve financial returns. The results highlight also the added 

value of BESS integration in minimizing grid imports, especially during peak hours. It can be said that the results underscore the 

remarkable efficiency and effectiveness of the proposed approach, demonstrating its capability to address the targeted challenges 

while achieving optimal performance metrics. 
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1. Introduction 

In recent years, the surge in fossil fuel prices and growing 

concerns about climate change have driven society to 

re-evaluate its energy strategies. This shift has led to an in-

creased emphasis on environmental impact assessments and a 

strong push towards the adoption of clean and efficient energy 

sources within power systems. The urgency of mitigating 

environmental damage has propelled the development of 

renewable energy technologies, such as wind and solar power, 

as viable alternatives to traditional fossil fuels. This transition 

not only addresses the environmental challenges but also aims 

to create a sustainable energy future for generations to come 

[1]. A microgrid, typically operating at low or medium volt-

age, functions as a localized energy system with a clearly 

defined electrical boundary. This boundary allows it to man-

age the distribution of power within a specific area, often 

encompassing a mix of residential, commercial, and industrial 
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consumers. What makes a microgrid particularly innovative is 

its ability to integrate a variety of Distributed Energy Re-

sources (DERs), such as solar panels, wind turbines, and 

energy storage systems, alongside traditional loads. By doing 

so, a microgrid not only enhances energy reliability and 

efficiency but also supports the transition towards a more 

sustainable and resilient power infrastructure. This flexibility 

enables microgrids to function independently from the main 

grid during power outages or in remote areas, making them a 

crucial element in the changing energy landscape [2]. Mi-

crogrids offer a powerful solution for generating electricity 

that is both resilient and eco-friendly, while also being 

cost-efficient. By harnessing local renewable energy sources 

and leveraging advanced control systems, microgrids can 

function autonomously or in tandem with the main grid, 

providing consistent power even in the face of disruptions. 

This blend of sustainability and reliability makes microgrids 

an appealing choice for communities and businesses looking 

to reduce their carbon footprint and strengthen energy security 

[3, 4]. Microgrids are flexible systems capable of operating 

either in connection with the main grid or independently in 

islanded mode. When linked to the main grid, they optimize 

energy usage by balancing supply and demand, often incor-

porating renewable energy sources. In islanded mode, they 

become self-reliant, delivering reliable power during grid 

outages or in remote locations. This dual capability boosts 

energy security and provides greater flexibility in managing 

local energy needs [5]. Residential microgrids connected to 

the main grid allow for bi-directional electricity flow, ena-

bling homeowners to both consume and supply power as 

required. Hybrid microgrids, which integrate multiple re-

newable energy sources (RES), traditional power generation, 

and energy storage systems, go a step further. They help 

mitigate the variability of renewable energy, enhancing sys-

tem efficiency and strengthening overall resilience. This 

combination ensures a stable and reliable energy supply, even 

in the face of changing weather conditions or disruptions to 

the main grid [6]. A residential microgrid enables the efficient 

utilization of renewable energy sources (RES) by managing 

power generation, consumption, and energy storage within a 

localized system. This study focuses on a microgrid that 

incorporates Battery Energy Storage Systems (BESS) and 

Photovoltaic (PV) panels, offering a sustainable energy solu-

tion. With global policies increasingly aimed at reducing 

greenhouse gas emissions and addressing climate change, the 

shift from fossil fuels to RES is gaining momentum, posi-

tioning microgrids as a key component of the future energy 

landscape [7]. Notably, CO2 emissions make up over 70% of 

total greenhouse gas emissions, positioning them as the main 

contributor to climate change. This underscores the pressing 

need to transition to cleaner energy sources, such as those 

employed in microgrids, which can substantially lower our 

carbon footprint and promote a more sustainable future [8]. 

The growing integration of Renewable Energy Sources (RES) 

marks a pivotal step toward a significantly decarbonized 

power system. In the United States, this shift is clear, with 

RES penetration rising from 9% in 2004 to 13% in 2014. This 

increase highlights the continued efforts to decrease depend-

ence on fossil fuels and progress toward a cleaner, more 

sustainable energy future [9]. However, the variability in RES 

generation and the switching between grid-tied and off-grid 

modes in residential microgrids can pose stability challenges. 

To overcome these issues and ensure a consistent power 

supply, Battery Energy Storage Systems (BESS) are em-

ployed to balance fluctuations between energy generation and 

consumption. BESS helps maintain the stability and reliability 

of the microgrid, even when renewable energy production 

fluctuates or during transitions between operating modes [10]. 

