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Abstract 

Improving the reliability of power networks is a critical challenge, especially with the rise of renewable energy sources and the 

continuous growth in electricity demand. This article explores the use of artificial intelligence, specifically dynamic Bayesian 

networks (DBNs), to evaluate the reliability of electric power systems and networks, focusing on the IEEE 9-bus and IEEE 

14-bus networks as case studies. To achieve this, a comprehensive study was conducted by simulating various operating 

scenarios using these networks as models. These networks were modeled using the simulation and analysis software PyAgrum. 

Key system variables, including nodes, lines, generators, and transformers, were integrated into the analysis, enabling the 

construction of conditional probability tables (CPTs) for each component. These tables accounted for both interdependencies and 

state transitions to reflect real-world dynamics accurately. Simulations performed using MATLAB enabled an in-depth analysis 

of reliability levels, revealing critical information on the availability rates of nodes, transformers, and generators. The analysis 

identified specific vulnerabilities within the network, such as node 2 in the IEEE 9-bus network achieving an availability rate of 

65%, which indicates robust performance. Conversely, nodes 7 and 9 exhibited significantly lower availability rates of 20% and 

40%, respectively, highlighting critical areas requiring immediate attention. Similarly, transformer 1 displayed a relatively high 

availability rate of 70%, indicating strong performance, whereas transformer 3 showed a notably low availability rate of 30%, 

suggesting an urgent need for upgrades or replacements. For generators, generator 1 had the lowest availability at 25%, 

representing a critical vulnerability, while generator 2, with a 55% availability rate, stood out as the most efficient and could 

serve as a benchmark for performance improvement efforts. 
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1. Introduction 

The increasing complexity of modern electrical systems, such 

as smart grids and wireless sensor networks, requires advanced 

methodologies for evaluating and enhancing their reliability. The 

reliability of power networks is a critical concern, as it ensures 

not only continuous and high-quality electricity supply but also 

reduces the risk of failures that could significantly impact 

essential infrastructures and society as a whole. Traditional 

reliability modeling techniques, such as reliability block 

diagrams, fault tree analysis, and event tree analysis, have 

significantly contributed to the field [1]. However, they exhibit 

limitations when addressing dynamic interdependencies and 

state transitions of network components. In response to these 

challenges, the integration of artificial intelligence, particularly 

dynamic Bayesian networks (DBNs), has emerged as a 

transformative approach. DBNs allow for modeling the dynamic 

behaviors and complex dependencies within network 

components, enabling a more precise and detailed analysis. The 

use of artificial intelligence to assess the reliability of electric 

power systems and networks is a growing field that increasingly 

attracts the interest of electrical engineering professionals. In 

particular, reliability and availability assessments are areas where 

Bayesian networks (BNs) have proven to be highly effective. 

From the work of [2], which introduced time series modeling for 

dynamic Bayesian networks (DBNs), to J. B. Dugan's research 

on dynamic fault tree models for fault-tolerant computing 

systems, numerous studies have been published on the reliability 

of electrical systems and their components. For instance, [3] 

conducted an assessment of wind turbine reliability based on 

wind speed using Bayesian networks. Their methodology 

employed an approximate inference algorithm combined with 

dynamic discretization of continuous variables to calculate the 

reliability index of wind turbines and their components. 

Additionally, the proposal of a new method to evaluate the 

reliability of distribution systems with decentralized generation 

using BNs was introduced by [4]. This innovative approach 

enabled the calculation of reliability indices for a distribution 

system and evaluated the contribution of each component to 

overall system reliability. 

In his master’s thesis, [5] developed two groups of models 

with multi-state nodes to compare Bayesian networks with the 

traditional fault tree method. The extended model allowed for 

the discretization of continuous variables and provided a 

probability distribution linked to failure over time. Similarly, 

[6] utilized belief networks to assess nodal energy quality and 

availability based on correlation factor analysis between 

renewable sources, such as solar and wind. They also 

developed a Bayesian model structure to evaluate nodal 

energy supply quality, incorporating renewable sources 

alongside the main components of the electrical network. 