Addressing the technical and economic constraints of mi-

crogrids is crucial for maintaining a balanced relationship 

between available resources and load demands. Achieving 

this balance requires optimal planning and design, with 

components of hybrid microgrids accurately sized to meet 

specific load requirements. Careful sizing is vital for ensuring 

both efficiency and reliability, as demonstrated in numerous 

studies. Properly tailored microgrid components not only 

improve performance but also optimize costs, making the 

system both economically feasible and technically resilient 

[11, 12]. Many researchers have focused on the design, plan-

ning, and optimization of hybrid microgrids, employing 

various optimization techniques. For instance, [13] examines 

how to optimize the design, selection, and operation of dif-

ferent Distributed Energy Resources (DERs) in commercial 

buildings. These studies focus on improving the efficiency 

and reliability of microgrids by strategically selecting and 

managing resources to meet specific energy needs, showcas-

ing the potential for customized solutions across various 

environments. Research efforts such as [14] and [15] aim to 

minimize the total costs and emissions of microgrids by 

determining the optimal configuration of Distributed Energy 

Resources (DERs), taking into account constraints within 

local distribution networks, like voltage profiles and energy 

losses. However, these studies primarily focus on optimizing 

voltage profiles and do not fully address the reliability of 

microgrids. In contrast, [16] and [17] investigate the optimal 

allocation of energy storage within distribution systems. [16] 

seeks to reduce system costs by enhancing voltage profiles, 

lowering line loading, and minimizing both active and reac-

tive power losses. Meanwhile, [17] focuses on reducing costs 

associated with energy storage installation, energy losses, 

maintenance, interruptions, and system upgrades. The tech-

no-economic advantages of Battery Energy Storage Systems 

(BESS) and Photovoltaic (PV) systems under feed-in tariff 

(FiT) incentives and time-varying electricity rates are ana-

lyzed in [18]. Additionally, [19] addresses energy storage 

sizing and operational strategies, considering economic in-

centives for storage owners. Various studies also emphasize 

efforts to reduce CO2 emissions in microgrid operations. For 

instance, [20] optimizes the size and dispatch of Distributed 

Energy Resources (DERs) to lower CO2 emissions, factoring 
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in heat and cold storage. Similarly, [21] presents an economic 

scheduling model for electricity and natural gas systems 

aimed at reducing CO2 emissions, while [22] explores cost 

minimization and emission reduction through DER optimi-

zation, taking into account utility rates, transportation con-

straints, and generator states. For industrial parks, [23] pro-

poses an optimal low-carbon economic dispatch model that 

incorporates real-time multi-energy price incentives, calcu-

lating monthly carbon emissions based on real-time moni-

toring and historical data. In [24], a Mixed Integer Quadratic 

Programming (MIQP) algorithm is introduced to optimize 

BESS capacity in grid-tied commercial microgrids with 

dispatchable generators and renewable energy sources (RES). 

Additionally, [25] utilizes a hybrid multi-objective sensitivity 

analysis algorithm to optimize the sizes of PV and storage 

systems. In [26], the performance of the Grasshopper Opti-

mization Algorithm (GOA) is compared to other optimization 

algorithms for DER size optimization in isolated microgrids. 

Lastly, [27] employs meta-heuristic algorithms such as the 

Imperialistic Competitive Algorithm (ICA), Genetic Algo-

rithm (GA), and Particle Swarm Optimization (PSO) to op-

timize the size and location of DERs in distribution networks, 

while [28] focuses on implementing the PSO algorithm for 

DER optimization with consideration for various load types. 

Various strategies are used to optimize the allocation of Dis-

tributed Energy Resources (DERs), including simulation 

software tools like HOMER, DER-CAM, and NEPLAN 

[29-31], deterministic methodologies that involve numerical 

and iterative techniques [32, 33], and heuristic or metaheu-

ristic optimization algorithms such as CS, GOA, and PSO [26, 

34, 35]. While simulation tools provide valuable insights into 

DER sizing, they are limited by the modeling assumptions of 

their components and are mainly used for feasibility studies. 

As a result, simulation software is often utilized as a com-

parative tool to evaluate the sensitivity of sizing outcomes 

across different studies. Deterministic sizing methods gener-

ally outperform simulation software tools when it comes to 

DER sizing. However, the complex nature of microgrid de-

sign and planning can cause these deterministic approaches to 

get stuck in local optima, leading to longer times to find an 

optimal solution [26]. 

In the literature, several metaheuristic algorithms have been 

developed and are extensively used to tackle mi-

crogrid-related problems. These methods are flexible and 

skilled at avoiding local optima, often providing better solu-

tions than deterministic approaches [36]. A thorough com-

parison of optimization methods presented in [37] indicates 

that Particle Swarm Optimization (PSO) is among the most 

effective algorithms for microgrid planning. PSO excels at 

minimizing interruption costs, maximizing reliability, and 

exhibiting more stable convergence characteristics compared 

to other stochastic methods [38]. 

 
Figure 1. Schematic structure of the microgrid system. 

2. Literature Review 

Extensive research has been conducted on grid-connected 

solar photovoltaic (PV) systems with battery integration to 

analyze and quantify the optimal advantages of deploying 

such systems at the customer level. Studies in the literature 

have examined various aspects of system-level optimization, 

including sizing, simulation and optimization of PV-battery 

systems focusing on self-consumption, Feed-in Tariff (FiT) 

incentives, wholesale electricity tariffs, and demand fore-

casting [39, 41-46]. While batteries have traditionally been 

utilized in standalone PV systems [47], there is a growing 

interest in integrating batteries into grid-connected PV sys-

tems, particularly under FiT and time-of-use tariffs [48]. 

Despite the initially high installation costs, domestic solar PV 

systems have witnessed significant adoption rates, largely 

propelled by energy policies such as FiT schemes in Europe 

and other regions [1, 40, 49]. Moreover, large-scale installa-

tions in the form of solar farms are becoming increasingly 

prevalent due to favorable energy policies [50]. As per 

sources [23, 51, 52], integrating battery technology into 

energy systems characterized by high levels of fluctuating 

distributed energy resources offers a solution to mitigate 
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against frequent interruptions resulting from specific elec-

tricity demand patterns or grid-connected distributed energy 

systems. A key concern in this domain is the rationale behind 

the necessity for battery storage within electricity networks. 

The escalating peak electricity demands in power systems, 

coupled with the proliferation of distributed energy resources, 

lead to a disparity between generation and demand, resulting 

in underutilization of generation, transmission, and distribu-

tion infrastructure [52]. Leveraging battery storage alongside 

PV systems enables utility operators to optimize existing 

network capacity utilization and defer costly network in-

vestments. Consequently, the ability of residential electricity 

consumers to dynamically respond to fluctuating electricity 

prices becomes increasingly valuable for seamlessly inte-

grating high levels of distributed energy resources, such as PV, 

into future electricity networks. In a study outlined in [44], the 

impact of active demand-side management and battery stor-

age systems on self-consumption levels was investigated. The 

analysis highlighted the significance of the relationship be-

tween electricity energy flows and battery storage capacity as 

a critical decision variable in optimizing system performance. 

The optimization model described in [53] is tailored for 

scenarios involving aggregated demand profiles, allowing 

aggregators to participate in the day-ahead market. In various 

other contexts, the minimization of costly demand charges 

(kVA charges) has been a primary motivation for the de-

ployment of PV-battery systems, as highlighted in references 

[18, 53, 55]. Exploring the disparity between flat retail elec-

tricity prices and FiT export tariffs for PV, [40] investigated 

the potential value of deploying battery storage to maximize 

FiT revenue streams. This involved optimizing battery storage 

deployment to capitalize on periods of peak electricity prices 

for discharging and periods of lowest prices for charging. In 

[57], a Mixed-Integer Linear Programming (MILP) model 

was developed to manage and size residential heat pumps, 

aiming to maximize self-consumption of PV generation. The 

PV generation profile was generated based on irradiation data. 

Furthermore, [58] presented a case study that utilized eco-

nomic optimization of battery storage size to assist customers 

in selecting the most suitable battery storage technology for 

their specific requirements. 

3. Mathematical Modeling 

3.1. PV System 

As a function of solar irradiance, temperature, efficiency 

coefficient of solar panel and many other parameters, the 

output produced photovoltaic power 𝑃𝑃𝑉,𝑖
𝑡  at time t and in-

jected at bus i is described in equation (1). 

𝑃𝑃𝑉,𝑖
𝑡 = 𝑃𝑃𝑉𝑟 ×

𝐺𝑡

1000
× (1 + 𝐾𝑇(𝑇𝐶 − 25))       (1) 

𝐺𝑡 is defined as the global solar irradiance at time t, 𝑃𝑃𝑉𝑟 

is the nominal power of the PV, 𝑇𝐶 is the temperature of the 

PV cell and 𝐾𝑇 is the PV temperature coefficient. 

3.2. BESS System 

The behavior of the battery energy storage system is re-

flected by its state of charge SoC, expressed in % as a function 

of time as follows: 

𝑆𝑜𝐶𝑖
𝑡 = 𝑆𝑜𝐶𝑖

𝑡−1 + 𝜂𝑐ℎ

𝑃𝑐ℎ,𝑖
𝑡

𝑃𝐵𝐸𝑆𝑆
−

1

𝜂𝑑𝑖𝑠
×

𝑃𝑑𝑖𝑠,𝑖
𝑡

𝑃𝐵𝐸𝑆𝑆
       (2) 

𝑆𝑜𝐶𝑖
𝑡 = 𝑆𝑜𝐶𝑖

𝑡−1 − 𝑆𝐷 × 𝛥𝑡            (3) 

𝑃𝐵𝐸𝑆𝑆  represents the nominal power of the storage system. 