Meanwhile, [7] presented a methodology for applying 

Bayesian networks to the reevaluation of structural system 

reliability, integrating multiple failure sequences and 

correlations between component limit states. The proposed 

approach integrates dynamic Bayesian networks (DBNs) to 

model temporal interactions and conditional dependencies 

between components in an electrical network. It addresses the 

critical question of whether artificial intelligence, particularly 

DBNs, can effectively improve or assess the reliability of 

power systems and networks. By capturing complex 

dynamics and uncertainties, this method offers a more precise 

and robust reliability assessment, particularly for networks 

such as the IEEE 9-bus and IEEE 14-bus systems. Unlike 

traditional methods, this technique adapts to variations in 

component performance over time, contributing directly to 

enhancing network resilience and overall availability. 

2. Materials and Methods 

In this approach, dynamic Bayesian networks model the 

interactions and temporal dependencies between the network 

nodes. Component failure probabilities are estimated by 

integrating empirical and historical data (availability rates), 

enabling Bayesian inference to assess the impact of failures 

on network reliability. 

The different steps involved in developing the reliability 

assessment method are as follows: 

(1) Modeling the network with a DBN 

(2) Model parameterization 

(3) Simulations 

(4) Performance criteria calculations 

2.1. Modeling Power Network Components with 

Random Variables 

The modeling of power network components utilizes random 

variables to represent the characteristics of various elements. 

Each network component such as transmission lines, 

transformers, and generators is represented as a random variable, 

with its possible states corresponding to different operational 

conditions (e.g., operational or failure) [8-10]. Reliability 

parameters, including failure rates, are defined for each 

component based on historical data and previous studies [12]. 

In the case of the IEEE 9-bus and IEEE 14-bus networks, 

which are widely recognized as benchmarks for analyzing 

small to medium-scale electrical systems, the primary 

components consist of generators, nodes, transformers, and 

loads. Each of these components is modeled using random 

variables that capture their performance characteristics and 

operational states [11]. 

(1) Generators are modeled using random variables repre-

senting their availability [14-16]. 

(2) Nodes and transmission lines are modeled considering 

random variables describing their transport capacity, 

resistance, reactance, conductance, and losses [16]. 

(3) Transformers are also modeled with random variables 

representing their capacity, efficiency, impedance, and 
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power losses [16]. 

2.2. Defining Dependencies Between Power 

Network Components 

Probabilistic dependencies emerge when the values of 

random variables associated with different components are 

linked through joint distributions. These dependencies are 

modeled within the DBN framework using dependency 

graphs that capture both causal and temporal relationships 

between the states of various components [14]. In a DBN, the 

graph's nodes represent the random variables corresponding 

to network components, while the arcs between nodes illus-

trate the causal or probabilistic dependencies [14, 15, 17]. 

2.3. Estimating Conditional Failure Probability 

Distributions 

The conditional failure probability distributions are 

computed for each component while accounting for the 

defined dependencies. These distributions form the basis for 

constructing the conditional probability tables (CPTs) 

required in DBN modeling. Statistical learning techniques are 

employed to estimate CPTs efficiently [15-18]. Once these 

conditional distributions are established, the failure 

probabilities and unavailability rates of the power network 

can be accurately calculated. 

2.4. Constructing the Dynamic Bayesian 

Network 

Representing a power network model as a DBN involves 

identifying the network’s key variables and their interactions. 

Each variable is represented as a node in the DBN, and 

cause-and-effect relationships between the variables are 

represented as directional arcs between the nodes [14-16]. 

The conditional probabilities associated with these relation-

ships are also specified to account for uncertainty. 

 
Figure 1. Dynamic Bayesian Networks IEEE 09 Nodes. 

 
Figure 2. Dynamic Bayesian Networks IEEE 14 Nodes. 