𝜂𝑐ℎ, 𝜂𝑑𝑖𝑠, 𝑃𝑐ℎ,𝑖
𝑡  and 𝑃𝑑𝑖𝑠,𝑖

𝑡  are respectively the charging and 

discharging efficiencies and powers of BESS at time t and bus 

i. SD is the self-discharge of the BESS and 𝛥𝑡 is the time step. 

The BESS power 𝑃𝐵𝐸𝑆𝑆,𝑖
𝑡  at each instant t and each bus I is 

then expressed as follows: 

𝑃𝐵𝐸𝑆𝑆,𝑖
𝑡 = 𝑃𝐵𝐸𝑆𝑆,𝑖

𝑡−1 + 𝜂𝑐ℎ𝑃𝑐ℎ,𝑖
𝑡 −

1

𝜂𝑑𝑖𝑠
𝑃𝑑𝑖𝑠,𝑖

𝑡
       (4) 

3.3. Load and Utility Grid 

Industrial, residential, and commercial loads are considered 

in order to simulate the variation of the load. The load power 

𝑃𝑙𝑜𝑎𝑑
𝑡  at time t is equal to the IEEE 33 bus typical load power 

at each bus multiplied by the sum of the coefficients of pro-

portions of the 3 types of loads. 

The exchange of energy with the main grid depends on the 

state of the PV sources and BESSs as well as the loads; energy 

is purchased from the grid in the case of a deficit and sold in 

the case of excess. The network is therefore modeled by an 

infinite source. 

4. Optimization Problem Formulation 

In this section, the proposed optimization model for dis-

tribution networks with integrated decentralized PV-BES 

systems is described. It is a multi-objective non-linear opti-

mization problem that aims to minimize hourly power losses 

and average voltage deviation and maximize Distribution 

Network Operator (DNO) revenues, as expressed in equations 

(5-7). 

4.1. Objective Function 

The objective function developed in this work includes 

three main functions, expressed below: 

Minimize hourly power losses Pt
L: 

𝑂𝐹1 = min (𝑃𝐿
𝑡) = min (∑ ∑ 𝑅𝑖,𝑘𝐼𝑡

𝑖,𝑘
2

)𝑁
𝑘=1

𝑁
𝑖=1      (5) 
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Minimize average voltage deviation Vt
D, average: 

𝑂𝐹2 = 𝑚𝑖𝑛 (𝑉𝐷,𝑎𝑣𝑒𝑟𝑎𝑔𝑒
𝑡 ) = 𝑚𝑖𝑛 (

1

𝑁
∑ |𝑉𝑖

𝑡 − 1|𝑁
𝑖=1 )   (6) 

Maximize DNO’s revenue Rt
DNO: 

𝑂𝐹3 = 𝑚𝑎𝑥(𝑅𝐷𝑁𝑂
𝑡 ) = max (∑ ((𝑃𝑙𝑜𝑎𝑑

𝑡 × 𝐶𝑙𝑜𝑎𝑑
𝑡 ) − (𝑃𝑃𝑉

𝑡 × 𝐶𝑃𝑉))𝑡   

−(𝑃𝑑𝑖𝑠
𝑡 × 𝐶𝑑𝑖𝑠) + (𝑃𝑐ℎ

𝑡 × 𝐶𝑐ℎ) − (𝑃𝑔𝑟𝑖𝑑,𝑖𝑚𝑝𝑜𝑟𝑡
𝑡 × 𝐶𝑖𝑚𝑝𝑜𝑟𝑡

𝑡 ) +

(𝑃𝑔𝑟𝑖𝑑,𝑒𝑥𝑝𝑜𝑟𝑡
𝑡 × 𝐶𝑒𝑥𝑝𝑜𝑟𝑡

𝑡 )) × 𝛥𝑡)        (7) 

𝐼𝑖,𝑘
t  is the current that transits between nodes i and k at time 

t and 𝑅𝑖,𝑘 is the branch resistance. 𝑉𝑖
𝑡 represents the nodal 

voltage at time t and N is the number of the network nodes. 