2.5. Simulation and Bayesian Inference 

Simulations using the DBN model are performed to estimate 

the failure and unavailability probabilities of network 

components over time. Bayesian inference is applied to update 

these probabilities dynamically based on new data or 

observations [14, 19]. This approach enables predictive insights 

into potential failures and provides a comprehensive 

assessment of the network's overall reliability. Figures 3 and 4 

illustrate dynamic Bayesian networks that visualize the 

dependencies and reliability of the network components 

through availability indicators and conditional probabilities. 

Each component is represented as a rectangle displaying its 

availability (green bar), statistics (mean and standard deviation), 

and dependency relationships, depicted through arrows that 

signify conditional probabilities between components. 

 
Figure 3. Dynamic Bayesian Network with Evidence for IEEE 09 

Nodes. 
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Figure 4. Dynamic Bayesian Network with Evidence for IEEE 14 Nodes. 

3. Results and Comments 

3.1. Availability Rate of Different Nodes 

The application of the methodology produced the following 

graphs: 

 
Figure 5. Availability Rates of Different Nodes for IEEE 09-Node 

Network. 

Figure 5 illustrates the availability rates of nodes in the 

IEEE 9-bus network, reflecting the proportion of operational 

time for each node. Among them, Node 2 demonstrates the 

highest availability, reaching approximately 65%. This high 

availability rate is attributed to the presence of a transformer 

and a generator with relatively high reliability rates that 

support Node 2. The reliability of these components reduces 

failure occurrences, thereby enhancing overall node 

availability. In contrast, Nodes 7 and 9 exhibit significantly 

lower availability levels, at 20% and 40%, respectively. These 

reduced rates are primarily due to their strategic positions 

within the network and the heightened stress caused by heavy 

load demands. 

 
Figure 6. Availability Rates of Different Nodes for IEEE 14-Node 

Network. 

Figure 6 highlights substantial differences in availability 

rates among the network nodes. Notably, Nodes 3, 6, and 8 

exhibit high availability rates, attributed to the presence of 

Static VAR Compensators (SVCs), which enhance network 

stability. These nodes also benefit from multiple interconnec-

tions and alternative pathways, which bolster their resilience 

against failures. Conversely, Nodes 4, 11, and 12 show 
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markedly low availability rates, primarily due to the lack of 

sufficient alternative pathways at these critical points in the 

network. According to IEC 61508 standards, node availability 

should range between 94% and 96%, with an average of 95%. 

The observed deviations from these standards underscore the 

need for targeted interventions to enhance the reliability of 

underperforming nodes and ensure the network meets or 

surpasses these thresholds. 

3.2. Availability Rates of Generators 

Figure 7 showcases stark differences in the performance of 

generators within the network. Generator 1, exhibiting a low 

availability rate of 25%, performs poorly, likely due to exces-

sive workload and insufficient redundancy, which exacerbate 

its vulnerability to failures. In contrast, Generator 2 achieves 

the highest availability rate at 55%, attributed to a 

well-balanced load distribution with other components, effec-

tively mitigating its failure risk. Generator 3, with an availabil-

ity rate of 50%, demonstrates reasonable reliability but requires 

optimization to reach performance levels comparable to Gen-

erator 2. Nonetheless, the current availability rates for all gen-

erators are significantly below the NERC standards, which 

recommend an average availability of 94%. 

 
Figure 7. Availability Rates of Generators for IEEE 09-Node Network. 

 
Figure 8. Availability Rates of Generators for IEEE 14-Node Network. 