𝑃𝑃𝑉
𝑡 , 𝑃𝑐ℎ

𝑡  and 𝑃𝑑𝑖𝑠
𝑡  are respectively the total PV, charging 

and discharging BESS powers at time t, defined by: 

{

𝑃𝑃𝑉
𝑡 = ∑ 𝑃𝑃𝑉,𝑖

𝑡𝑁
𝑖=1

𝑃𝑐ℎ
𝑡 = ∑ 𝑃𝑐ℎ,𝑖

𝑡𝑁
𝑖=1

𝑃𝑑𝑖𝑠
𝑡 = ∑ 𝑃𝑑𝑖𝑠,𝑖

𝑡𝑁
𝑖=1

              (8) 

𝑃𝑔𝑟𝑖𝑑,𝑖𝑚𝑝𝑜𝑟𝑡
𝑡  and 𝑃𝑔𝑟𝑖𝑑,𝑒𝑥𝑝𝑜𝑟𝑡

𝑡  are respectively the imported 

and exported energy from and to the utility grid at time t and 

𝐶𝑖𝑚𝑝𝑜𝑟𝑡
𝑡  and 𝐶𝑒𝑥𝑝𝑜𝑟𝑡

𝑡  are their corresponding costs. 𝐶𝑙𝑜𝑎𝑑
𝑡  is 

the cost of the energy sold to costumers, 𝐶𝑃𝑉 and 𝐶𝑑𝑖𝑠 are the 

costs of energy purchased from PV and BESS respectively (to 

support the loads) and 𝐶𝑐ℎ is the cost of energy sold to the 

BESS (to charge it). 

The DNO revenue includes purchased electricity from PV, 

BESS (when discharging) and the main grid and sold elec-

tricity to BESS (to be charged), customers and the main grid 

(when there is an excess of energy). 

4.2. Constraints 

Based on many technical parameters of PV systems, BESS 

and utility grid, many restrictions are established in order to 

simulate the real operation of the system. 

0.95 𝑝. 𝑢. ≤ 𝑉𝑖
𝑡 ≤ 1.05 𝑝. 𝑢.          (9) 

𝑃𝑔𝑟𝑖𝑑,𝑖𝑚𝑝𝑜𝑟𝑡
𝑡 + 𝑃𝑃𝑉

𝑡 + ∑ 𝑃𝐵𝐸𝑆𝑆,𝑖
𝑡𝑁

𝑖=1 = 𝑃𝑙𝑜𝑎𝑑
𝑡 + 𝑃𝐿

𝑡 +

𝑃𝑔𝑟𝑖𝑑,𝑒𝑥𝑝𝑜𝑟𝑡
𝑡                   (10) 

10% ≤ 𝑆𝑜𝐶𝑡 ≤ 90%             (11) 

𝑆𝑜𝐶 (1) = 𝑆𝑜𝐶 (24)             (12) 

5. The Proposed Energy Management 

Strategy 

The energy management strategy presented in this paper is 

designed to optimize power losses and voltage deviation 

while maximizing revenue for the Distribution Network 

Operator (DNO). To achieve this, the study employs the 

Strength Pareto Evolutionary Algorithm 2 (SPEA2), an ad-

vanced method within the category of Evolutionary Algo-

rithms (EAs), which are inspired by the concept of "survival 

of the fittest." Evolutionary Algorithms, including genetic 

algorithms (GAs), evolutionary strategies (ESs), and evolu-

tionary programming (EP), draw on biological principles 

from Darwin and Mendel, simulating natural selection and 

adaptation processes. 

These evolutionary-based methods have attracted attention 

across diverse fields such as computer science, engineering, 

and finance, where optimization is critical. By leveraging 

Darwinian principles, these algorithms explore vast "fitness 

landscapes," efficiently navigating through potential solutions 

to identify the best candidates. The increased computational 

power available today makes EAs particularly efficient in 

finding optimal solutions for complex problems, often 

achieving results faster and more flexibly than traditional 

optimization techniques. 

SPEA2 specifically is well-suited for handling multiple 

objectives, providing a robust approach for managing 

trade-offs between competing goals, such as minimizing 

power losses and maximizing revenue. This flexibility has 

made Darwinian-based optimization techniques highly at-

tractive to researchers. Figure 2 illustrates a basic flowchart 

that captures the core structure of Evolutionary Algorithms, 

highlighting the iterative selection, mutation, and crossover 

processes that drive the search for optimal solutions. This 

evolutionary framework offers a powerful, adaptable ap-

proach for solving both single and multi-objective optimiza-

tion problems, as further explored in this study. 

 
Figure 2. Flowchart of a typical Evolutionary Algorithm. 
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6. Simulation 

System Data 

The proposed energy management strategy is implemented 

on a modified IEEE 33-bus distribution network, as depicted 

in Figure 3. This network incorporates four decentralized 

photovoltaic (PV) systems and two Battery Energy Storage 

Systems (BESSs), strategically placed to optimize perfor-

mance. The locations and sizes of these units were determined 

based on findings from a prior study, detailed in Table 1, 

which identified configurations that maximize efficiency 

while balancing energy supply and demand. 

For simplicity and to streamline power flow calculations, it 

is assumed that both PV and BESS units operate at a unity 

power factor, supplying purely active power. This assumption 

ensures that reactive power effects are minimal, allowing a 

clearer focus on optimizing active power flows within the 

network and assessing the direct impact of these distributed 

energy resources. This setup provides a practical and scalable 

framework to test the proposed strategy’s effectiveness in 

managing real-time power distribution across a decentralized 

energy grid. 

Table 1. PVs and BESSs data. 

Bus Unit Power (kW) 

24 PV1 1535 

3 PV2 1588 

12 
PV3 1445 

BESS1 2546 

30 PV4 1390 

5 BESS2 4538 

 

 
Figure 3. The modified IEEE 33 bus test network. 

For the simulations in this study, solar irradiance data spe-

cific to Casablanca, Morocco, was utilized to reflect realistic 

conditions for the region. Casablanca, known for its diverse 

climate and variable irradiance levels across seasons, pro-

vided an ideal basis for analyzing the performance of a mi-

crogrid under different weather scenarios. The simulations 

were conducted in MATLAB on a computer equipped with an 

Intel Core i7 processor and 8 GB of RAM, with each simula-

tion covering a full 24-hour period and a time step of 1 hour. 

This setup allowed for detailed tracking of load demands and 

renewable energy (RE) output on a summer and a winter day, 

as illustrated in Figures 6 and 9. 

Since 2017, electricity prices in Morocco have shown 

moderate fluctuations, ranging between 97.54 USD/MWh in 

2022 and 108.48 USD/MWh in 2021. These price variations 

influence both the economic viability and optimization 

strategies for microgrid energy management. Table 2 provides 

a breakdown of energy costs across different customer cate-

gories, illustrating the cost structure within the Moroccan 

energy market. All technical, economic, and simulation pa-

rameters used in this study are comprehensively listed in the 

following tables, offering a clear overview of the inputs 

driving the analysis and results. 
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Table 2. Energy costs for each type of costumers. 

Type of load Industrial Commercial Residential 

Energy cost 0.1 USD/kWh 0.1038 USD/kWh 0.0886 USD/kWh 

Table 3. Selling and purchasing tariffs. 

 PV BESS charging from PV BESS Discharging 

Energy cost (USD/kWh) 0.047 0.048 0.065 

 

Table 4. Technical and simulation parameters used in the study. 

The used parameters The proposed value 

Technical parameters 

Self-discharge for Li-ion (%/day) 0.1 

Charging efficiency (%) 95 

Discharging efficiency (%) 95 

Simulation parameters 

Maximum iterations 80 

Number of populations 50 

pmutation 0.1 

pcrossover 0.9 

The purchased and sold energy prices from and to the grid 

are represented in Figure 4. 

 
Figure 4. Purchased and sold energy prices from and to the grid. 

7. Simulation Results 

In order to investigate the effectiveness of the model, the 

simulation is done for a typical day in summer and winter with 

three different scenarios: 

1) Reference: no PV and BESS are integrated to the network 

(only the main grid supports the loads). 

2) PV without BESS: only 4 PVs are integrated to the net-

work. 

3) PV with BESS: both PVs and BESSs are integrated to the 

network. 

7.1. Case Study 1: Summer Day 

In this case study, a typical summer day is selected to 

evaluate the results of the proposed algorithm for the PV 

systems with and without BESS, as shown in Figure 5 and 

Figure 6. 

 
Figure 5. Optimal power profiles for energy management without 

BESS – case 1. 
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Figure 6. Optimal power profiles for energy management with BESS 

– case 1. 

On a typical summer day without grid-integrated BESS, the 

main grid supplies the load during early morning and evening 

hours (from 6:00 p.m.) when solar irradiance is absent. PV 

systems begin contributing around 11:00 a.m., and from 12:00 

p.m. to 6:00 p.m., they fully meet electricity demand, with any 

excess energy sold back to the grid. 

When BESSs are integrated into the network, the main grid 

continues to supply power in the early morning to meet de-

mand. As irradiance increases, PV generation covers the 

demand, charges the BESS, and exports surplus energy to the 

main grid (4:00 p.m. to 7:00 p.m.). The amount of stored 

energy in the BESS is illustrated in Figure 7. In this scenario, 

PV generation is higher, and main grid imports are lower. 

Additionally, BESS charges from PV production between 

12:00 p.m. and 6:00 p.m., then discharges during peak grid 

hours (7:00 p.m. to 10:00 p.m.). 

Optimal values for power losses, voltage deviation, and 

revenue maximization across the three scenarios are presented 

in Table 5. 

 

Table 5. Optimal objective functions – case 1. 

t 

Reference PV without BESS PV with BESS 

PL (kW) 
VDaverage 

(p.u.) 

Profit 

(USD) 
PL (kW) 

VDaverage 

(p.u.) 

Profit 

(USD) 
PL (kW) 

VDaverage 

(p.u.) 