The generators in the network exhibit varying availability 

rates influenced by their location and strategic role. Genera-

tors 2 and 3, located on main buses, demonstrate higher 

availability rates of 57% and 53%, respectively. Their central 

positioning in electricity distribution enhances their signifi-

cance for network stability, enabling better performance. In 

contrast, Generators 1 and 4, which show lower availability 

rates of 25% and 30%, are significantly impacted by their 
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reliance on critical components with higher failure probabili-

ties, adversely affecting their overall performance. Despite 

these efforts, the current availability rates fall significantly 

short of the North American Electric Reliability Corporation 

(NERC) standards, which recommend rates between 90% and 

98%. Addressing this shortfall requires improving generator 

reliability by increasing redundancy in critical components 

and implementing more effective management strategies to 

achieve compliance with international performance bench-

marks. 

3.3. Availability Rates of Transformers 

Figure 9 shows that Transformer 1 has a notably high availa-

bility rate, indicating its robust performance. This high rate 

suggests that Transformer 1 is less susceptible to failures of other 

components, likely due to its strategic position within the net-

work or its more resilient interconnections. In contrast, Trans-

formers 2 and 3 exhibit comparatively lower availability rates, 

which could result from higher operational loads or more fre-

quent failure incidents. The availability range for the transform-

ers is between 97% and 99%, with an average of 98%. However, 

according to the IEEE 493 standard, this current availability rates 

fall below the recommended levels, emphasizing the need for 

further improvements in transformer reliability. 

 
Figure 9. Availability Rates of Transformers for IEEE 09-Node 

Network. 

 
Figure 10. Availability Rates of Transformers for IEEE 14-Node 

Network. 

Figure 10 highlights a significant disparity in the 

availability rates of the two transformers. Transformer 1, with 

an availability rate of 70%, demonstrates greater reliability, 

attributed to the meshed network configuration that facilitates 

energy flow rerouting through alternative pathways during 

failures. In contrast, Transformer 2, with an availability rate of 

only 27%, is frequently subjected to overloads, making it 

significantly more prone to failures. These performance levels 

are well below the IEEE 493 recommended availability 

standards of 97% to 99%, underscoring a considerable need 

for improvement to enhance the reliability of these critical 

components. 

3.4. Reliability Curves 

Figure 12 illustrates how the reliability of the network di-

minishes as the number of non-functional nodes increases, 

highlighting the modeled conditional dependencies between 

interconnected nodes. Each failing node elevates the failure 

probability of connected nodes, triggering a cascading effect. 

This dynamic emphasizes how the initial failure of certain 

critical nodes (key components) progressively erodes the 

overall reliability of the network. 

 
Figure 11. Reliability as a Function of the Number of Failing Nodes 

in the IEEE 9-Node Network. 

Figure 11 demonstrates that network reliability declines as 

the number of failing nodes increases. The observed peaks 

highlight significant fluctuations in reliability corresponding 

to changes in the number of failing nodes. These variations 

arise from the random failure of nodes within the network and 

the differing impacts these failures exert on the overall system. 

Peaks represent moments when critical nodes—those with 

substantial influence on network stability—fail, causing a 

pronounced drop in reliability. Despite these fluctuations, the 

reliability remains within a specific range, indicating a base-
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line level of network stability. This relative stability is at-

tributed to the inherent resilience and redundancy in the 

network's design. Even with multiple node failures, the net-

work compensates for these losses to some degree through 

redundancy mechanisms. As a highly redundant meshed 

network, each node is connected to several others, enabling 

multiple pathways for energy transmission and alternative 

routes for power flow. 

 
Figure 12. Reliability as a Function of the Number of Failing Nodes 

in the IEEE 14-Node Network. 

4. Discussion 

Artificial Intelligence (AI) is revolutionizing the reliability 

assessment of electric power systems by outperforming 

traditional methods through advanced techniques such as 

machine learning (ML) and deep learning (DL). These 

innovations enable more accurate predictions and streamlined 

modeling of system complexities. For instance, neural 

networks consistently surpass traditional statistical models in 

failure prediction, while reinforcement learning optimizes 

maintenance scheduling to reduce costs without compromising 

reliability. Furthermore, AI’s capacity to process large datasets 

and adapt to real-time conditions significantly enhances the 

accuracy and efficiency of reliability assessments. Unlike 

traditional approaches such as failure mode and effects analysis 

(FMEA), AI-based probabilistic models, including Bayesian 

networks, offer a more holistic understanding of system 

reliability by capturing interdependencies between components. 