Profit 

(USD) 

1 3,99 0,00728 39,1013 3,99 0,00728 39,1013 3,99 0,00728 39,1013 

2 3,99 0,00728 39,1013 3,99 0,00728 39,1013 3,99 0,00728 39,1013 

3 3,81 0,00708 37,9124 3,81 0,00708 37,9124 3,81 0,00708 37,9124 

4 1,639 0,0046 24,9166 1,639 0,0046 24,9166 1,639 0,0046 24,9166 

5 10,118 0,0113 60,679 10,118 0,0113 60,679 10,118 0,0113 60,679 

6 8,26 0,0103 55,2561 8,262 0,0103 55,2561 8,262 0,0103 55,2561 

7 15,278 0,014 74,8637 15,278 0,014 74,8637 15,278 0,014 74,8637 

8 21,57 0,0167 89,0484 20,118 0,0161 89,2501 20,118 0,0161 89,25 

9 54,85 0,027 91,1307 31,329 0,0197 113,4491 31,329 0,0197 113,449 

10 72,738 0,0311 104,5083 27,369 0,0157 152,0663 27,369 0,0157 152,066 

11 90,61 0,0346 115,667 31,486 0,0127 183,6416 31,486 0,0127 183,641 

12 95,558 0,0354 118,5635 35,984 0,0081 214,0848 35,143 0,0124 192,083 

13 74,206 0,031 104,3484 40,77 0,00056 227,8526 33,377 0,0118 170,135 

14 75,86 0,0315 105,7298 42,76 0,000207 235,6455 34,242 0,01208 172,611 

15 83,95 0,0332 111,3891 51,76 0,00208 259,8491 39,499 0,01306 182,0408 

16 114,41 0,0388 8,421 50,75 0,00382 303,8578 45,109 0,0141 210,025 

17 121,56 0,0399 8,5308 47,86 0,0074 275,1484 45,0537 0,012 232,87 

18 117,839 0,0392 9,1717 43,609 0,0108 234,1464 43,609 0,0108 234,14 

19 122,103 0,0399 10,3609 45,92 0,0170 185,6493 44,858 0,01298 206,801 

20 157,37 0,0453 11,5759 78,227 0,029 131,1317 62,572 0,0134 213,003 

21 155,719 0,0451 12,1156 110,39 0,0373 69,3029 71,819 0,0125 196,164 
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t 

Reference PV without BESS PV with BESS 

PL (kW) 
VDaverage 

(p.u.) 

Profit 

(USD) 
PL (kW) 

VDaverage 

(p.u.) 

Profit 

(USD) 
PL (kW) 

VDaverage 

(p.u.) 

Profit 

(USD) 

22 53,86 0,0265 90,1766 51,48 0,0259 92,0598 28,7169 0,0156 102,196 

23 27,409 0,0188 99,7803 27,409 0,0188 99,7803 27,409 0,0188 99,7803 

24 8,79 0,0107 57,52 8,7919 0,01076 57,52 8,7919 0,01076 57,52 

 Average  Sum Average  Sum Average  Sum 

 62,3139 0,0253 1479,86 33,0481 0,01244 3256,26 28,23 0,0123 3139,62 

 

 
Figure 7. BESSs stored power – case 1. 

7.2. Case Study 2: Winter Day 

Winter days are characterized by low solar irradiance, ex-

plaining the results shown in Figures 8 and 9 and Table 6. 

Without integrating BESSs into the network, the system 

yields results similar to those observed on summer days, albeit 

with greater reliance on the main grid and a reduction in the 

amount of energy sold back to it. 

 
Figure 8. Optimal power profiles for energy management without 

BESS – case 2. 

When BESSs are considered, they charge from the grid at 

low cost during early morning hours and discharge during 

peak hours, when electricity prices are higher. From 10:00 a.m. 

to 9:00 p.m., PV systems primarily supply the demand, with 

any excess energy sold back to the main grid. Additionally, 

the main grid supports demand at various times throughout 

the day, alongside PVs and BESSs, as on-site generation alone 

was insufficient to fully meet consumption needs. 

Table 6. Optimal objective functions – case 1. 

 

Reference PV without BESS PV with BESS 

t PL (kW) 
VDaverage 

(p.u.) 

Profit 

(USD) 
PL (kW) 

VDaverage 

(p.u.) 

Profit 

(USD) 
PL (kW) 

VDaverage 

(p.u.) 

Profit 

(USD) 

1 3,99 0,00728 39,1013 3,99 0,00728 39,1013 3,99 0,00728 39,1013 

2 3,99 0,00728 39,1013 3,99 0,00728 39,1013 22,63 0,0161 39,1013 

3 3,81 0,00708 37,9124 3,81 0,00708 37,9124 22,21 0,0159 37,9124 
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Reference PV without BESS PV with BESS 

t PL (kW) 
VDaverage 

(p.u.) 

Profit 

(USD) 
PL (kW) 

VDaverage 

(p.u.) 

Profit 

(USD) 
PL (kW) 

VDaverage 

(p.u.) 

Profit 

(USD) 

4 1,639 0,00462 24,9166 1,639 0,00462 24,9166 16,84 0,0134 24,9166 

5 10,118 0,0113 60,679 10,118 0,01134 60,679 33,44 0,0203 60,679 

6 8,26 0,01032 55,2561 8,26 0,01032 55,2561 30,47 0,01929 55,2561 

7 15,278 0,01404 74,8637 15,278 0,01404 74,8637 42,214 0,02309 74,8637 

8 21,57 0,01676 89,0484 21,57 0,01676 89,0484 40,78 0,023 89,0484 

9 54,85 0,02701 91,1307 54,85 0,02701 91,1307 54,85 0,027 91,1307 

10 72,738 0,0311 104,5083 68,54 0,0302 107,258 68,54 0,03 107,258 

11 90,61 0,0346 115,667 54,979 0,0262 141,038698 54,979 0,026 141,038 

12 95,558 0,0354 118,5635 40,66 0,02 165,72479 40,66 0,02 165,72 

13 74,206 0,031 104,3484 27,66 0,01049 168,646175 27,66 0,01049 168,64 

14 75,86 0,0315 105,7298 29,287 0,0071 191,115689 29,28 0,00717 191,115 

15 83,95 0,0332 111,3891 31,35 0,00747 201,986325 31,35 0,00747 201,986 

16 114,41 0,0388 8,421 39,75 0,0132042 206,074163 39,75 0,0132 206,074 

17 121,56 0,03992 8,5308 44,2 0,0171 182,562506 44,2 0,01719 182,562 

18 117,839 0,03923 9,1717 49,248 0,02128 145,775787 49,248 0,02128 145,77 

19 122,103 0,0399 10,3609 66,81 0,027 101,501357 50,908 0,01163 185,16 

20 157,37 0,04532 11,5759 131,75 0,0412 41,3623201 78,98 0,01212 189,92 

21 155,719 0,0451 12,1156 155,719 0,0451 12,1156 105,48 0,0347 62,367 

22 53,86 0,0265 90,1766 53,86 0,0265 90,1766 53,86 0,0265 90,1766 

23 27,409 0,0188 99,7803 27,409 0,0188 99,7803 27,409 0,0188 99,7803 

24 8,791 0,0107 57,52 8,79 0,0107 57,52 8,79 0,0107 57,52 

 Average  Sum Average  Sum Average  Sum 

 62,31 0,025 1479,86 39,73 0,0179 2424,64 40,7 0,018 2707,09 

 
Figure 9. Optimal power profiles for energy management with BESS – case 2. 
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Figure 10. BESSs stored power – case 2. 

From the results of tables and figures above, it is noted that 

the storage systems are highly involved during peak hours 

after being recharged during the day, which optimizes all 

objective functions during this period. It can be said that the 

integration of storage systems into the network is 

cost-effective (compared to the system without storage). 

8. Conclusion 

This paper introduces an optimal planning and energy 

management approach for a microgrid (MG) system that takes 

into account diverse configurations of distributed energy 

resources (DERs). The strategy is designed to tackle three 

main objectives: minimizing power losses, reducing voltage 

deviations, and maximizing revenue for the Distribution 

Network Operator (DNO). Achieving this delicate balance 

requires sophisticated optimization, and to this end, the 

Strength Pareto Evolutionary Algorithm 2 (SPEA2) is applied 

as a robust multi-objective meta-heuristic. This algorithm 

effectively navigates complex, competing objectives to iden-

tify solutions that best fulfill the overall energy management 

goals. In this paper, SPEA2 demonstrates once again its 

efficiency and gives promising results in terms of optimiza-

tion. For each time step, the model proposes the optimal 

energy mix that reduces losses in the system and increases the 

benefit of network operators. A key focus of the study is the 

role of Battery Energy Storage Systems (BESS) within the 

MG. By integrating BESS, the strategy enhances the mi-

crogrid’s flexibility and efficiency. The effects of BESS on 

essential MG parameters, such as stability, efficiency, and 

financial return, were rigorously evaluated across both sum-

mer and winter case studies. The results underscore the added 

value of BESS integration: it not only increases revenue for 

the DNO by improving energy trading opportunities but also 

significantly reduces power losses and mitigates voltage 

deviation. This demonstrates the critical role that optimized 

DER configurations, combined with advanced energy storage 

solutions, play in modern microgrid management. 

Abbreviations 

DNO Distribution Network Operator 

SPEA2 Strength Pareto Evolutionary Algorithm 2 

BESS Battery Energy Storage Systems 

DERs Distributed Energy Resources 

MG Microgrid 

PV Photovoltaic 
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