Nevertheless, AI faces several challenges, including its reliance 

on high-quality data, the lack of interpretability in complex 

models like deep learning, and the substantial computational 

resources required for large-scale applications. To overcome 

these hurdles, hybrid methodologies have been introduced. For 

example, combining AI with Monte Carlo simulations 

enhances computational efficiency and accuracy, creating a 

balanced approach to reliability assessments. Looking ahead, 

integrating AI with IoT and edge computing could 

revolutionize real-time reliability analysis by utilizing the 

massive data generated by sensors in power systems. 

Additionally, the development of explainable AI (XAI) 

techniques could foster trust and usability by increasing 

transparency in AI decision-making processes. Moreover, the 

increasing penetration of renewable energy sources introduces 

variability and uncertainty, which AI can address by evaluating 

the reliability of systems with high renewable energy 

integration. Furthermore, AI could play a pivotal role in 

assessing cybersecurity vulnerabilities in increasingly 

digitalized power systems, thereby enhancing resilience. Future 

research should also quantify the economic and environmental 

impacts of AI, including cost reductions achieved through 

optimized maintenance strategies and lower carbon footprints 

enabled by operational efficiency. Ultimately, AI enables 

smarter grids and proactive system management, contributing 

to sustainability and energy security. However, ethical 

considerations, such as biases in AI models and the equitable 

distribution of technology, must be addressed to maximize its 

benefits. In conclusion, while certain obstacles remain, AI 

demonstrates unmatched accuracy and efficiency, signifying a 

paradigm shift in reliability assessment and paving the way for 

resilient, sustainable, and efficient power systems. 

5. Conclusions 

This research demonstrates the effectiveness of using 

artificial intelligence, particularly dynamic Bayesian networks 

(DBNs), as a robust tool to assess and enhance the reliability of 

power systems and networks. By applying this methodology to 

the IEEE 9-bus and 14-bus networks, it was possible to 

simulate various failure scenarios, evaluate node availability 

rates, and pinpoint critical vulnerabilities that significantly 

affect overall reliability. The primary goal of this research was 

to improve the availability of power systems and networks. 

This was achieved by systematically evaluating network 

availability through DBNs, which involved modeling network 

structures, parameterizing models, running simulations, and 

calculating key performance metrics. The results indicated that 

certain nodes, such as Node 2 in the IEEE 9-bus network 

(Figure 5), exhibited a relatively high availability rate of 

approximately 65%, attributed to its connection with highly 

reliable components such as transformers and generators. 

Conversely, Node 7, with an availability rate of around 20%, 

emerged as a significant weak point, indicating potential 

vulnerabilities in critical areas of the network. In the IEEE 

14-bus network, Nodes 5 and 9 displayed availability rates 

nearing 80%, which reflects strong reliability and robustness. 

However, Nodes 12 and 14 demonstrated extremely low 

availability rates, around 10%, highlighting high-priority 

critical areas requiring immediate attention. 

DBNs proved highly effective in identifying network 

vulnerabilities, optimizing maintenance strategies, and 

subsequently enhancing the overall reliability of the network. 
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By integrating a comprehensive range of availability rates, the 

research aimed to improve the availability of power systems 

and networks further. This integration enabled precise 

modeling of interactions between network components using 

DBNs, which were parameterized with availability rates to 

simulate various failure scenarios and provide an in-depth 

evaluation of overall network performance. 

Abbreviations 

IEEE Institute of Electrical and Electronics Engineers 

DBN Dynamic Bayesian Network 

CPT Conditional Probability Table 

AI Artificial Intelligence 
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DL Deep Learning 
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V. Parameter data for the IEEE 9 and 14-node networks. 
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